
Peer reviewed version

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via World Scientific at http://www.worldscientific.com/worldscibooks/10.1142/q0038#t=aboutBook. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Dynamic Compound-Specific Stable Isotope Probing of the Soil Microbial Biomass

Richard P. Evershed, Alice F. Charteris, Peter J. Maxfield, Ian D. Bull and Timothy D.J. Knowles

1Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS UK

1Present address: Biological, Biomedical and Analytical Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY UK
Introduction

The concept of following the assimilation of stable isotope labelled substrates into newly synthesised soil microbial biomass biochemicals (= biomarkers) was first demonstrated nearly 20 years ago in studies of unculturable soil methanotrophs [Radajewski et al., 2000; Bull et al., 2000]. These landmark papers laid the foundations for an approach that has come to be generally known as stable isotope probing (SIP). The major advantage of SIP in studying the soil microbial biomass lies in its effectiveness for investigating unculturable soil microorganisms, i.e. the vast majority of the soil bacteria, actinomycetes, fungi, algae and protozoa. Historically, SIP has developed along two distinct paths, namely those applications focusing on genomic material (DNA and RNA) and those targeting small molecules, such as phospholipid fatty acids (PLFAs).

The basic soil SIP experiment involves presenting the microbial community with a stable isotopically-labelled substrate, most commonly 13C-labelled. After a period of incubation soils are sampled and specific cellular biochemicals extracted. The increase in weight associated with uptake of the stable isotope label is utilised to either separate the labelled components gravimetrically (e.g. DNA and RNA) or analyse directly by isotope ratio mass spectrometry (IRMS). The original experiment performed by Boschker and co-workers traced 13C-labelled acetate utilisation in aquatic sediments [Boschker et al., 1998], with the resulting phospholipids being solvent extracted, hydrolysed and the fatty acids (PLFAs) analysed by gas chromatography-combustion-IRMS (GC-C-IRMS) to determine the pattern of uptake of the 13C-label into different components – the distribution of the stable isotopically-labelled PLFAs was used as a taxonomic fingerprint for the microbes assimilating different substrates. In the original experiment 13C from acetate was recovered mainly from PLFAs with even numbers of carbon atoms (16:1$\omega7c$, 16:0, 18:1$\omega7c$), whereas fatty acids with odd numbers of carbon atoms (a15:0, 15:0, 17:1$\omega6$, 17:0) were primarily labelled upon incubation with propionate. Comparison of the 13C-PLFA compositions with those of known microorganisms, showed that the two substrates were predominantly consumed by different specialized groups of sulphate-reducing bacteria (SRB). The PLFA 13C-labelling pattern for the acetate consumers was similar to *Desulfotomaculum acetoxidans* and *Desulfofrigus* spp., two acetate-consuming SRB, while those of the propionate consumers did not resemble any known strain. Despite the obvious effectiveness of this experiment one of the criticisms of PLFA-SIP has been the lack of specificity in its ability to taxonomically identify specific microorganisms. We will show in this contribution, however, that such criticism overlooks how the use of specific 13C or 15N-labelled tracers together with GC-C-IRMS analysis of different classes of small molecules, can be extremely effective in exploring critical aspects of soil biomass characteristics, which extend well beyond taxonomic assignments.

DNA- and RNA-SIP are without question the preferred techniques for identifying active microorganisms assimilating particular carbon substrates and nutrients into cellular biomass. The
initial demonstration of this approach immediately showed its value as a cultivation-independent technique for linking metabolic function to specific members of microbial communities inhabiting complex environmental matrices, such as soils. As with PLFA-SIP, soils are incubated with stable-isotope labelled substrates, but the technique departs from the PLFA approach since extracted nucleic acids are subjected to density gradient ultracentrifugation to separate nucleic acids of differing masses due to 13C-labelling. Purification of DNA from caesium chloride retrieves 13C-labelled and unlabelled DNA (differentiated by IRMS), followed by polymerase chain reaction (PCR) amplification and molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). The approach has proved to be extremely powerful in a wide variety of environmental settings. For the procedure to succeed, however, a very high level of 13C-labelling is required to ensure that physical separation is achieved during the centrifugation step. Even higher levels of labelling are required for 15N-DNA/RNA SIP due to the lower molar ratios of N/C.

We do not dwell further in this contribution on the use of DNA/RNA-SIP approaches to soil biomass studies. Instead we focus on exploring an under-appreciated dimension of small molecule SIP, which we now term dynamic-SIP. This is an approach we have come to use routinely in our laboratory over the past ten years. We will focus initially on dynamic 13C-SIP then move to 15N- and dual 13C,15N-SIP. Overall, we will demonstrate how the small molecule SIP technique has progressed from the original and widely used 13C-PLFA taxonomic approach to a significantly more powerful tool for exploring soil biomass dynamics in relation to: (i) revealing the assimilation of different substrates, (ii) the turnover rates of different biomass C pools, (iii) the connectivity between C and N cycles, and (iv) trophic interactions. This contribution can be viewed as an update to our previous reviews of 13C-PLFA SIP applied to soils [Evershed et al., 2006, 2007; Maxfield and Evershed, 2011], but with emphasis on the dynamic-SIP approach. Our aim here is to demonstrate how small molecule dynamic-SIP is much more than a taxonomic technique, yielding information generally inaccessible to genomic and bulk stable isotope approaches.

General considerations for stable isotope probing in the soil system

SIP in various forms has been applied in investigations of microbial communities in a diversity of environments ranging from ocean sediments to the human gut, but with soil SIP arguably being the most challenging of all the systems studied [Murrell and Whiteley, 2011]. 13C-SIP is far more commonly used than any other isotope system, with substrates used in soil SIP studies including: 13CH$_4$, 13CO$_2$, 13CH$_3$OH, 13C-acetate, 13C-propionate, 13C-butyrate, 13C-pyruvate, 13C-mono- and polysaccharides, 13C-alkyl halides, 13C-aromatics (including phenolic and PAHs) and complex substrates such as 13C-labelled plants or cultured microbes. After incubation the vast majority of studies target either DNA/RNA or PLFAs. The major advantages of 13C-PLFA SIP are that the preparation of PLFAs from soils is entirely routine (see complete Experimental Methods at the end of
this chapter) combined with the exceptional sensitivity of the final analysis [Mottram and Evershed, 2003], which rests upon the use of GC-C-IRMS (Fig. 1).

Figure 1. The instrument that made small molecule SIP possible [Merritt and Hayes, 1994]. A GC-C-IRMS configured for either compound-specific carbon or nitrogen isotope analyses. For δ¹³C value determinations ions at m/z 44 (¹³C¹⁶O¹⁶O), 45 (¹³C¹⁶O¹⁸O+¹³C¹⁴O¹⁷O) and 46 (¹³C¹⁸O¹⁷O+¹³C¹⁴O¹⁸O+¹³C¹⁴O¹⁶O) are continuously measured; monitoring m/z 46 enables the ¹⁷O (via determination of ¹⁸O content) contribution to m/z 45 to be accounted for. For δ¹⁵N determinations ions at m/z 28 (¹⁵N¹⁵N) and 29 (¹⁴N¹⁵N) are monitored. The exact derivatisation, standardisation and calibration, GC columns and temperature programmes and data analysis protocols are given at the end of this chapter for all the compound classes referred to in the following sections. Further detailed discussions of the technical aspects of the instrumentation in the context of ecological research are given in Evershed et al. [2007].

Indeed, it is the sensitivity aspect, combined with the selectivity conferred through the choice of ¹³C-labelled substrate that makes the ¹³C-PLFA SIP such a powerful tool in studying the soil microbial biomass. The high sensitivity of the technique has a number of important practical advantages: (i) economics – stable isotopically-labelled substrates are amongst the most expensive chemicals used in ecological research. The high sensitivity of the GC-C-IRMS means that less isotope (¹³C, ¹⁵N) is required per treatment which has obvious cost savings. This has critical advantages in terms of improved experimental design as scale can be increased, i.e. increased replication or more frequent sampling in time-course experiments, which amounts to enhanced rigour and ultimately greater insights into biomass function, (ii) appropriate application rates – this is critical to avoid perturbing the activities of microbial biomass away from the norm, with advantages coming from targeting of specific compounds providing insights into the wider fate of the isotopically-labelled substrate that
can never be achieved through bulk stable soil except by applying substrates at supra-normal rates. As we will show repeatedly below, the enhanced sensitivity of compound-specific approaches offers considerable, and in some cases hitherto unexplored, scope in both 13C- and 15N-SIP studies.

One final important point is that the most successful SIP experiments are predicated on the use of highly enriched stable isotopically-labelled substrates in ‘pulse-chase’ or continuous incubation experiments. Such experiments have grown in popularity since they circumvent the sensitivity limitations experienced when using natural abundance-labelled substrates, e.g. C$_4$ plant litter or animal dung. While such substrates might have appeal on grounds of greatly reduced cost and availability in large amounts, except in some special circumstances (e.g. Dungait et al., [2008, 2009]), their applications will be significantly more limited than when isotopically-enriched substrates are employed.

Dynamic-SIP

We define here *dynamic-SIP* as those experiments which involve regular sampling over a time-course throughout the incubation period. We actually regard such experiments as fundamental in optimising experimental designs in order to: (i) establish optimal incubation times, (ii) ensure that equilibrium conditions have been reached, (iii) detect changes in microbial populations with time, (iv) detect cross-feeding between microbes in long-term incubations, and (v) provide numerical estimates for nutrient fluxes and pool sizes. Given the hundreds of reported SIP studies it is surprising that dynamic-SIP experiments are performed so infrequently. Table 1 lists examples of dynamic 13C-SIP experiment performed during the past decade.

Table 1. Examples of dynamic 13C-SIP studies of the soil microbial biomass arranged by substrate applied.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Environment</th>
<th>Biomarkers</th>
<th>Observation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>13CH$_4$</td>
<td>Rice field/forest soils</td>
<td>PLFAs</td>
<td>Methanotrophs affected by N fertilisation</td>
<td>[Mohanty et al., 2006]</td>
</tr>
<tr>
<td>13CH$_4$</td>
<td>Upland grassland</td>
<td>PLFAs</td>
<td>New approach to estimating methanotroph population characteristics</td>
<td>[Maxfield et al., 2006]</td>
</tr>
<tr>
<td>13CH$_4$</td>
<td>Upland grassland</td>
<td>PLFAs</td>
<td>Methanotrophs affected by inorganic fertilisation</td>
<td>[Maxfield et al., 2008]</td>
</tr>
<tr>
<td>13CH$_4$</td>
<td>Volcanic soils</td>
<td>PLFAs</td>
<td>High populations of methanotrophs in andisols</td>
<td>[Maxfield et al., 2009]</td>
</tr>
<tr>
<td>13CH$_4$</td>
<td>Rothamsted Classical Experiment</td>
<td>PLFAs</td>
<td>Methanotrophs affected by inorganic fertilisation</td>
<td>[Maxfield et al., 2011]</td>
</tr>
<tr>
<td>13CH$_4$</td>
<td>Landfill cap soil</td>
<td>Various cellular biochemicals</td>
<td>New technique for elucidating total C dynamics (incorporation, turnover and decay) at the molecular level</td>
<td>[Maxfield et al., 2012]</td>
</tr>
</tbody>
</table>

Carbon dioxide

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Environment</th>
<th>Biomarkers</th>
<th>Observation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>13CO$_2$</td>
<td>Douglas-fir forest soil</td>
<td>PLFAs</td>
<td>Differential utilisation of substrates; also affected by plant inputs. Fungal-to-bacterial PLFA-C increased under elevated CO$_2$</td>
<td>[Brant et al., 2006]</td>
</tr>
<tr>
<td>13CO$_2$</td>
<td>Desert soil</td>
<td>PLFAs</td>
<td></td>
<td>[Jin and Evans, 2010]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13CO$_2$</th>
<th>Source</th>
<th>Method</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland grassland</td>
<td>PLFAs, DNA, RNA</td>
<td>compared to ambient conditions</td>
<td>Complex C dynamics and pathways of photosynthate entering soil</td>
<td>[Leake et al., 2006]</td>
</tr>
<tr>
<td>Boreal pine forest soil</td>
<td>PLFAs</td>
<td>Photosynthate found mainly in fungi and Collambola with long-term C allocation affected by N additions</td>
<td>[Hogberg et al., 2010]</td>
<td></td>
</tr>
<tr>
<td>Sandy loam agricultural soil</td>
<td>PLFAs</td>
<td>Plant species influences magnitude and distribution of plant C to soil microorganisms</td>
<td>[Ladygina and Hedland, 2010]</td>
<td></td>
</tr>
<tr>
<td>Sandy peat agricultural soil</td>
<td>PLFAs, DNA, RNA</td>
<td>C flow of photosynthate to soil varies between GM plant and parental cultivar</td>
<td>[Hannula et al., 2012]</td>
<td></td>
</tr>
<tr>
<td>Paddy soil (Hydragric Anthrosol)</td>
<td>PLFAs, RNA</td>
<td>Differing microbial communities established by manipulating water status</td>
<td>[Yao et al., 2012]</td>
<td></td>
</tr>
<tr>
<td>Fore-dune soil</td>
<td>PLFAs, RNA</td>
<td>Elevated CO$_2$ induced changes in rhizosphere C flow and dynamics</td>
<td>[Dirgo et al., 2013]</td>
<td></td>
</tr>
<tr>
<td>Drained boreal organic peat soil</td>
<td>PLFAs</td>
<td>Flow of 13C maximised at 3 days in fungi but after 1 year 13C increased in bacteria</td>
<td>[Tavi et al., 2013]</td>
<td></td>
</tr>
<tr>
<td>Mountain meadow dystric cambisol</td>
<td>PLFAs</td>
<td>Shading produced no reduction 13C in fungi and bacteria but increased residence time</td>
<td>[Bahn et al., 2013]</td>
<td></td>
</tr>
<tr>
<td>Sandy grassland soil</td>
<td>PLFAs</td>
<td>Faster turnover of C in mycorrhizal versus saprotrophic fungi versus bacteria</td>
<td>[Balassooriya et al., 2014]</td>
<td></td>
</tr>
<tr>
<td>Jena Biodiversity Experiment</td>
<td>PLFAs, RNA</td>
<td>C turnover is higher in RNA than PLFAs</td>
<td>[Malik et al., 2015]</td>
<td></td>
</tr>
</tbody>
</table>

Plant litter

<table>
<thead>
<tr>
<th>13C, 15N-litter</th>
<th>Method</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand-clay growth medium</td>
<td>PLFAs</td>
<td>Transition from fungal to bacterial PLFAs as decomposition progressed</td>
<td>[Herman et al., 2011]</td>
</tr>
<tr>
<td>Forest soil</td>
<td>PLFAs</td>
<td>Chronic N deposition decreased 13C mobilisation into microbial biomass</td>
<td>[Gan et al., 2013]</td>
</tr>
<tr>
<td>Humid and semi-arid Cambisol and Haplic Kastanozem</td>
<td>PLFAs</td>
<td>Overall plant residue turnover slower under semi-arid conditions</td>
<td>[Helgason et al., 2014]</td>
</tr>
<tr>
<td>Remnant native woodland soil</td>
<td>PLFAs, DNA, RNA</td>
<td>Distinct microbial communities alter turnover and fate of OM in response to temperature</td>
<td>[Creamer et al., 2015]</td>
</tr>
<tr>
<td>Conventionally tilled Luvisol</td>
<td>PLFAs</td>
<td>Double exponential model described PLFA synthesis-degradation kinetics</td>
<td>[Bai et al., 2016]</td>
</tr>
</tbody>
</table>

Microbial cells

<table>
<thead>
<tr>
<th>13C-E. coli</th>
<th>Method</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural reference soil</td>
<td>PLFAs, DNA</td>
<td>Biomass C retained in soil in soil food web and non-living SOM</td>
<td>[Kindler et al., 2006]</td>
</tr>
<tr>
<td>Agricultural reference soil</td>
<td>PLFAs, DNA</td>
<td>Biomass C recycled down to 10% in living organisms with 33% stabilised in non-living SOM pool</td>
<td>[Kindler et al., 2009]</td>
</tr>
<tr>
<td>Rice field soil</td>
<td>PLFAs</td>
<td>Eukaryotes, probably protozoa, preferentially graze on methanotrophs</td>
<td>[Murase et al., 2011]</td>
</tr>
</tbody>
</table>

As can be seen from Table 1 these studies include both laboratory and field experiments and a wide range of 13C-labelled substrates. Dynamic-SIP approaches can be divided into two broad categories, namely those applying: (i) complex substrates, such as 13C-labelled plant litter [Williams et al., 2006; Moore-Kucera and Dick, 2008; Herman et al., 2012; Gan et al., 2013; Helgason et al., 2014; Creamer et al., 2015; Bai et al., 2016] or 13C-labelled microbial cultures [Kindler et al., 2006, 2009; Murase et al., 2011], or (ii) pure 13C-labelled compounds [Brant et al., 2006; Bartling et al., 2009; Mellendorf et al., 2010; Jakobs-Schonwandt et al., 2010; Dungait et al., 2011; Churchland et al., 2012; Apostel et
al., 2013; Lemanski and Scheu, 2014]. 13CO$_2$ pulse-chase experiments are amongst the most widely applied, designed to deliver 13C-labelled root exudate derived from newly formed 13C-photosynthate to explore C allocation from plants to the below-ground biomass [Leake et al., 2006; Jin and Evans, 2010; Hogberg et al., 2010; Ladygina and Hedland, 2010; Hannula et al., 2012; Yao et al., 2012; Dirgo et al., 2013; Tavi et al., 2013; Bahn et al., 2013; Dias et al., 2013; Balasooriya et al., 2014; Malik et al., 2015]. In both categories 13C-PLFAs are the most commonly investigated biomarkers with time-courses varying widely (days to years) to provide temporal and quantitative insights into the processing of 13C-labelled substrates by the soil microbial community, often in response to changes in particular environmental variables e.g. [Creamer et al., 2015]. A small number studies have built in DNA and RNA-SIP investigations to provide deeper taxonomic assessments e.g. [Leake et al., 2006].

Dynamic 13CH$_4$ stable isotope probing

Dynamic 13CH$_4$ stable isotope probing has been extensively employed in studies of methanotrophic communities in soils (Table 1). The approach has proven especially effective in the case of the unculturable high-affinity methanotrophic bacteria where an active methanotrophic population assimilating 13CH$_4$ can be confirmed by 13C-enriched PLFAs detected by GC-C-IRMS. Indeed, as noted above, one of the first applications of 13C-PLFA to soil microbes was in the study of methanotrophs [Bull et al., 2000]. We have extended this technique to characterise methanotrophic bacteria based on a combination of 13C-labelled hopanoids and PLFAs [Crossman et al., 2001, 2005], recently incorporating this approach into a new type of 13CH$_4$ dynamic- SIP experiment, termed stable isotope switching (SIS), which we will discuss in detail below [Maxfield et al., 2012].

A major development of this approach has been our implementation of 13CH$_4$ time-series 13C-PLFA labelling which facilitated, for the first time, enumeration of high affinity methanotroph populations [Maxfield et al., 2006]. This approach involves performing laboratory incubations of soils at ambient CH$_4$ concentrations using synthetic air containing 2 ppmv of 13CH$_4$. Flow through chambers are employed to maintain a stable 13CH$_4$ concentration throughout the 11-week incubations (see Maxfield and Evershed [2011] for chamber design). When using this approach soils are sampled and analysed at weekly intervals by GC, GC-MS, and GC-C-IRMS to identify and quantify individual PLFAs and trace the incorporation of 13C-label into the microbial biomass. Incorporation of the 13C-label is generally seen throughout the experiment, with the rate of incorporation decreasing in the later stages (9 to 10 weeks) as the methanotroph population becomes fully 13C-labelled. The δ^{13}C values of individual PLFAs showed that 13C was incorporated into different components selectively and at various rates, reflecting the diversity of PLFA sources. Quantitative assessments of 13C-PLFAs have shown that high affinity methanotrophic populations are usually of constant structure throughout the experiment. In the original experiment, performed using soils from Bronydd Mawr (Wales), the
dominant ^{13}C-labelled PLFA was $18:1\omega 7c$, with $16:1\omega 5$ present at lower abundance, suggesting the presence of novel type II methanotrophs. We used the concentration of PLFAs per bacterial cell determined by Frostegård and Bååth, [1996] to determine the biomass of CH$_4$-oxidizing bacteria; at optimum labelling this was estimated to be about 7.2×10^6 cells g$^{-1}$ of soil (dry weight), remarkably, only one ten thousandth of the total bacterial population! Cross-feeding or recycling of biomass C is a recognised phenomenon that may thwart some types of SIP investigation, resulting in a loss of specificity. However, due to the low concentration and high specificity of the $^{13}\text{CH}_4$ labelled-substrate two factors supported this approach with high affinity methanotrophs: (i) recycling of ^{13}C-label from the methanotrophic biomass is a slower process than initial $^{13}\text{CH}_4$ incorporation, with only about 5 to 10% of ^{13}C-PLFAs reflecting this process, and (ii) the relatively low cell numbers of high affinity methanotrophs compared to the total microbial biomass (10^6 versus 10^{10} cells, respectively) means that the any leakage of ^{13}C-label into other microbial pools will effectively constitute a loss of label by dilution into the high background C pools, such that the ^{13}C-PLFA profile of the high affinity methanotroph population will dominate. Thus, ^{13}C-labelled PLFA distributions determined at any time point during $^{13}\text{CH}_4$ incubation can be used for chemotaxonomic assessments, however, extended incubations are required to achieve maximum ^{13}C-labelling for methanotrophic biomass determinations.

We have applied this technique in different environments to study variations in low and high affinity methanotrophic populations in relation to a range of environmental variables. For example, as shown in Figure 2, we have linked a reduction of CH$_4$ sink capacity to inhibition of the high affinity methanotroph populations resulting from long-term inorganic fertiliser applications to upland grassland soils [Maxfield et al., 2008]. While it is well known that agricultural practices, including tillage [Hutsch, 1998] and fertilizer addition [Steudler et al., 1989; Mosier et al., 1991; Adamsen and King, 1993; Castro et al., 1995; Guldledge et al., 1997; Guldledge and Schimel, 1998], inhibit CH$_4$ oxidation in soils much debate surrounds the proposed mechanism(s).
Our results show that inhibition of high-affinity methanotrophic bacteria in the Bronydd Mawr long-term low-input fertilized soils is caused by a general fertilization-induced salt effect rather than a nitrogen-specific inhibitory mechanism. Addition of NH₄⁺ to soils has been reported to suppress CH₄ uptake rates [Mosier et al., 1991; Adamsen and King, 1993; Castro et al., 1995; Gulledge et al., 1997; Gulledge and Schimel, 1998]. Inhibition also has been observed in short-term studies [Gulledge et al., 1997; Wang and Ineson, 2003; Crossman et al., 2006] for a range of ions including K⁺, Cl⁻ and SO₄²⁻, confirming that general salt effects rather than by-products of NH₄⁺ oxidation can inhibit CH₄ oxidation. Reay and Nedwell [2004] observed a clear relationship between inhibition of CH₄ oxidation and NO₃⁻ rather than NH₄⁺. However, the mechanism of CH₄ oxidation inhibition by NO₃⁻ rather than NO₃⁻ and NH₄⁺ remains unclear. Gulledge and Schimel [1998] demonstrated the importance of non-ammonical salts on CH₄ oxidation by treating soils with K₂SO₄, Na₂SO₄, KCl, (NH₄)₂SO₄ and NH₄Cl. Methane oxidation was inhibited to some extent by all the salts irrespective of NH₄⁺ levels, which were naturally low in the soils. It was suggested that inhibition was not a result of desorption of NH₄⁺ from the soils but rather a direct effect of SO₄²⁻ or Cl⁻ ions on CH₄ oxidation.

With the exception of two recent laboratory studies, all previous investigations have used changes in CH₄ oxidation rates to detect patterns of inhibition, thereby making it impossible until now to explain the underlying cause of inhibition. Our results confirm that loss of CH₄ oxidation capacity is the result of a shift in microbial populations resulting in a significant decrease in the numbers of methanotrophic bacteria. Our results also confirmed why problems have been encountered in studying the mechanism(s) of fertilizer addition impacts on high-affinity methanotrophic bacteria. The low relative abundance (<0.04%) of methanotrophs in total microbial biomass precludes use of other culture independent microbiological methods, such as earlier attempts using gene probing [Reay et al., 2001; Seghers et al., 2003] and most probable number (MPN) techniques [Hütsch, 2001]. Frustratingly, the exact mechanism(s) underlying the loss of high affinity methanotrophic activity remains unknown but it is clear that the loss of CH₄ sink capacity as judged by flux measurement and methanotroph population estimates can be as much as 80%.

Similar effects of fertiliser additions were originally observed through flux measurements on the arable soils of Rothamsted by Powlson and co-workers [Hütsch et al., 1993; Willison et al., 1995]. Our more recent work with dynamic ¹³CH₄ ¹³C-PLFA-SIP using flow-through chambers has confirmed the very small methanotroph populations in these heavily fertilised and extensively tilled soils [Maxfield et al., 2011]. Overall, methanotrophic biomass was smaller in the Rothamsted soils compared with the other mineral soils studied to date, as indicated by poor ¹³C incorporation. High-affinity methanotrophs similar to known type II methanotrophs were most abundant in all of the soils.
studied, except in two plots receiving farmyard manure (FYM and FYM + N). Manuring resulted in a shift to a population similar to known type I methanotrophs. Methanotrophic biomass was elevated in soils that had received the largest input of N fertilizer, though without detectable differences in CH\textsubscript{4} oxidation rates, indicating the potential mediation of atmospheric CH\textsubscript{4} oxidation by non-methanotrophs, which are most likely to be nitrifying bacteria.

These results clearly demonstrate the impact that inorganic fertilizers have on the capacity of soil to function as a sink for tropospheric CH\textsubscript{4} and provide a strong link to changes in high-affinity methanotroph community structure. Placing these findings in the wider context of greenhouse gas emissions and mitigation strategies requires consideration of national and international inventories for CH\textsubscript{4} sources and sinks. Significantly, the UK has the highest anthropogenic CH\textsubscript{4} emissions in Europe after France [Bergamaschi et al., 2005] with the largest source of CH\textsubscript{4} emissions in the UK being agriculture [NETCEN, 2003]. The lack of a detailed UK inventory of CH\textsubscript{4} sources and sinks precludes calculation of an accurate estimation of the proportion of the UK CH\textsubscript{4} sink inhibited by inorganic fertilizer (N + non-N). Our conservative estimate is that low-input fertilizer inhibition of high-affinity methanotrophic bacteria in the UK is as much as 5% of the EU-15 soil sink. Considering that the surface area of the UK (244 x 103 km2) is less than 10% of the total EU-15 surface area (3154 x 103 km2) then inhibition due to low-input fertilization may be > 50% of the potential UK soil CH\textsubscript{4} sink. Thus, the regional and indeed global impacts of inorganic fertilizer treatments on soil microbial diversity as an integral component of system C dynamics are worthy of continued detailed assessment.

Indeed, we have extended this work to other soil types. Andisols, soils derived from volcanic ash, which have the capacity to support high levels of atmospheric CH\textsubscript{4} oxidation [Singh et al., 2007]. The unique properties of Andisols, specifically their low bulk density, high C content and high water-holding capacity, would provide a favourable environment for the development of methanotroph populations. The low bulk density in particular would promote gas diffusion, enhancing the supply of CH\textsubscript{4} and O\textsubscript{2} while maintaining a relatively high moisture content. Furthermore, high-affinity methanotrophs thrive in soils that have good substrate and moisture supplies. We characterized methanotrophic bacteria in Andisols via the dynamic 13CH\textsubscript{4} SIP time-series 13C-PLFA labelling approach discussed above. Three Andisols were incubated under 2 ppmv CH\textsubscript{4} for up to 18 weeks, enabling high-affinity methanotrophs to be selectively characterized and quantified. PLFA profiles from all soils were broadly similar, but the magnitude of the high-affinity methanotrophic populations determined through 13C-PLFA-stable isotope probing displayed sizeable differences. Substantial incorporation of 13C indicated very large high-affinity methanotrophic populations in two of the soils. Such high values are far in excess (10x) of those observed for the afore-mentioned mineral soils incubated under similar conditions [Maxfield et al., 2008, 2011]. Two of the three Andisols studied also displayed high but variable CH\textsubscript{4} oxidation rates ranging from 0.03 to 1.58 nmol CH\textsubscript{4} g-1 d.wt. h-1.

These findings suggest that Andisols may oxidize significant amounts of atmospheric CH$_4$ despite their low area of coverage globally. Andisols cover only c. 0.7% of the global land surface [Brady and Weil, 2002], which equates to a land area of c. 0.91 million km2. Total uptake of atmospheric CH$_4$ globally by Andisols may be greater than previously thought if methanotrophic activity is similar to the rates observed in the Hapludand and Ultic Fulvudand soils we investigated. The much lower levels of methanotrophic activity displayed a greater net CH$_4$ flux suggesting the possible role of low-affinity methanotrophs at the site. It should also be noted that Andisols are extensively cultivated globally, in particular, in Japan and Italy because of their intrinsically high C content and favourable physical properties. As discussed above it is well established that certain agricultural practices, for example, the application of inorganic N-fertilizers inhibit the activity of methanotrophic bacteria in mineral soils e.g. [Mosier et al., 1991; Gullede et al., 1997; Boeckx et al., 1998; Hütsch, 1998]. A similar relative degree of inhibition of methanotrophy in Andisols may represent a much greater loss of atmospheric CH$_4$ oxidation capacity.

Stable isotope switching (SIS)

Recent advances in stable isotope probing (SIP) have enabled direct linkage of microbial population structure and function, however investigations of the redistribution of 13C-label in C pools other than PLFAs and DNA/RNA are rare. To address this we introduced a new SIP approach, *stable isotope switching* (SIS), which enables the simultaneous assessment of C uptake, turnover and decay, and the elucidation of soil food webs within complex soils or other environmental matrices [Maxfield et al., 2012]. SIS utilises a stable isotope labelling approach whereby the 13C-labelled substrate is switched part way through the incubation to a natural abundance substrate, which allows the reallocation of C following fixation by methanotrophs. Figure 3 shows a schematic of the experimental design and potential uptake and redistribution trajectories. Regular sampling throughout the experiment is a prerequisite of the approach.
Figure 3. Schematic representation of a stable isotope switching (SIS) experiment based on previously observed (solid line) and theoretical (dashed lines) curves indicating how the 13C-label from 13CH$_4$ is incorporated by methanotrophs and turned-over within soil ecosystems. The timescale to achieve full labelling of the microbial population will vary depending on the labelled substrate, concentration, delivery method and the nature of the environmental matrix studied (modified from Maxfield et al., [2012]).

The development work used a landfill cover soil from Odcombe (Somerset, UK) which previous work had shown contained a high abundance of low affinity methanotrophs [Crossman et al., 2004]. During an incubation lasting 153 days C assimilation and dissimilation processes were monitored through bulk IRMS and GC-C-IRMS targeting a wide range of biomolecular components including: lipids, proteins and carbohydrates (Fig. 4). Carbon assimilation by primary consumers (methanotrophs) and sequential assimilation into secondary (Gram-negative and -positive bacteria) and tertiary consumers (Eukaryotes) was observed (the full experimental details for sample preparation and data analysis are given in Experimental Methods at the end of this chapter and in Maxfield et al., [2012]). Mass balance calculations showed that up to 45% of the bacterial membrane lipid C was directly derived from CH$_4$ and at the conclusion of the experiment ca. 50% of the bulk soil C derived directly from CH$_4$ was retained within the soil. At the time this work was reported it appeared that this was the first estimate of soil organic C allocation from methanotrophy. The high concentration of C retained is comparable with levels observed in lakes that have high levels of benthic methanogenesis. SIS opens the way for a new generation of SIP studies aimed at elucidating total C dynamics (incorporation, turnover and decay) at the molecular level in a wide range of complex environmental and biological matrices.
Figure 4. Graphs showing the differential rates and extents of uptake of the 13C-label into the bulk soil C pool and different biochemical components of the microbial community of a landfill cap soil after 50 d of incubation with only 1 atm% 13CH$_4$ (1% CH$_4$ balance synthetic air) in a flow through chamber. The different time points derive from the analysis of replicate soils sampled at intervals throughout the experiment. The right hand side graphs show the decay of the label in the different pools after switching to 12CH$_4$ on day 50. The data obtained clearly illustrate the new levels of C pool and kinetic data available through our new approach. 18:1ω7 is a PLFA known to be produced by methanotrophs hence the high rate and extent of 13C-label into this compound.

Amino acid stable isotope probing (AA SIP)

As demonstrated in the SIS experiment described above and in the work by Derrien *et al.* [2007] summarised in Table 1, small molecule SIP using GC-C-IRMS has been extended beyond PLFAs to a wider range of biomarkers/analytes (e.g. sugars and AAs). As N-containing molecules, AAs also raise the possibility for 15N-SIP incubation experiments. We initially used combined 13C and 15N-SIP of AAs to trace the fates of N and C within metabolites central to soil organic N cycling [Knowles *et al.*, 2010] and then during work focusing on the transformations and fate of fertiliser-N compounds in soils, we further developed our conceptual use of the approach to provide a powerful tool to assess microbial assimilation and newly synthesised soil protein [Charteris *et al.* in press].

Knowles *et al.* [2010] traced the fate of 13C and 15N from dual-labelled U-13C,15N-glutamate and U-13C,15N-glycine into *de novo* biosynthesised AAs in laboratory time-course experiments. Glutamate
was selected as a substrate because of its centrality to cellular AA biochemistry, while glycine was chosen because of its more peripheral position in AA biosynthetic pathways. The AAs (2 µg) were applied to a grassland soil in laboratory mesocosms (10 g) and the fate of the 13C and 15N followed by sampling at $t = 3, 6, 12, 24, 48, 96, 192, 384$ and 768 hours. In a preliminary experiment sampling was began after 1 day but it was clear from the analyses that the initial phase of processing had been missed so the experiment was repeated with an earlier sampling time being included to capture the full trajectory of assimilation. Hydrolysable soil AAs were extracted, derivatised and their δ^{13}C and δ^{15}N values determined using GC-C-IRMS as described in the Experimental Methods section at the end of the chapter.

15N- and 13C-stable isotopic analyses of soil AAs demonstrated that both 15N and 13C from glutamate and glycine were incorporated into other, endogenous AAs through de novo biosynthesis using N and C from these labelled substrates. The total proportions of 15N and 13C used in the de novo biosynthesis of endogenous AAs and remaining within glutamate and glycine were compared. As anticipated it was found that glutamate and glycine functioned differently as biochemical substrates in the biosynthesis of new AAs, with clear differences existing in the degree of N and C utilisation. The higher peak values of 30% glutamate N and 22% glutamate C being used in the synthesis of other AAs versus 8% glycine N and 2.8% glycine C, reflects their different positions in AA biosynthetic pathways. The total amount of label incorporated into other AAs began to decrease after $t = 8$ d probably as a result of N and C mineralisation and their use in the biosynthesis of new cellular biochemicals. By applying linear and non-linear regressions, several important parameters were derived, namely rate constants, magnitudes of fluxes and measures of biosynthetic proximity, which describe the rate and magnitude of N and C flux through primary metabolic processes. The significant differences in N and C processing demonstrate a decoupling of the N and C cycles at the molecular level (Fig. 5), i.e. after 32 days the magnitude of N flux into newly biosynthesised AAs was double that of C from both substrates. We anticipate that the parameters derived will have potential for use in developing detailed models of soil organic N and C processing at the molecular level [Knowles et al., 2010].
Figure 5. Variation (%) substrate label within the applied AA and endogenous soil AAs over time. Panels show the % of glutamate-derived N and C over time within (a) soil glutamate, and (b) endogenous soil AAs in U-\(^{13}\)C,\(^{15}\)N-glutamate amended soils; and the % of glycine-derived N and C over time within (c) soil glycine and (d) endogenous soil AAs in U-\(^{13}\)C,\(^{15}\)N-glycine-amended soils. Note different scales on y-axis; error bars represent ± SEM (n = 3).

As noted above, application of this approach to investigations of the transformations and fate of fertiliser-N compounds in grassland soils prompted its development into a more widely applicable conceptual technique to trace the fate of applied N in soils and indeed other complex ecosystems [Charteris et al. in press]. Compound-specific AA \(^{15}\)N-SIP using GC-C-IRMS offers a number of insights, inaccessible via existing techniques, providing:

(i) A sensitive and relatively selective means of assessing microbial assimilation of \(^{15}\)N-labelled substrates/amendments applied at environmentally relevant concentrations and appropriately low \(^{15}\)N enrichments to minimise perturbations and \(^{15}\)N discrimination/isotopic fractionation, respectively (bulk N isotope analysis cannot provide such insights and GC/MS \(^{15}\)N-SIP studies require highly \(^{15}\)N-labelled substrates for sufficient product AA \(^{15}\)N enrichment, making such studies more susceptible to \(^{15}\)N discrimination/isotopic fractionation effects and are much more expensive).
Valuable insights into microbial biochemical assimilation pathways can be gained and differences are readily revealed in the microbial processing of N-containing substrates of differing chemical/biochemical natures.

Detailed quantitative insights can be gained into the dynamics of N cycling from an applied substrate through the soil protein pool.

Estimates are provided for newly synthesized soil protein, which are inaccessible based on currently available methods.

Our compound-specific AA 15N-SIP method is particularly valuable in determining the fate of N-fertilisers in relation to the soil organic N (mainly biomass) pool as organic N greatly exceeds inorganic N in soils and few other techniques are able to provide direct quantitative estimates of this partitioning (perhaps with the exception of microbial biomass N extraction; [Charteris et al. in press]). Accordingly, laboratory time-course incubation experiments were undertaken with the common inorganic N fertiliser compounds 15NH$_4^+$ and 15NO$_3^-$ and the high sensitivity and selectivity GC-C-IRMS was again exploited to determine the assimilation of the applied 15N-labelled substrate by the soil microbial biomass and provide estimates of newly synthesized soil protein (see protocols at the end of the chapter). As with the glutamate and glycine incubations summarised above, the assimilation pathways of 15NH$_4^+$ and 15NO$_3^-$ were revealed via patterns in AA δ^{15}N values with time, reflecting known biosynthetic pathways (e.g. ammonium uptake occurs first via glutamate).

Comparing these data to those for organic substrates such as glutamate, clear differences can be seen in the rates and fluxes of the applied N substrates into the soil protein pool (glutamate $>$ ammonium $>$ glycine $>$ nitrate). This work constitutes a significant advance as the cycling of agriculturally relevant N additions is undetectable via bulk soil N content and δ^{15}N measurements and AA concentrations (Figure 6).

Although it does not include a time-course, the work of Redmile-Gordon et al. [2015] provides an example of how this conceptual compound-specific 15N SIP approach might be extended or refined by considering different soil protein fractions. Finally, the method could potentially be adapted to investigate N cycling into other N-containing biochemical pools, e.g. amino sugars, as appropriate extraction, derivatisation and GC-C-IRMS protocols are developed.
Figure 6. Bulk δ^{15}N values of whole soil (a) are insensitive to changes in N cycling during the incubation of 15N-labelled fertilisers at field application rates. 15N AA SIP allows the percentage of applied 15[NH$_4$]$^+$ and 15[NO$_3$]$^-$ incorporated (b) into the total hydrolysable AA pool or soil protein pool to be determined. Error bars are ± SE (n=3). Calculations for 15[NH$_4$]$^+$ and 15[NO$_3$]$^-$ are straightforward summations of the percentage of the applied 15N incorporated into each AA, indicating considerable difference in the use of the applied 15N in *de novo* AA biosynthesis.

Looking to the future

Dynamic-SIP is a proven approach in soil research with applications involving a wide range of cellular biochemical products. The survey of recent published examples show that there has been a focus on DNA/RNA- and PLFA-SIP, mainly as taxonomic tools, to trace the fate of 13C-label from applied substrates in the soil microbial biomass. In some cases the magnitude of 13C-labelling is used as an indication of the relative importance and different taxonomic groups receiving the label, both spatially and temporally (e.g. within the rhizosphere). From our preliminary work with the SIS technique, however, it is clear that there are additional benefits that accrue, when considering this methodology and its variants, beyond its use just as a taxonomic technique. We showed in our SIS studies that the stable isotope label from applied substrates can be traced into the full range of cellular biochemicals produced by soil biota. This opens up the SIP technique as a highly selective and sensitive technique for investigating the cycling of a wide range of soil natural substrates as well as agricultural inputs and amendments. Where dynamic-SIP has been used to determine the rates of uptake and turnovers of different biochemical pools it is clear that these can vary widely even within a compound class, e.g. AAs, as a result of the specific demands of different organisms and the
associated biochemical pathways. Such information has the potential to feed into a new generation of molecular-based SOM cycling models.

The emergence of SIP at the turn of the millennium was in large part driven by a combination of technological advances, notably the commercial availability of GC-C-IRMS, which enabled compound-specific stable C isotope analyses to be performed on soil derived PLFAs. As we have shown, a wide range of other cellular biochemical can be made amenable to GC-C-IRMS using the appropriate protocols, e.g. hydrolysis and derivatisation for biopolymers, such as proteins and carbohydrates. There is also scope for using high temperature-GC-C-IRMS, employing short columns with thin stationary phase coatings to determine stable isotope compositions of high molecular weight apolar lipids. However, new opportunities also exist to investigate the isotopic composition of polar and high molecular weight compounds using high performance liquid chromatography-IRMS or direct infusion IRMS. This instrument uses a solution rather gas phase oxidation to generate CO$_2$ from organic compounds for C isotope analysis and thereby offers as yet untapped potential for incorporating into soil SIP studies. Such an instrument would have value in determining δ^{13}C values of genomic material isolated from density centrifugation gradients.

Additionally, numerous untapped opportunities exist to extend the applications of SIP with GC-C-IRMS to study other isotope systems, including 15N/14N, 2H/1H, 18O/16O. We have shown, through our work above, the advantages of using compound-specific 15N- and 15N,13C- AA SIP to track the fate of nitrogenous substrates into newly biosynthesised biomass protein. The sensitivity and selectivity of GC-C-IRMS will enable a new generation of naturalistic experiments, to probe the functional behaviour of soil microbial biomass, to be performed. Such studies have hitherto been impossible to conduct using conventional GC-MS or bulk isotope approaches.

Finally, we cannot over emphasise that dynamic-SIP should the norm in experimental design in this area. SIP experiments performed without regular sampling over a proper time-course cannot reveal the true functional dynamics of the soil microbial mass with respect a given substrate. Without this information we will never be able to properly predict the fate of substrates or biomass response to a given set of environmental variables. We accept that such experiments are considerably more demanding in terms of infrastructure resource and manpower, but not performing dynamic-SIP experiments will result in potentially vital aspects of soil biomass behaviour remaining undetected.

Acknowledgements

None of the work presented in this contribution would have been possible without the continued support of the UK Natural Environment Research Council: PhD studentships (PM and AFC), a research grant (RPE) and partial funding of the mass spectrometry facilities (Contract No. R8/H10/63;
so thanked

Experimental Methods

Dynamic ^13^CH_4-SIP

This methodology follows that of Maxfield *et al.* [2006]. Soil from a depth of 5 cm was selected for the ^13^CH_4 incubation due to its high CH_4 oxidation rate (0.04 nM CH_4 g^-1 dw h^-1). Soil samples for ^13^CH_4 incubation were weighed (10 g) into 5 cm diameter petri dishes and placed into an incubation chamber (63 L; Perspex®) sealed at the base via immersion in a water-filled tray to prevent gas leakage. The water in the base of the chamber maintained atmospheric moisture saturation and prevented samples from drying. Double-distilled water (DDW) was added periodically (ca. 2 week intervals) to the soils during incubation to maintain moisture levels. ^13^CH_4 (2 ppmv) pre-mixed in synthetic air was passed through the chamber at a rate of 44 ml min^-1 in order to renew the headspace every 24 h. Each soil sample was incubated in triplicate with incubation times ranging from 2 to 11 weeks. A second, identical set of ‘control’ soils were incubated in a separate building under ambient CH_4 (2 ppmv) levels. All incubations were carried out in temperature-controlled rooms at 20°C. Throughout the experiment selected soil samples were removed for isotope analysis and headspace was monitored by GC analysis to verify that CH_4 oxidation activity was being maintained.

SIS CH_4 incubation

SIS is the method developed by Maxfield *et al.* [2012]. Soils containing low affinity methanotrophs were incubated in the same flow through incubation chamber described above. Synthetic air premixed with CH_4 (1.33%) was constantly flowed through the chamber to maintain a steady CH_4 mixing ratio close to that observed at the sampling site. For the initial 50 days of the incubation 1% of the CH_4 was ^13^CH_4 (mixed from > 99% ^13^C; CK Gas Products Ltd, Hook, UK; equivalent to 133 ppmv ^13^CH_4). Following 50 days of the incubation the ^13^CH_4 was switched and pre-mixed natural abundance CH_4 (13300 ppmv) was flowed through the chamber. The flow rate through the chamber was maintained at 44 mL min^-1 throughout the entire incubation period in order to flush the entire headspace every 24 h. Soil samples were removed, in triplicate, at regular intervals throughout the incubation (t = 0, 3, 6, 9, 12, 18, 21, 27, 38, 50, 53, 56, 65, 85, 117, 154 days) and initial soil moisture contents were maintained through the regular addition of DDW to each sample (determined gravimetrically). All of the soil samples were stored at -20°C until required for analysis. Soil samples were freeze dried and ground prior to extraction and analysed for PLFAs, total AAs, total monosaccharides glycolipids (GLFAs), free fatty acids (FFAs), hopanoids, sterols, n-alkanes and n-alkanols, as described below.

^15^N- and dual ^13^C, ^15^N-AA SIP

The soil was air-dried sufficiently to allow sieving (2 mm) without smearing it, which would result in destruction of the microstructure, and adjusted to 50% water holding capacity (WHC) by addition of DDW through an atomizer. Incubation experiments were carried out in glass incubation tubes (10 cm x 2 cm i.d.), to which 10.0 g soil (6.06 g dry wt. equivalent) were added and gently compacted to a density of ca. 1.1 g cm^-3 (field density) by tapping the tubes on a solid surface. Incubations were carried out under aerobic conditions and soils were maintained at 50 % WHC. A study by Jones and Shannon [1999] showed that sieving soil reduced AA mineralisation rate for the first 24 h, but subsequent incubation (up to 40 d) revealed no difference in AA mineralisation rate. To ensure this period was exceeded, a pre-incubation period of 4 d was employed before soils received either ^15^N-labelled ammonium chloride (^15^NH_4Cl, 10 atom %, 400 μg in 200 μL DDW; Sigma-Aldrich, St. Louis, USA), ^15^N-labelled potassium nitrate (K^15^NO_3, 10 atom %, 400 μg in 200 μL DDW; Sigma-Aldrich, St. Louis, USA), ^15^N,^13^C-labelled glutamic acid and glycine (^15^N,^13^C-Glu, 98 atom %, 2 mg in 200 μL 0.1 M hydrochloric acid; HCl; ^15^N,^13^C-Glu from Spectra Stable Isotopes, Columbia, USA and HCl was reagent grade from Fisher Scientific, Loughborough, UK) or for the control samples, DDW (200 μL). Substrates were introduced by injection and the needle was drawn up through the soil as the plunger was depressed in order to achieve a good distribution. The incubation experiments were

http://www.lmsf.co.uk). The UK Biochemistry and Biotechnology Research Council is also thanked for a PhD studentship (TDJK).
halted by immersion in liquid nitrogen (N\textsubscript{2}) to instantly cease all biological activity after periods of 1.5, 3, 6 and 12 h and 1, 2, 4, 8, 16 and 32 d in the dark and stored at -20 °C until freeze-drying. All incubations were carried out in triplicate so there were three tubes for each time point of each treatment (see also Knowles et al., [2010]). The 10 atom % 15N enrichment of 15[NH\textsubscript{4}]+ and 15[NO\textsubscript{3}]- was chosen based on research highlighting changes in 15N discrimination and isotopic fractionation in biological mechanisms at very high enrichments [Mathieu et al., 2007 ; Tang and Maggi, 2012]. Nitrogen-15 enrichments of 10 atom % were considered low enough for these effects to be negligible. The 15N-Glu incubation experiments were carried out earlier, hence the undesirably high 15N enrichment of the applied Glu.

PLFA analysis

Following incubation all soil samples were freeze-dried, homogenized by grinding and extracted using a modified Bligh-Dyer monophasic solvent system [Maxfield et al., 2006]. Briefly, soil (2 g air) was extracted using Bligh-Dyer solvent containing buffered water (0.05 M KH\textsubscript{2}PO\textsubscript{4}; pH 7.2)/chloroform/methanol in a ratio of 4:5:10 v/v/v. After addition of solvent (3 mL), the mixture was sonicated (15 min) and centrifuged (3200 rpm, 5 min). The supernatant was decanted and the residue extracted as above (×3). The extracts were combined and evaporated under N\textsubscript{2} to yield the total lipid extract (TLE). The TLE was separated into three fractions based on polarity using a 3 mL STRATA aminopropyl-bonded silica cartridge (Phenomenex). Fractions were eluted sequentially with 2:1 v/v dichloromethane/isopropanol; (8 mL; yielding neutrals), 2% acetic acid in diethyl ether (12 mL; free fatty acids) and methanol (8 mL; polar fraction including phospholipids). The PLFA components of the polar fraction were released by saponification (1 mL, 0.5 M methanolic NaOH, 1 h, 80°C) and an internal standard added (10 μL of 0.1 mg mL-1 solution of C\textsubscript{19} n-alkane in hexane). The PLFAs were then methylated using a 14% v/v BF\textsubscript{3}-methanol solution (100 μL; Aldrich, UK, 1 h, 80°C) and extracted with chloroform (3 × 2 mL). The phospholipid ester-linked fatty acid methyl esters (PLFAMES) were dissolved in hexane for analysis by GC, GC-MS and GC-C-IRMS (see below).

Dimethyl disulphide (DMDS) derivatives of mono-unsaturated fatty acids were prepared to facilitate determination of double-bond positions and geometries in monounsaturated fatty acids. A 100 μL aliquot of the methyl esters in dichloromethane was added to 0.25 M I\textsubscript{2}/diethyl ether (100 μL) and dimethyl disulphide (1 mL) and then heated (60°C, 24 h in the dark). Excess I\textsubscript{2} was removed by addition of aqueous Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (5%, 2 mL) and the DMDS derivatives extracted with hexane (2 × 2 mL) for GC-MS analysis (see below and Maxfield and Evershed [2011] for mass spectral interpretations).

Lipid extraction and fractionation

Lipid class separation was achieved using a modified silicic acid fractionation protocol [Dickson et al., 2009] to yield three fractions; simple lipids, glycolipids and phospholipids. Simple lipids were further fractioned using silicic acid columns into four fractions; hydrocarbons (eluted with hexane, 4 mL), ketones and wax esters (dichloromethane (DCM), 6 mL), alcohols (DCM/methanol (MeOH), 1:1 v/v, 4 mL), and polar poly-functionalised compounds (MeOH, 4 mL). Alcohols and hydrocarbons were subjected to a further urea addition procedure to separate cyclic from acyclic components [Nwadingiwe and Nwobodo, 1994].

Trimethylsilylation

The PLFA, GLFA and FFA fractions were methylated as described above. As with standard GC analysis, all neutral polar lipids were derivatised with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) + 1% trimethylchlorosilane (TMCS) prior to analysis by GC, GC-MS and GC-C-IRMS [Evershed, 1994].

Extraction and derivatisation of carbohydrates

The method of Blakeney et al. [1983], modified by Docherty et al. [2001], was employed to prepare alditol acetate derivatives of total monosaccharides. Soils were hydrolysed with H\textsubscript{2}SO\textsubscript{4} and the released monosaccharides reduced with NaBH\textsubscript{4} to their corresponding alditols; excess NaBH\textsubscript{4} was removed by the addition of glacial acetic acid. The alditols were acetylated by reaction with N-methylimidazole and acetic anhydride. A standard mix of rhamnose, fucose, galactose, mannose, xylose, arabinose glucose, inositol and pentaerythritol was prepared according to Docherty et al.
[2001]. DDW (400 µL) was added to the dry monosaccharide standards and the solutions derivatised as above. A 20 µg µL⁻¹ internal standard (I.S.) was made up by dissolving 0.04 g pentaerythritol in 2 mL 1 M NH₄OH solution. Corrections for added derivative C and propagation of errors followed Docherty et al. [2001].

Extraction, isolation and derivatisation of hydrolysable amino acids

Finely ground, freeze-dried incubation soil samples (100 mg) were weighed into culture tubes and 100 µL of norleucine (Nle; 400 µg mL⁻¹ in 0.1 M HCl; Sigma-Aldrich, St. Louis, USA) was added as an internal standard. Hydrolysis with 5 mL 6 M HCl was carried out at 100 °C for 24 h under an atmosphere of N₂. Acid hydrolysis extracts both free and proteinaceous AAs as well as catalysing the breakdown of living microbial biomass [Roberts and Jones, 2008]. The relatively harsh conditions are necessary for the cleavage of peptide bonds between hydrophobic residues (e.g. isoleucine; Ile, leucine; Leu and valine; Val), but also result in the deamination of asparagine; Asn) to aspartate (Asp) and glutamine (Gln) to Glu and the complete destruction of cysteine (Cys) and tryptophan (Trp; [Fountoulakis and Lahm 1998; Roberts and Jones, 2008]). The technique may also partially destroy serine (Ser; ca. 10 % loss), threonine (Thr; ca. 5 % loss) and tyrosine (Tyr; loss depends on level of trace impurities in hydrolysis agent [Roberts and Jones, 2008] and has the potential to hydrolyse AA chains from non-proteinaceous sources, such as peptidoglycan, resulting in an overestimation of some AAs, mostly alanine (Ala), Glu, lysine (Lys) and glycine (Gly; [Roberts and Jones, 2008]). The technique is, however, considered the most reliable method for determining the total protein content of soils [Roberts and Jones, 2008] and as such, we equate total hydrolysable AA concentrations to the size of the soil protein pool. The hydrolysis is performed under N₂ as the presence of oxygen (O₂) can induce the thermal breakdown of hydroxyl- and sulphur-containing AAs (e.g. methionine; Met, Ser, Thr and Tyr; [Roberts and Jones, 2008]). Hydrolysates were collected by centrifugation, dried under a stream of N₂ at 60 °C and stored at 20 °C under 1 mL 0.1 M HCl. AAs were isolated from hydrolysates by cation exchange column chromatography using acidified Dowex 50WX8 200-400 mesh ion exchange resin (Acros Organics, New Jersey, USA; Metges et al., [1997]). This was followed by conversion to their N-acetyl, O-isopropyl derivatives for analysis [Corr et al., 2007; Knowles et al., 2010]. Derivatising agents were supplied by Sigma-Aldrich (Steinheim, Germany): acetyl chloride was puriss. p.a. grade; trimethylamine had ≥ 99.50 % purity; and acetic anhydride was ReagentPlus® grade. All solvents were of HPLC grade and were supplied by Rathburn Chemicals Ltd. (Walkerburn, Scotland). DDW was produced using a Bibby Aquatron still. Where not applied to living soil, DDW was extracted with dichloromethane prior to use in order to remove dissolved organic compounds.

Instrumental analyses

GC analyses were performed using a Hewlett-Packard Series 5890 Series II gas chromatograph (Agilent Technologies UK Ltd., Edinburgh, UK) with a flame ionisation detector (FID) and H₂ carrier gas (10 psi). Non-polar fractions were analysed using a Chrompack CPSil-5CB (50 m × 0.32 mm i.d. × 0.12 µm film thickness). The temperature programme was 50°C to 200°C at 10°C min⁻¹, to 300°C at 3°C min⁻¹ (held for 20 min). Polar compounds were analysed using a Varian VF23ms (Varian BV, Middelburg, The Netherlands) 50% cyanopropyl equivalent fused-silica column (60 m × 0.32 mm i.d. × 0.25 µm film thickness). The temperature programme for fatty acid derivatives was 50°C (2 min) to 100°C at 15°C min⁻¹, to 240°C at 4°C min⁻¹ (held for 20 min). The temperature programme for monosaccharides was 50°C (1 min) to 200°C at 20°C min⁻¹, to 230°C at 4°C min⁻¹, (held for 22 min). The temperature programme for amino acids was 40°C (1 min) to 120°C at 15°C min⁻¹, to 190°C at 3°C min⁻¹, to 250°C at 5°C min⁻¹ (held for 20 min).

GC-MS analyses were performed using a Thermo Finnigan Trace GC-MS (Thermo Fisher Scientific, Hemel Hempstead, UK). All the GC conditions were the same with the exception of helium being used as carrier gas. The interface was held at the maximum oven temperature, the ion source was held at 200°C and the quadrupole mass analyser operated in EI mode, scanning over the range m/z 50-650 at 1.7 scans s⁻¹. The emission current was maintained at 300 µA and electron energy was 70 eV. The
data were acquired and analysed using the XCalibur software Version 1.2 (ThermoFisher Scientific, Hemel Hempstead, UK).

GC-C-IRMS isotope analyses of the various compound classes were carried out using a variety of instruments produced by ThermoFisher.

For C isotope analyses use was made of an instrument incorporating a Varian 3500 GC (Varian BV, Middelburg, The Netherlands) coupled to a Finnigan MAT DELTA S isotope ratio mass spectrometer (Finnigan MAT, Hemel Hempstead, UK). Analytes in He were combusted to CO₂ using a modified Type I Finnigan MAT combustion interface with a CuO/Pt combustion reactor set to a temperature of 850°C prior to entry into the mass spectrometer source via an open split. The ionisation source electron energy was 100 eV with an electron current of 1 mA. Detection was via 3 Faraday cup collectors set at m/z 44, 45 and 46. The chromatographic conditions were the same as those described previously. All sample analyses were conducted in duplicate to ensure reliable δ¹³C values. Samples were calibrated against reference CO₂ of known isotopic composition which was introduced directly into the source three times at the beginning and end of every run. Compound specific IRMS performance was determined using a suite of externally calibrated reference fatty acid methyl esters. Samples were analysed with a precision <0.5‰ (± 1 standard deviation, n=5).

The δ¹⁵N values of individual AAs were determined as their N-acetyl, O-isopropyl derivatives and were determined using a ThermoFinnigan Trace 2000 gas chromatograph coupled with a ThermoFinnigan DeltaPlus XP isotope ratio mass spectrometer via a ThermoFinnigan Combustion III Interface (Thermo Electron Corporation, Waltham, USA). Samples were introduced using a CTC Analytics GC Pal autosampler (Zwingen, Switzerland) and via a programmable temperature vaporisation (PTV) inlet (Thermo Electron Corporation, Waltham, USA). The carrier gas was helium (He; The BOC Group plc, Guildford, UK) at a flow rate of 1.4 mL minute⁻¹ and the gas chromatograph was fitted with a DB-35 column (30 m × 0.32 mm i.d. × 0.5 µm stationary phase thickness; Agilent Technologies, Santa Clara, USA). The temperature programme utilised was: 40 °C (5 min) to 120 °C at 15 °C min⁻¹, to 180 °C at 3 °C min⁻¹, then to 210 °C at 1.5 °C min⁻¹ and finally to 270 °C at 5 °C min⁻¹. The oxidation reactor comprised Cu, Ni and Pt wires (high purity from OEA Laboratories Ltd., Callington, UK) maintained at 980 °C; the reduction reactor comprised Cu wires maintained at 650 °C. AA δ¹⁵N values were determined relative to that of a monitoring gas of known (previously determined using in-house AA standards) N-isotopic composition introduced directly into the ion source via an open split in four pulses at the beginning and end of each run. The δ¹⁵N values of the in-house AA standards were determined off-line by elemental analysis-isotope ratio mass spectrometry (EA-IRMS) by ThermoFisher Scientific (Bremen, Germany) and by NERC CEH (Merlewood/Lancaster, UK) using primary reference materials (NIST 8547 IAEA-N-1 ammonium sulphate; δ¹⁵N +0.4 ‰). In order to adhere to the identical treatment principle and ensure the GC-C-IRMS system was functioning properly, each sample was bracketed by the in-house AA standard mixture of known δ¹⁵N values and sample AA δ¹⁵N values accepted only when at least 75% of the AAs in the standard mixture run either side of the sample were within ±1‰ and the others were within ±1.5‰, and when this was also true on average over the course of the run. Data were acquired and analysed using Isodat NT 3.0 (ThermoFinnigan, Thermo Electron Corporation, Waltham, USA).

Samples in which the substrate AAs (or others) were significantly more enriched in δ¹⁵N or δ¹³C than endogenous AAs were analysed twice: once where the more enriched peaks were vented before entering the oxidation and reduction reactors (Fig. 2b in Knowles et al., [2010]), in order to avoid possible reactor memory effects that may affect the δ values of subsequent eluting peaks, and once where all compounds were allowed to pass through the reactors and enter the mass spectrometer in order to determine δ values for the more enriched compounds (Fig. 2a in Knowles et al., [2010]).

Calculations for δ¹⁵N-SIP of AA

If the total hydrolysable AA pool is taken to be representative of the soil protein pool, then any δ¹⁵N enrichment (E) in hydrolysable AAs can be summed to represent newly synthesised soil protein in the soil at that time:
Newly synthesised soil protein $\approx \sum E$ in hydrolysable AAs

Eq. 1

The E of an AA may be expressed as the number of moles of ^{15}N derived from the applied substrate that are present in that AA in the soil:

$$E = n_N \times \text{AFE}$$

Eq. 2

where n_N is the number of moles of N in the AA (i.e. if the molecular structure of the AA contains only one N atom, n_N is the same as the number of moles of the AA in the soil, but twice this if the AA structure consists of two N atoms and so on) and AFE is the atom fraction excess of the AA after incubation compared with the control:

$$\text{AFE} = \text{AF}_{\text{Sample}} - \text{AF}_{\text{Control}}$$

Eq. 3

AF is the atom fraction of ^{15}N in the AA, i.e.:

$$\text{AF} = \frac{\text{Number of }^{15}\text{N atoms}}{(^{14}\text{N} + ^{15}\text{N}) \text{ atoms}}$$

Eq. 4

This can be calculated from the AA’s $\delta^{15}\text{N}$ value as in Knowles et al. [2010]:

$$\text{AF} = \frac{R_{\text{Std}}(\delta^{15}\text{N}/1000 + 1)}{1 + (\delta^{15}\text{N}/1000 + 1)}$$

Eq. 5

where R_{Std} is the $^{15}\text{N}/^{14}\text{N}$ ratio of AIR, the international isotopic standard for N. The data may also be expressed in terms of the percentage of the applied ^{15}N incorporated into each AA, as in Knowles et al. [2010]:

$$\% \text{ Incorporation} = \left(\frac{E}{N}\right) \times 100$$

Eq. 6

where N is the number of moles of excess ^{15}N applied (above natural abundance). Percentage incorporations reflect both the concentration and ^{15}N enrichment ($\delta^{15}\text{N}$ value) of the AA (i.e. how much was incorporated if the AA at x concentration was ^{15}N-enriched by x ‰) and the percentage of applied ^{15}N incorporated into newly synthesised soil protein is determined by summing these results for individual AAs. Note that these percentage incorporation data will be affected by the conservation of applied ^{15}N in the system, thus if ^{15}N is lost from the system (e.g. over time), AA percentage incorporations may become skewed as there is less ^{15}N available for incorporation than expected. The incubation experimental design described aims to limit any ^{15}N losses from the system in order to obviate this issue, but it is equally possible to calculate percentage incorporations at time, t, based on the moles of applied ^{15}N retained (N_R; above natural abundance/control soil values) in the system at time, t (Equation 7), if bulk recovery of the applied ^{15}N is low or decreases with time.

$$N_R = \text{AFE} \left(\frac{\% \text{ TN}}{1400}\right)$$

Eq. 7
where AFE is the atom fraction excess of 15N in the bulk soil (calculated from bulk and control soil δ^{15}N values using Equations 3 and 5) and % TN is the percentage total N content of the soil. Percentage retention of applied 15N was calculated as follows:

$$
\% \text{Retention } ^{15}N = \left(\frac{N_R}{N} \right) \times 100
$$

Eq.8

It can also be argued, however, that loss from the system is just another process competing against AA biosynthesis for N, so should not be discounted in this way. All of these approaches are valid and the most appropriate one will depend on the specifics of the experimental design and desired outcomes.

Statistical analyses for SIS

Two approaches were taken to analyse the 13C-label incorporation curves. Linear and non-linear regressions were performed using GraphPad Prism version 5.02 for Windows (GraphPad Software, San Diego, CA, USA), R 2.8.1 (R foundation), and Microsoft Excel (Microsoft, Redmond, WA, USA). Linear regression was applied to %-incorporation data from the first 9 d of the incubation to obtain initial zero-order rate constants, whereas separate non-linear regressions were applied to incorporation data from the first 50 d of the incubation before the switchover to unlabelled CH$_4$, and the C turnover data from 50 d to 150 d. The equations of the fitted lines were of the form:

Incorporation:

$$
F = F^0 + (P - Y^0) \times (1 - \exp (-K \times t))
$$

Eq.9

Decay:

$$
F = (F^0 - P) \times \exp (-K \times t) + P
$$

Eq.10

Where F is the fraction of excess 13C incorporated into organic material, t is the incubation time in days, R^0 is the initial R value at initial t, P is the plateau at maximum 13C incorporation (incorporation) or maximum 13C loss (decay) and K is the first order rate constant expressed in inverse days.

Isotopic corrections for added derivative C

All δ^{13}C values were corrected for derivatisation using a mass balance equation (11). The δ^{13}C value of each batch of BF$_3$-MeOH was determined by bulk IRMS.

$$
n_{cd}^{\delta^{13}}C = n_{c}^{\delta^{13}}C + n_{d}^{\delta^{13}}C
$$

Eq.11

The fractional abundance (F) of 13C in the control (F$_c$) and enriched (F$_e$) PLFAs was used to calculate the concentration of 13C incorporated into PLFAs from the total PLFA concentration. The fractional abundance expresses the amount of 13C as a proportion of the total amount of carbon in the PLFA (12).

$$
\text{Incorporation} = (F_e - F_c) [\text{PLFA}]
$$

$$
F = \frac{^{13}C}{^{13}C + ^{12}C}
$$

Eq.12

Statistical analysis

Bacterial populations were compared by cluster analysis using SYSTAT Version 7.0. The distribution of PLFAs was used as a measure of similarity or distance. The analysis was performed on Euclidean distances between standardised data using averages.
References

