Abstract
In highly renewable power systems the increased weather dependence can result in new resilience challenges, such as renewable energy droughts, or a lack of sufficient renewable generation at times of high demand. The weather conditions responsible for these challenges have been well-studied in the literature. However, in reality multi-day resilience challenges are triggered by complex interactions between high demand, low renewable availability, electricity transmission constraints and storage dynamics. We show these challenges cannot be rigorously understood from an exclusively power systems, or meteorological, perspective. We propose a new method that uses electricity shadow prices—obtained by a European power system model based on 40 years of reanalysis data—to identify the most difficult periods driving system investments. Such difficult periods are driven by large-scale weather conditions such as low wind and cold temperature periods of various lengths associated with stationary high pressure over Europe. However, purely meteorological approaches fail to identify which events lead to the largest system stress over the multi-decadal study period due to the influence of subtle transmission bottlenecks and storage issues across multiple regions. These extreme events also do not relate strongly to traditional weather patterns (such as Euro-Atlantic weather regimes or the North Atlantic Oscillation index). We therefore compile a new set of weather patterns to define energy system stress events which include the impacts of electricity storage and large-scale interconnection. Without interdisciplinary studies combining state-of-the-art energy meteorology and modelling, further strive for adequate renewable power systems will be hampered.
Original language | English |
---|---|
Article number | 054038 |
Number of pages | 15 |
Journal | Environmental Research Letters |
Volume | 19 |
Issue number | 5 |
Early online date | 26 Apr 2024 |
DOIs | |
Publication status | Published - 1 May 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s). Published by IOP Publishing Ltd
Keywords
- energy drought
- energy meteorology
- extreme weather
- power system modelling
- PyPSA-Eur
- shadow prices
- weather variability