Skip to content

The first 142 amino acids of glutamate decarboxylase do not contribute to epitopes recognized by autoantibodies associated with Type 1 diabetes

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)954-963
Number of pages10
JournalDiabetic Medicine
Volume35
Issue number7
Early online date19 Apr 2018
DOIs
DateAccepted/In press - 19 Mar 2018
DateE-pub ahead of print - 19 Apr 2018
DatePublished (current) - 1 Jul 2018

Abstract

Aims: Glutamate decarboxylase (GAD) antibodies are the most widely used predictive marker for Type 1 diabetes, but many individuals currently found to be GAD antibody-positive are unlikely to develop diabetes. We have shown previously that radioimmunoassays using N-terminally truncated 35S-GAD65(96–585) offer better disease specificity with similar sensitivity to full-length 35S-GAD65(1–585). To determine whether assay performance could be improved further, we evaluated a more radically truncated 35S-GAD65(143–585) radiolabel. Methods: Samples from people with recent-onset Type 1 diabetes (n = 157) and their first-degree relatives (n = 745) from the Bart's–Oxford family study of childhood diabetes were measured for GAD antibodies using 35S-labelled GAD65(143–585). These were screened previously using a local radioimmunoassay with 35S-GAD65(1–585). A subset was also tested by enzyme-linked immunosorbent assay (ELISA), which performs well in international workshops, but requires 10 times more serum. Results were compared with GAD antibody measurements using 35S-GAD65(1–585) and 35S-GAD65(96–585). Results: Sensitivity of GAD antibody measurement was maintained using 35S-GAD65(143–585) compared with 35S-GAD65(1–585) and 35S-GAD65(96–585). Specificity for Type 1 diabetes was improved compared with 35S-GAD65(1–585), but was similar to 35S-GAD65(96–585). Relatives found to be GAD antibody-positive using these truncated labels were at increased risk of diabetes progression within 15 years, compared with those positive for GAD(1–585) antibody only, and at similar risk to those found GAD antibody-positive by ELISA. Conclusions: The first 142 amino acids of GAD65 do not contribute to epitopes recognized by Type 1 diabetes-associated GAD antibodies. Low-volume radioimmunoassays using N-terminally truncated 35S-GAD65 are more specific than those using full-length GAD65 and offer practical alternatives to the GAD antibody ELISA for identifying children at increased risk of Type 1 diabetes.

    Research areas

  • Type 1 Diabetes, Glutamate Decarboxylase, Autoantibodies, Prediction

Download statistics

No data available

Documents

Documents

  • Full-text PDF (accepted author manuscript)

    Rights statement: This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at https://onlinelibrary.wiley.com/doi/abs/10.1111/dme.13628 . Please refer to any applicable terms of use of the publisher.

    Accepted author manuscript, 950 KB, PDF document

DOI

View research connections

Related faculties, schools or groups