Wave scattering by narrow cracks in ice sheets floating on water of finite depth

DV Evans, R Porter

Research output: Contribution to journalArticle (Academic Journal)

108 Citations (Scopus)

Abstract

An explicit solution is provided for the scattering of an obliquely incident flexural-gravity wave by a narrow straight-line crack separating two semi-infinite thin elastic plates floating on water of finite depth. By first separating the solution into the sum of symmetric and antisymmetric parts it is shown that a simple form for each part can be derived in terms of a rapidly convergent infinite series multiplied by a fundamental constant of the problem. This constant is simply determined by applying an appropriate edge condition. Curves of reflection and transmission coefficients are presented, showing how they vary with plate properties and angle of incidence. It is also shown that in the absence of incident waves and for certain relations between their wavelength and frequency, symmetric edge waves exist which travel along the crack and decay in a direction normal to the crack.
Translated title of the contributionWave scattering by narrow cracks in ice sheets floating on water of finite depth
Original languageEnglish
Pages (from-to)143 - 165
Number of pages23
JournalJournal of Fluid Mechanics
Volume484
DOIs
Publication statusPublished - Jun 2003

Bibliographical note

Publisher: Cambridge Univ Press
Other identifier: IDS number 696AX

Fingerprint Dive into the research topics of 'Wave scattering by narrow cracks in ice sheets floating on water of finite depth'. Together they form a unique fingerprint.

Cite this