
Peer reviewed version

Link to published version (if available): 10.1109/TED.2017.2706723

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at http://ieeexplore.ieee.org/document/7937931/. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Electrical and Optical Impulse Response of High Speed Micro-OLEDs under Ultra-Short Pulse Excitation

Abstract—The electric and optical impulse response of two types of High Speed OLED (HSOLED) driven by ultra-short electrical pulses is investigated. The two HSOLED were designed and manufactured to be characterized in the presence of electrical pulses ranging from 10ns to 100ns in duration and a repetition rate of 10Hz. The impact of the OLED geometry and the fabrication process on the time response is investigated. This is the first time that an optimized HSOLED exhibits an electrical time response as low as 2.1±0.6 ns and also shorter than the device optical decay time (9.8±0.2ns). Moreover, the HSOLED measured current density reaches 3.0 kA/cm², the highest value reported in the literature, with state-of-the-art electroluminescence of 12W/cm².

Index Terms—OLED, pulse excitation of OLED, high-speed OLED.

I. INTRODUCTION

Classically, Organic Light Emitting Diodes (OLED) have been developed for applications such as solid-state lighting [1,2], and displays [3,4]. More recently, new organic optoelectronic devices with high-speed features have been considered as a potential technology to pave the way towards new applications like LiFi [5], photonic above IC [6], backplane transmission [15], and last-mile telecommunications [7]. Moreover, achieving lasing in organic hetero-structures would have also a significant impact on transmission based applications. In particular, high speed coherent organic light source have the potential to become a possible solution for backhaul connections. With their low cost and fast time-to-market, high-speed optoelectronic organic devices can become a candidate technology for the backhaul of femto-cell base stations used in future networks [8]. All the applications quoted above require OLEDs to operate in a high-speed manner. This manuscript was submitted on December 2016.

This work was supported by the Labex SEAM (Science and Engineering for Advanced Materials), the University of Paris 13, and the University of Bristol.

L. Zeng, A. C. Chime, M. Chakaroun, H. Nkwawo, A. Boudrioua, and A. P. A. Fischer are with Université Sorbonne Paris Cité, Université Paris 13, Laboratoire de Physique des Lasers, UMR CNRS 7538, 99 avenue JB. Clément, 93430 Villetaneuse, France.

A.P.A. Fischer is also with Université Sorbonne Paris Cité, Université Paris 13, Centrale de Proximité en Nanotechnologies de Paris Nord, 99 avenue JB. Clément, 93430 Villetaneuse, France (e-mail : fischer@iutv.univ-paris13.fr)

A. C. Chime is also with Université de Dschang, Institut Universitaire de Technologie Poto Victor de Bandjoun, BP 134 Bandjoun, cameroun.

S. Bensmida, is with Communication Systems and Networks Group, Electrical and Electronic Engineering Department, Merchant Venturers School of Engineering, University of Bristol, woodland road, BS8 1UB, Bristol, UK.
In terms of input/output behavior, the OLED response can be decomposed into an electrical transfer function and an optical one. The electrical transfer function relates the excitation voltage as an input to the current density as an output while the optical transfer function relates the exciton density (via the current density) as an input to the electroluminescence (or the photon emission) as an output. In the current section authors focus mainly on the electrical response. The approach consists of a numerical study of an existing OLED electrical model modified to take into account the on-off configuration [13][14]. The goal is to identify which parameter/element of the model affects the most the electrical impulse responses. In On-Off configuration, the OLED equivalent circuit is modeled with a resistance R_S taking into account the electrodes geometry, with an ideal diode in series with a resistance R_D, with a capacitance C in parallel, and eventually, with another capacitance C_R as shown in Fig.1. The capacitance C takes into account the junction capacitance while C_R models the parasitic capacitance resulting from the fabrication process used to define the OLED active area. V_{MES} is the voltage across the resistor R_{MES} and $V_E(t)$ is the excitation voltage. Simulation results of this equivalent model in the presence of a pulse excitation are shown in Fig.2. For a pulse excitation with amplitude A, the voltage across R_{MES} exhibits a sharp rise reaching a peak current value I_{PEAK} followed by an exponential decay to a steady state current value I_{ST} as shown in Fig.2. The current I flowing through R_{MES} is the sum of I_D, I_C, and I_{CR}, which are the currents flowing through the diode and R_D, the junction capacitor C, and the fabrication process capacitor C_R, respectively. The current I_C and I_{CR} appear during the transient regime then vanish after the decay time τ (95% decay after 3τ); this results in $V_{MES}(t) = V_{ST} = R_{MES} \times I(t) = R_{MES} \times I_D(t)$, which provides a mean of assessing the current density $J(t) = I_D(t) / S$ once the steady state is established (where S is the considered OLED active surface). Therefore, the relevant current flowing through the OLED must be measured once the steady state is established after three times the time response (3τ). In other words, the capacitances are charged first which produces the peak current I_{PEAK} followed by a decay in current that allow the current through the active part of the OLED to flows progressively. If the pulse width is too short and ends before the capacitance currents vanishes, the current flowing through the organic diode remains negligible and the latter hardly lights-up. Therefore, there is a minimum pulse duration for an OLED to operate efficiently with significant light emission because of the transient regime described above. In order to be able to excite an OLED with an ultra-short pulse and to reduce the transient regime duration, the time response τ of the OLED has to be minimized. The key parameters to reduce the time constant τ are $(R_S + R_{MES})$, R_D, C and C_R, R_{MES} is dictated by the measurement setup; as the signals in use are in the RF domain and to avoid reflection R_{MES} is chosen to be 50 Ω. The anode resistance R_S depends on the fabrication process. Therefore, the decrease of both the serial resistance R_S and of the measurement resistance R_{MES} is limited. However, the decrease of R_D can be addressed either by the optimization of the organic hetero-structure to reduce the OLED threshold voltage or by the increase of the operating point via the increase of the amplitude A of the excitation voltage. Both considerations are out of the scope of this paper which focuses on the influence of the fabrication process on the time response and on the capacitances that appear as dominant. In the next section, we investigate experimentally how to control this critical capacitance value during the fabrication process, to optimize the time response.

III. DEVICE FABRICATION

The impact of fabrication geometry of the micro-OLED (μ-OLED) and hence the capacitances is investigated in this section. The processes developed and compared in this study are the following: in the first process, the size of the μ-OLED is delimited by an insulating photo-resist, while in the second process the μ-OLED is defined by electrode crossing.
A. Type 1 process: photoresist delimited µ-OLED (OLED1)

The first process consists of the following steps: the planar ITO anode is etched to form a 3 mm long, 1 mm-wide stripe resulting in a serial resistance $R_{S1}=45\,\Omega$. A thickness of 200 nm thick photoresist is then deposited by spin-coating, and irradiated by photolithography in order to free a round shaped hole of ITO that defines the active area $S_1=0.01\,\text{mm}^2$ (Fig. 3.a). The organic hetero-structure of the OLED and the metallic cathode are then deposited on the substrate by thermal evaporation covering an area larger than the ITO anode. The organic hetero-structure studied in this work is: m-MTDATA (4,4',4''-Tris[(3-methylphenyl) phenylamino] triphenylamine) (30 nm) / NPD (N, N'-Di(1-naphthyl) – N, N'-diphenyl – (1,1''-biphenyl) -4,4''- diamine) (10 nm) / Alq3 doped with 2% of DCMII (aluminium tris-(8-hydroxyquinoline) doped with (4- (dicyanomethylene)-2-methyl-6-julolidyl-9- enyl-4H-pyran) (2% in weight, 30 nm) / BCP (2,9-Dimethyl-4, 7-diphenyl-1, 10-phenan- -thrline) (5 nm) / Alq3 (25 nm) / LiF (1 nm) / Al (100 nm) giving a total thickness of the organic layers $t=101\,\text{nm}$. In this first process, both the ITO anode stripe width W_1 and the OLED active area are well controlled by the photolithography step with a precision of 1 micrometer which opens the possibility to fabricate a µ-OLED as small as 1µm. It is worth noting that the part of the ITO located around the OLED active area and covered by the insulating photoresist and the organic compounds and ultimately by the aluminium cathode constitutes the parasitic capacitance C_R. The corresponding inactive area is $S_{ITO}=1.3\,\text{mm}^2$.

B. Type 2 process: electrode crossing delimited µ-OLED (OLED2)

The second process is developed to produce an OLED (OLED2) with smaller C and C_R capacitance values. The ITO is etched to form a $W_2=87\,\mu\text{m}$ width, 1 mm long stripe. The organic hetero-structure is then deposited directly on top of the substrate on a large area. To limit the OLED size, the cathode is deposited through a special shadow mask with narrow slits ($L_2=120\,\mu\text{m}$ width). The active area is determined by the superposition of the two perpendicular striped electrodes and hence $S_2=W_2 \times L_2 = 87 \times 120 \,\mu\text{m}^2 = 0.01\,\text{mm}^2$. The cathode mask has to be in contact with the substrate to avoid vapor diffusion which increases the cathode width. To ensure this, the substrate is taken out of the vacuum chamber and aligned with the cathode mask in the glove box filled with nitrogen (1ppm O2). In the current process, the parasitic fabrication capacitance C_R is removed but the narrow ITO anode induces a higher serial resistance $R_{S2}=150\,\Omega$. Contrary to the first process, no inactive area susceptible to induce a parasitic capacitance C_R results from the current process, but it does not allow the fabrication of much smaller active areas due to process limitation, therefore, it is difficult to reduce much further L_2 and W_2.

IV. Characterization

The characterization setup consists of a high-speed high-voltage excitation electronic circuit driving the µ-OLED, and a high-speed light collection setup. The excitation circuit includes also a matching resistance $R_{A}=50\,\Omega$ to protect the pulse generator, and a serial resistance $R_{MES}=50\,\Omega$ dedicated to the measurement of the instantaneous current I as shown in Fig.1. Devices are driven by a fast pulse generator (AVTech AVL-2A-B) which produces electrical pulses with a width varying from 3 ns to 100 ns, 10 Hz repetition rate and an amplitude up to 160 V. The excitation pulses have a rise time of 2 ns. The light collection setup includes a confocal microscope for the observation and the detection is performed via an avalanche photodiode (Thorlabs, APD130A). All signals are acquired with a high-speed oscilloscope (Tektronix, TDS7254).

A. Characterization of device 1 (OLED1)

Firstly, OLED1 is driven with 90 V amplitude pulses and with different pulse durations ranging from 15ns to 100 ns. The current densities $J(t)$ calculated from the measurement of VMES(t) and the time domain electroluminescence (EL) waveforms are plotted Fig.4.a and 4.b, respectively. During the transient mode, typical current waveforms exhibit an overshoot at $I_{PEAK} = 3.65\,\text{ka/cm}^2$ which is followed by an exponential decay that declines to a steady state value $IST = 1.25\,\text{ka/cm}^2$. This is in agreement with the simulation presented in Fig.2 which validates the electrical model. Irrespective of the duration of the pulse, the various responses overlap at the overshoot.
For pulse durations above 30ns, the OLED electrical responses converge to the same value which defines a plateau corresponding to the steady state current I_{st}. For this reason, the current density can be estimated from the “plateau” only for pulse durations longer than 30 ns. From the decay-time in Fig. 4.a the electric time constant of OLED1 is estimated to be $\tau_{el} = 9.6 \pm 3.3$ ns. From Fig.4.b, the 50 ns, 75 ns and 100 ns duration waveforms show EL overshoot before a steady state is reached. However, the EL peak is not reached with 15 ns and 20 ns pulse duration. The maximum of EL is also reached for the 30 ns duration pulse but the EL steady state is not achieved, therefore the 30 ns constitute the limit for an efficient and observable step response of the OLED1. The optical time constant is measured to be $\tau_{opt} = 12.1 \pm 0.5$ ns.

B. Characterization of device 2 (OLED2)

OLED2 is driven with 90 V amplitude pulses and with different pulse durations ranging from 3 ns to 50 ns. Current waveforms and EL responses measured for OLED2 are shown in fig.5.a and 5.b, respectively. Current density waveforms exhibit a sharper overshoot, in comparison to OLED1, at $I_{peak} = 1$ kA/cm2 followed by a decay to a steady state $I_{st} = 0.5$ kA/cm2.

In Fig 5.b, only for pulse durations larger than 10 ns, the EL exhibit overshoots reaching the same maximum value above 6 W/cm2. This indicates that for pulse durations smaller than 10 ns, the OLED2 does not respond efficiently. The exponential decay time of the optical response is measured to be $\tau_{opt} = 9.8 \pm 0.2$ ns.

V. Analysis

In terms of input/output behaviour the electrical transfer function $H(s)$ and the optical transfer function $G(s)$ composed the OLED total transfer function $R(s) = H(s) \cdot G(s)$. The analysis is therefore divided into the three subsections; firstly, the analysis of the electrical response to a pulsed excitation of $H(s)$, secondly that of the OLED response to a pulsed excitation of $R(s)$ which gives a better insight to the final analysis of the optical response $G(s)$.

A. Electrical response

In fig. 4.a and 5.a, the experimental responses to pulsed excitations of the electrical transfer function matches qualitatively the numerical results in fig. 2 and the partial overlap of the waveforms confirms the linear and time invariant nature of the electrical part of the system.

The comparison of the current density decay of OLED1 and OLED2, as well as the electrical time constant ($\tau_{IE} < \tau_{IE}$) demonstrates that the electrical transient regime has been reduced by almost a fivefold factor. Clearly, the fabrication process of OLED2 allows a significant reduction of the electrical time constant resulting from the suppression of the fabrication capacitance C_R that compensates the increase of the serial resistance $R_{S2} = 150 \Omega > R_{S1} = 45 \Omega$. Using the current waveforms and the series resistances $R_{S1} = 45 \Omega$, $R_{S2} = 150 \Omega$ and $R_{MES} = 50 \Omega$, the device capacitances can be estimated by numerical fitting as $C_{t}+C_{R}= 340 \mu F$ and $C_{s}=13 \mu F$ for OLED1 and OLED2, respectively.
It is worth noting that based on \(C_2 \), the \(C_1 = C_2 S_1 / S_2 \) capacitance, the surface capacitance of the active area, and \(\varepsilon_{\text{org}} \) the averaged relative permittivity of the organic hetero-structure in the nanosecond time scale can be evaluated to \(C_1 = 12.7 \) pF, \(124 \) nF/cm\(^2\), and \(\varepsilon_{\text{org}} = C_1 t(S_{\text{to}}) = 12.7 \), respectively. These values give access to the parasitic capacitance of the inactive area \(C_R / S_{\text{ITO}} = 25 \) nF/cm\(^2\), and the relative dielectric constant of the photoresist \(\varepsilon_{\text{PR}} = C_R t_R / S_0 = 5.1 \). Note, that OLED1 and OLED2 have almost equal active areas \(S_1 = S_2 \) and thus almost equal capacitances \(C_2 - C_1 \). These values are summarized in Table 1.

<table>
<thead>
<tr>
<th>OLED #</th>
<th>(R_{\text{si}})</th>
<th>(C_1)</th>
<th>(C_R)</th>
<th>(C_{\text{total}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLED 1</td>
<td>(R_{S1} = 45) (\Omega)</td>
<td>12.7 pF</td>
<td>327 pF</td>
<td>340 pF</td>
</tr>
<tr>
<td>OLED 2</td>
<td>(R_{S2} = 150) (\Omega)</td>
<td>13 pF</td>
<td>0</td>
<td>13 pF</td>
</tr>
</tbody>
</table>

Clearly, OLED2 which is fabricated with the second process offers improved high-speed features because of the removal of the parasitic capacitance induced by the photoresist of the first process. Nevertheless, one should wonder/conclude if it is possible to obtain similar high-speed features with OLED1 by reducing the inactive area of the first process, and hence reducing \(C_R \) such that \(C_2 = C_1 + C_R \) which means \(C_R \sim 0 \). In such a case, the inactive area is to be reduced to \(S_{\text{ITO}} = 0 \) mm\(^2\). If such a reduction of the inactive area is implemented in OLED1 by the narrowing of the ITO strip then serial resistance will increase. Note that the capacitance \(C_R \) and the serial resistance are related by the geometry and a decrease of one causes an increase of the other because of the narrowing of the ITO stripe. Nevertheless, the process consisting in defining the OLED active area by the intersection of two perpendicular striped anodes and cathodes is to be preferred to the first one.

B. OLED response

The EL response in fig. 4.b and 5.b is in fact the OLED response \((R(s) = H(s) \cdot G(s)) \) composed by the electrical responses \(H(s) \) followed by the optical responses \(G(s) \). It means that the OLED response \(R(s) \) does not depends solely on OLED intrinsic parameters leading to \(G(s) \) but also depends on the electrical response. Rigorously, to access the optical pulse response \(G(s) \), \(R(s) \) is to be uncorrelated from \(H(s) \) which requires analytical expressions not available in the current study. However, in the special case in which \(H(s) \) would be similar to unity \((H(s) = 1) \), \(G(s) \) could be approximated by \(R(s) \). This happens if the electric system delivers an adiabatic answer for example if its time response is infinitely fast. Now, one should notice that experimental results of both devices exhibit electrical response times smaller than optical decay times \((\tau_{\text{IE}} < \tau_{\text{IO}} \) and \(\tau_{\text{IE}} < \tau_{\text{IO}} \)). In this context, and in first approximation the OLED response exhibits similar features similar than that of the optical

![Fig. 6. Electric and optical response of OLED3 defined by electrode crossing](image)

C. Optical response

Although the optical decay time is just an aspect of the OLED impulse response and although there are other characteristics to be taken into account like OLED rise time and slew-rate, the authors focus the current optical response analysis on the optical decay time which plays an important role in the OLED dynamics. Indeed, the optical time decay is related to the onset of the polaronic absorption that reduces the singlet population and hence reduces the EL \([11, 16]\).

The comparison of \(\tau_{\text{IO}} = 12.1 \pm 0.5 \) ns and \(\tau_{\text{ITO}} = 9.8 \pm 0.2 \) ns (from the optical waveforms fig. 4.b and fig. 5.b) shows that OLED2 decay time is faster than that of OLED1. As mentioned previously OLED2 provides a better approximation of the optical response because of a faster electrical response. This explain why OLED2 exhibits shorter decay time than OLED1 whereas the same organic compounds and the same thicknesses are used in both organic heterostructures. In other words, OLED2 exhibiting faster electrical response than OLED1 \((\tau_{\text{IE}} < \tau_{\text{IE}}) \) induces slightly faster optical response than OLED1 \((\tau_{\text{IE}} < \tau_{\text{I}}) \) and hence reflects better the intrinsic physical and optical dynamics in the organic compounds.
VI. BREAK-DOWN CURRENT DENSITY

To investigate the absolute maximum current density the study focused on OLED2 to proceed with the electric and optical measurements under higher voltage excitation. The maximum current without device failure was reached with a 30 ns pulse duration under excitation voltage increased up to 135 V. The corresponding current-density and EL waveforms are shown in Fig.6. The device exhibits a maximum current density of 3.0 kA/cm² and a maximum luminance of 12 W/cm². To the best of author’s knowledge, this is the highest current density of an OLED obtained in the presence of the shortest electrical pulse reported so far. Authors believe even higher current densities can be achieved if the standard Organic heterostructure is to be improved with a PIN organic heterostructure [11]. Note that in the proposed structures, the fabrication of the OLED remains simpler and less expensive with photolithography instead of electron beam lithography [10].

VII. CONCLUSION

In this work, the OLED current density and electroluminescence time domain responses are studied numerically and experimentally at the nanosecond time scale. In section II a specific electrical model of µ-OLEDs in On-Off configuration has highlighted the role of the capacitances in the impulse response. In the device fabrication section, two types of µ-OLEDs are fabricated and compared in order to investigate experimentally the role of the capacitances of µ-OLED1 (113μm-diameter, S1=0.01mm²) defined by photolithography of an insulating photoresist, and µ-OLED2 (87x120μm², S2=0.01mm²) defined by electrode crossing. As shown in the characterization section, the second process allows better high-speed features with µ-OLED electrical time response as small as τ2E = 2.1 ± 0.6 ns compared to τ1E = 9.6 ± 3.3 ns obtained with a process based on photolithography. The fitting of the specific equivalent electric model based on the numerical analysis to the experimental results, demonstrates that the main limiting factor is indeed the device capacitance with C2 = 13 pF in the second process, while it is C1 = 340 pF with the first process. It is demonstrated that the larger capacitance is due to the photoresist used to limit the active area. Although an OLED as small as 1μm² can be fabricated with the first process, the higher capacitance resulting from the photoresist used to define the active area prevents from increasing further the OLED speed. Nevertheless, both processes provide optical time responses larger than the electrical one with τ10 = 12.1 ± 0.5 ns > τ1E and τ20 = 9.8 ± 0.2 ns > τ2E which clearly classifies these organic optoelectronic devices as high-speed.

Finally, break-down current density as high as 3.0 kA/cm² and electroluminescence as high as 12 W/cm² are measured with the fastest µ-OLED.

As a perspective, authors consider the fabrication of smaller µ-OLEDs with faster response time and allowing even higher current density by reducing slightly further the ITO anode dimensions W2 and L2. Moreover, the difference between the electric and the optical time response indicates that it is possible to investigate the physical and optical dynamics without limitation of the electric time response. Authors believe this opens the possibility to investigate physical and optical dynamics in organic devices under pulsed-electrical rather than pulsed-laser excitation which is a step closer to the demonstration of the organic laser diode.

REFERENCES