Water-in-CO2 Microemulsions Stabilized by Fluorinated Cation-Anion Surfactant Pairs

Masanobu Sagisaka*, Tatsuya Saito, Atsushi Yoshizawa, Sarah E. Rogers, Frédéric Guittard, Christopher Hill, Julian Eastoe, Marijana Blesic

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

10 Citations (Scopus)
54 Downloads (Pure)

Abstract

High-water-content water-in-supercritical CO2 (W/CO2) microemulsions are considered to be green, universal solvents, having both polar and nonpolar domains. Unfortunately, these systems generally require environmentally unacceptable stabilizers like long and/or multifluorocarbon-tail surfactants. Here, a series of catanionic surfactants having more environmentally friendly fluorinated C4-C6 tails have been studied in terms of interfacial properties, aggregation behavior, and solubilizing power in water and/or CO2. Surface tensions and critical micelle concentrations of these catanionic surfactants are, respectively, lowered by ∼9 mN/m and 100 times than those of the constituent single fluorocarbon-tail surfactants. Disklike micelles in water were observed above the respective critical micelle concentrations, implying the catanionic surfactants have a high critical packing parameter, which should be suitable for the formation of reverse micelles. Based on visual observation of phase behavior and Fourier transform infrared spectroscopic and small-angle neutron scattering studies, one of the three catanionic surfactants tested was found to form transparent single-phase W/CO2 microemulsions with a water-to-surfactant molar ratio of up to ∼50. This is the first successful demonstration of the formation of W/CO2 microemulsions by synergistic ion-pairing of anionic and cationic single-tail surfactants. This indicates that catanionic surfactants offer a promising approach to generate high-water-content W/CO2 microemulsions.

Original languageEnglish
Pages (from-to)3445-3454
Number of pages10
JournalLangmuir
Volume35
Issue number9
Early online date11 Feb 2019
DOIs
Publication statusPublished - 5 Mar 2019

Fingerprint Dive into the research topics of 'Water-in-CO<sub>2</sub> Microemulsions Stabilized by Fluorinated Cation-Anion Surfactant Pairs'. Together they form a unique fingerprint.

Cite this