Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents

G T Dunning, D R Glowacki, T J Preston, S J Greaves, G M Greetham, I P Clark, M Towrie, J N Harvey, A J Orr-Ewing

Research output: Contribution to journalArticle (Academic Journal)peer-review

45 Citations (Scopus)
437 Downloads (Pure)

Abstract

Solvent-solute interactions influence the mechanisms of chemical reactions in solution, but the response of the solvent is often slower than the reactive event. Here, we report that exothermic reactions of fluorine (F) atoms in d3-acetonitrile and d2-dichloromethane involve efficient energy flow to vibrational motion of the deuterium fluoride (DF) product that competes with dissipation of the energy to the solvent bath, despite strong solvent coupling. Transient infrared absorption spectroscopy and molecular dynamics simulations show that after DF forms its first hydrogen bond on a subpicosecond time scale, DF vibrational relaxation and further solvent restructuring occur over more than 10 picoseconds. Characteristic dynamics of gas-phase F-atom reactions with hydrogen-containing molecules persist in polar organic solvents, and the spectral evolution of the DF products serves as a probe of solvent reorganization induced by a chemical reaction.

Original languageEnglish
Pages (from-to)530-533
Number of pages4
JournalScience
Volume347
Issue number6221
DOIs
Publication statusPublished - 30 Jan 2015

Bibliographical note

Copyright © 2015, American Association for the Advancement of Science.
Accepted 29/12/2014

Fingerprint

Dive into the research topics of 'Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents'. Together they form a unique fingerprint.

Cite this