Abstract
Supraglacial debris cover regulates the melt rates of many glaciers in mountainous regions around the world, thereby modifying the availability and quality of downstream water resources. However, the influence of supraglacial debris is often poorly represented within glaciological models, due to the absence of a technique to provide high-precision, spatially continuous measurements of debris thickness. Here, we use high-resolution UAV-derived thermal imagery, in conjunction with local meteorological data, visible UAV imagery and vertically profiled debris temperature time series, to model the spatially distributed debris thickness across a portion of Llaca Glacier in the Cordillera Blanca of Peru. Based on our results, we simulate daily sub-debris melt rates over a 3-month period during 2019. We demonstrate that, by effectively calibrating the radiometric thermal imagery and accounting for temporal and spatial variations in meteorological variables during UAV surveys, thermal UAV data can be used to more precisely represent the highly heterogeneous patterns of debris thickness and sub-debris melt on debris-covered glaciers. Additionally, our results indicate a mean sub-debris melt rate nearly three times greater than the mean melt rate simulated from satellite-derived debris thicknesses, emphasising the importance of acquiring further high-precision debris thickness data for the purposes of investigating glacier-scale melt processes, calibrating regional melt models and improving the accuracy of runoff predictions.
Original language | English |
---|---|
Pages (from-to) | 981-996 |
Number of pages | 16 |
Journal | Journal of Glaciology |
Volume | 69 |
Issue number | 276 |
Early online date | 14 Dec 2022 |
DOIs | |
Publication status | Published - 1 Aug 2023 |
Bibliographical note
Funding Information:This research was funded by the UK Natural Environment Research Council (NERC), through a studentship awarded to R. R. B. and R. G. B. by the University of Edinburgh NERC E Doctoral Training Partnership (NE/L002558/1). The fieldwork formed part of the CASCADA project, a joint UK-Peruvian project researching the impacts of glacial retreat on water resources in the Ancash region of Peru, for which R. A. L. M. and J. L. W. are the PIs. CASCADA is funded by the Newton Paulet Fund, a UK/Peru collaboration led by NERC (NE/S013288/1) and the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, Perú (CONCYTEC). Additional funding support was received from the Scottish Alliance for Geoscience, Environment and Society (SAGES). 3
Publisher Copyright:
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The International Glaciological Society.