TY - JOUR
T1 - Wnt signalling in smooth muscle cells and its role in cardiovascular disorders
AU - Mill, Carina
AU - George, Sarah Jane
PY - 2012
Y1 - 2012
N2 - Vascular smooth muscle cells (SMCs) are the major cell type within blood vessels. SMCs exhibit low rates of proliferation, migration, and apoptosis in normal blood vessels. However, increased SMC proliferation, migration, and apoptosis rates radically alter the composition and structure of the blood vessel wall and contribute to cardiovascular diseases, such as atherosclerosis, and restenosis that occur after coronary artery vein grafting and stent implantation. Consequently, therapies that modulate SMC proliferation, migration, and apoptosis may be useful for treating cardiovascular diseases. The family of Wnt proteins, which were first identified in the wingless drosophila, has a well-established role in embryogenesis and development. It is now emerging that Wnt proteins also regulate SMC proliferation, migration, and survival. In this review article, we discuss recently emerging research that has revealed that Wnt proteins are important regulators of SMC behaviour via activation of β-catenin-dependent and β-catenin-independent Wnt signalling pathways.
AB - Vascular smooth muscle cells (SMCs) are the major cell type within blood vessels. SMCs exhibit low rates of proliferation, migration, and apoptosis in normal blood vessels. However, increased SMC proliferation, migration, and apoptosis rates radically alter the composition and structure of the blood vessel wall and contribute to cardiovascular diseases, such as atherosclerosis, and restenosis that occur after coronary artery vein grafting and stent implantation. Consequently, therapies that modulate SMC proliferation, migration, and apoptosis may be useful for treating cardiovascular diseases. The family of Wnt proteins, which were first identified in the wingless drosophila, has a well-established role in embryogenesis and development. It is now emerging that Wnt proteins also regulate SMC proliferation, migration, and survival. In this review article, we discuss recently emerging research that has revealed that Wnt proteins are important regulators of SMC behaviour via activation of β-catenin-dependent and β-catenin-independent Wnt signalling pathways.
U2 - 10.1093/cvr/cvs141
DO - 10.1093/cvr/cvs141
M3 - Article (Academic Journal)
C2 - 22492675
SN - 1755-3245
VL - 95
SP - 233
EP - 240
JO - Cardiovascular Research
JF - Cardiovascular Research
IS - 2
ER -