Abstract
Direct reciprocity is a mechanism for sustaining mutual cooperation in repeated social dilemma games, where a player would keep cooperation to avoid being retaliated by a co-player in the future. So-called zero-determinant (ZD) strategies enable a player to unilaterally set a linear relationship between the player's own payoff and the co-player's payoff regardless of the strategy of the co-player. In the present study, we analytically study zero-determinant strategies in finitely repeated (two-person) prisoner's dilemma games with a general payoff matrix. Our results are as follows. First, we present the forms of solutions that extend the known results for infinitely repeated games (with a discount factor w of unity) to the case of finitely repeated games (0 < w < 1). Second, for the three most prominent ZD strategies, the equalizers, extortioners, and generous strategies, we derive the threshold value of w above which the ZD strategies exist. Third, we show that the only strategies that enforce a linear relationship between the two players’ payoffs are either the ZD strategies or unconditional strategies, where the latter independently cooperates with a fixed probability in each round of the game, proving a conjecture previously made for infinitely repeated games.
Original language | English |
---|---|
Pages (from-to) | 61-77 |
Number of pages | 17 |
Journal | Journal of Theoretical Biology |
Volume | 438 |
Early online date | 14 Nov 2017 |
DOIs | |
Publication status | Published - 7 Feb 2018 |
Keywords
- Cooperation
- Direct reciprocity
- Discount factor
- Prisoner's dilemma game