Water corrosion of spent nuclear fuel: radiolysis driven dissolution at the UO2/water interface

Ross S Springell*, Sophie L Rennie, Leila Costelle, James E Darnbrough, C A D Stitt, Elizabeth Cocklin, Chris Lucas, Robbert Burrows, Howard Sims, Didier Wermeille, Jonathan Rawle, Chris Nicklin, William Nuttall , Thomas Bligh Scott, Gerard Lander

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

283 Downloads (Pure)

Abstract

X-ray diffraction has been used to probe the radiolytic corrosion of uranium dioxide. Single crystal thin films of UO2 were exposed to an intense X-ray beam at a synchrotron source in the presence of water, in order to simultaneously provide radiation fields required to split the water into highly oxidising radiolytic products, and to probe the crystal structure and composition of the UO2 layer, and the morphology of the UO2/water interface. By modeling the electron density, surface roughness and layer thickness, we have been able to reproduce the observed reflectivity and diffraction profiles and detect changes in oxide composition and rate of dissolution at the Ångström level, over a timescale of several minutes. A finite element calculation of the highly oxidising hydrogen peroxide product suggests that a more complex surface interaction than simple reaction with H2O2 is responsible for an enhancement in the corrosion rate directly at the interface of water and UO2, and this may impact on models of long-term storage of spent nuclear fuel.
Original languageEnglish
Pages (from-to)301-311
Number of pages11
JournalFaraday Discussions
Volume180
Early online date28 Jan 2015
DOIs
Publication statusPublished - 1 Aug 2015

Fingerprint

Dive into the research topics of 'Water corrosion of spent nuclear fuel: radiolysis driven dissolution at the UO<sub>2</sub>/water interface'. Together they form a unique fingerprint.

Cite this