
Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1785/0120150253

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Seismological Society of America at DOI: 10.1785/0120150253. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Local Earthquake Magnitude Scale and b-Value for the Danakil Region of Northern Afar

by Finnigan Illsley-Kemp, Derek Keir,* Jonathan M. Bull, Atalay Ayele, James O. S. Hammond, J.-Michael Kendall, Ryan J. Gallacher, Thomas Gernon, and Berhe Goitom

Abstract The Danakil region of northern Afar is an area of ongoing seismic and volcanic activity caused by the final stages of continental breakup. To improve the quantification of seismicity, we developed a calibrated local earthquake magnitude scale. The accurate calculation of earthquake magnitudes allows the estimation of b-values and maximum magnitudes, both of which are essential for seismic-hazard analysis. Earthquake data collected between February 2011 and February 2013 on 11 three-component broadband seismometers were analyzed. A total of 4275 earthquakes were recorded over hypocentral distances ranging from 0 to 400 km. A total of 32,904 zero-to-peak amplitude measurements (A) were measured on the seismometer's horizontal components and were incorporated into a direct linear inversion that solved for all individual local earthquake magnitudes (M_L), 22 station correction factors (C), and 2 distance-dependent factors (n, K) in the equation $M_L = \log(A) - \log(A_0) + C$. The resultant distance correction term is given by $-\log(A_0) = 1.274336\log(r/17) - 0.000273(r - 17) + 2$. This distance correction term suggests that attenuation in the upper and mid-crust of northern Afar is relatively high, consistent with the presence of magmatic intrusions and partial melt. In contrast, attenuation in the lower crust and uppermost mantle is anomalously low, interpreted to be caused by a high melt fraction causing attenuation to occur outside the seismic frequency band. The calculated station corrections serve to reduce the M_L residuals significantly but do not show a correlation with regional geology. The cumulative seismicity rate produces a b-value of 0.9 ± 0.06, which is higher than most regions of continental rifting yet lower than values recorded at midocean ridges, further supporting the hypothesis that northern Afar is transitioning to seafloor spreading.

Electronic Supplement: List of all local earthquakes used in the study with calculated local magnitudes and associated magnitude error.

Introduction

The Danakil region, in northern Afar, is one of the few areas in the world where the transition from continental rifting to seafloor spreading is exposed subaerially. The region is seismically active and encompasses at least 24 active volcanic centers. The Ethiopian plateau, to the west of the Danakil depression, supports a significant population. Given its proximity to the western border fault of Afar, the town of Mekele faces a high level of seismic risk and experienced a swarm of earthquakes in 2002 (Ayele et al., 2007). The accurate calculation of local magnitudes is a key component of seismic-hazard analysis, in particular when estimating b-values and maximum magnitudes. Accurate local magnitudes are also essential for studies that attempt to understand the geological processes occurring in locations such as northern Afar, for example, stress accumulation and amount of strain by faulting.

Seismic energy will attenuate at varying rates depending on factors such as temperature, composition, and fluid content of the crust as well as partial melt and magmatic intrusions (Schloterbeck and Abers, 2001; Carletti and Gasperini, 2003; Keir et al., 2006; Wang et al., 2009). This rate of attenuation is characterized by an attenuation curve. The use of an inappropriate attenuation curve will result in errors when assigning local magnitude values to earthquakes.
For two years, from 2011 to 2013, a seismic network was deployed over an area covering \(260 \times 150 \text{ km}\) (Figs. 1 and 2). The goal of this study is to use the seismic data recorded by 11 broadband seismometers to quantify seismic activity including improved estimation of local magnitudes \((M_L)\). To do this, we invert maximum body-wave amplitude and hypocentral distance information to derive a region-specific magnitude scale based on the definitions of Richter (1935, 1958).

Geological Setting

The Afar depression is a region that is in the late stages of continental breakup and lies at the triple junction between the Gulf of Aden, the southern Red Sea, and the Main Ethiopian rift (McKenzie and Davies, 1970; Mohr, 1970). The initiation of rifting in Afar occurred between 31 and 29 Ma (Hofmann et al., 1997; Ukstins et al., 2002), with initial extension thought to be accommodated by large-scale border faults (Wolfenden et al., 2005). In northern Afar, strain localized to north-northwest–south-southeast (NNW–SSE)-trending 10–30-km-wide 60–100-km-long axial volcanic segments between 25 and 20 Ma (Hayward and Ebinger, 1996; Wolfenden et al., 2005). Extension rates vary across the Danakil region, with extension of \(\sim 7 \text{ mm/yr}\) in the northernmost area (15° N) and \(\sim 20 \text{ mm/yr}\) in the south (13° N), with the extension directed east-northeast–west-southwest (McClusky et al., 2010). The crust thins dramatically in the Danakil depression from \(\sim 27 \text{ km}\) thickness in the rift to <15 km beneath the depression (Makris and Ginzburg, 1987; Hammond et al., 2011). The crust is \(> 40 \text{ km}\) thick beneath the Ethiopian plateau (Hammond et al., 2011; Corti et al., 2015).

The Danakil depression is an \(\sim 200\text{-km long} 50–150\text{-km wide}\) basin that is mostly below sea level but currently subaerial (Fig. 1). Because of the low elevation, the surface sediments in the area largely consist of thick layers of evaporites formed from repeated marine incursions (Barberi and Varet, 1970; Keir et al., 2013), most recently 32,000 years ago (Bonatti et al., 1971). The depression also contains the NNW–SSE-trending Erta-Ale volcanic segment (EAVS) and seven active volcanoes (Barberi and Varet, 1970; Nobile et al., 2012; Fig. 1). The volcanic range is the focus for most of the magmatic activity in the region and is responsible for the majority of Quaternary to recent basalts in Afar (Bastow and Keir, 2011). It is also thought to mark the boundary of the Danakil microplate to the east (Eagles et al., 2002). Geodetic observations of Gada-Ale, Dallol, and Alu-Dalafilla volcanoes in the Erta-Ale range have been successfully mod-
eled as fluxes of magma in upper-crustal reservoirs and intrusions (Amelung et al., 2000; Field et al., 2012; Nobile et al., 2012; Pagli et al., 2012).

In addition to the Erta-Ale volcanic range, there are a suite of other active volcanoes in the region (Fig. 1). At the southern edge of the Danakil depression, there are the Amara-Barawli volcanic complex (ABVS), Afdera volcano (AV), and Alayta volcano (ALV) (Barberi and Varet, 1970). To the south of the Danakil depression in central west Afar, the rift axis steps en echelon to the southwest into the Dabbahu segment (DVS), which underwent a major dike intrusion episode during 2005–2010 (Wright et al., 2006; Ebinger et al., 2008; Barnie et al., 2015). Nabro volcano (NVS), which erupted in June 2011, is on the eastern margin of the Danakil depression near the Eritrean–Ethiopian border (Hamlyn et al., 2014; Goitom et al., 2015; Fig. 1).

A variety of geophysical studies have shown that extension in Afar and the Main Ethiopian rift is accommodated by a combination of magmatic intrusion and lithospheric thinning (e.g., Bastow and Keir, 2011). There is extensive evidence, from Interferometric Synthetic Aperture Radar, magnetics, receiver functions, magnetotellurics, and seismic anisotropy for the presence of dikes and sills in the crust south of 13° N in Afar (Wright et al., 2006; Keir et al., 2011; Bridges et al., 2012; Desissa et al., 2013; Hammond, 2014). Furthermore, a study into 40 years of seismicity in Afar by Hofstetter and Beyth (2003) found that >50% of the geodetic moment, as predicted by plate separation rates, is taken up aseismically. Along with a larger body of work, these results show that magmatic processes play an important role in continental breakup (Calais et al., 2008; Thybo and Nielsen, 2009). North of 13° N, in the Danakil depression, extensive crustal thinning is observed (Makris and Ginzburg, 1987; Hammond et al., 2011). This suggests that ductile stretching and thinning of the crust may also play an important role in the accommodation of extension.

Many studies have attempted to investigate the thermochemical state of the mantle beneath Afar. Seismic tomography by Bastow et al. (2008) finds a broad low seismic-velocity structure beneath the Main Ethiopian rift that extends to depths of >400 km. Tomographic studies in northern Afar also show a region of low seismic velocity from 50 to 400 km depth, which is interpreted as a region of elevated temperature and partial melt (Hammond et al., 2013; Stork et al., 2013; Civiero et al., 2015). This interpretation is further corroborated by modeling geochemical data that suggest an elevated mantle temperature of 1450°C (Ferguson et al., 2013; Armitage et al., 2015). The elevated mantle temperature will promote partial melting, even at relatively low rates of extension.

Data

The seismic network comprised 16 broadband seismometers that were operational for two years between February 2011 and February 2013 (Fig. 1). Thirteen Guralp CMG-3ESPCD instruments and three Guralp CMG-6TD instruments recorded continuous data at 50 Hz. A total of 4275 earthquakes were recorded across the network during the experiment and were located with HYPO2000 (Klein, 2002). We used a 1D velocity model based on a seismic refraction survey from the area (Makris and Ginzburg, 1987). Accounting for instrument faults, a total of 11 seismometers were used to calculate the local magnitude scale. The velocity seismograms were convolved with the standard Wood–Anderson response, with a Wood–Anderson gain of 2800, to produce Wood–Anderson displacement seismograms (Anderson and Wood, 1925; Kanamori and Jennings, 1978). The maximum peak-to-peak amplitude on both the east–west and the north–south components of each station was measured, in millimeters, for each event. The final dataset consisted of 32,904 amplitude measurements with hypocentral distances ranging from 0 to 420 km (Fig. 3).

Figure 3. Magnitudes and hypocentral distances for the horizontal components for all stations. Magnitudes are calculated using the magnitude scale for the Danakil region.

Method

The definition of local magnitude \(M_L \) is given by Richter (1935, 1958):

\[
M_L = \log(A) - \log(A_0) + C
\]

in which \(A \) is the maximum zero-to-peak amplitude on the horizontal seismogram, \(\log(A_0) \) is a distance correction term that is calculated empirically, and \(C \) is a correction term for each component of each station that is also calculated empirically.

Richter originally defined the local magnitude scale such that an earthquake of \(M_L = 3 \) would cause a 1 mm deflection on a standard horizontal Wood–Anderson seismograph at a distance of 100 km from the hypocenter. Hutton
and Boore (1987) observed that Richter’s scale tended to underestimate magnitudes at stations close to the hypocenter and overestimate for more distant stations. To counter this problem, they developed a method to calculate how attenuation rates vary over increasing hypocentral distances, which yields an attenuation curve for specific regions. This allows for the magnitude scale to be normalized at a closer distance, thus minimizing geographical variations in wave propagation. They now define an M_L 3 earthquake as causing a 10 mm deflection on a Wood–Anderson seismograph at a distance of 17 km from the hypocenter. The distance correction term is defined as

$$-\log(A_0) = n\log(r/17) + K(r - 17) + 2, \quad (2)$$

in which n and K are constants to be calculated and relate to geometrical spreading and attenuation of seismic waves, respectively, and r is the hypocentral distance in kilometers.

Combining equations (1) and (2), the observed amplitude A_{ijk} for each component of each station for each event can be written as

$$\log(A_{ijk}) + 2 = -n\log(r_{ij}/17) - K(r_{ij} - 17) + M_{L(i)} - C_{jk}, \quad (3)$$

in which indexes i, j, and k represent events, stations, and components, respectively. It is now possible to invert for the unknowns n, K, M_L, and C. Each station has two correction terms associated with the north–south and east–west horizontal components. The set of equations includes a constraint that all station corrections sum to zero. The set of equations (3) can be combined into a matrix form, shown in equation (4), which represents a dot product equation $d = m \cdot A$ and is a system of $N_e + 2N_s + 2$ unknowns, in which N_e and N_s are the number of events and stations, respectively. The data from Danakil include 4275 events recorded on 11 stations, producing a matrix with dimensions of $32,904 \times 4299$, with 4299 unknowns to be solved. Then, we solve equation (4) with a least-squares criterion and produce an optimal solution

\[
\begin{pmatrix}
\log(A_{111}) + 2 \\
\log(A_{112}) + 2 \\
\vdots \\
\log(A_{1N_e,N_s}) + 2 \\
\log(A_{211}) + 2 \\
\vdots \\
\log(A_{N_e,N_s}) + 2 \\
\end{pmatrix} = \begin{pmatrix}
n \\
K \\
M_{L(1)} \\
\vdots \\
M_{L(N_e)} \\
C_{11} \\
\vdots \\
C_{N_e,N_s} \\
\end{pmatrix} \begin{pmatrix}
\log(r_{11}/17) \\
\log(r_{11}/17) \\
\vdots \\
\log(r_{1N_e}/17) \\
\log(r_{21}/17) \\
\vdots \\
\log(r_{N_e,N_s}/17) \\
\end{pmatrix} + \begin{pmatrix}
(r_{11} - 17) \\
(r_{11} - 17) \\
\vdots \\
(r_{1N_e} - 17) \\
0 \\
\vdots \\
0 \\
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
1 \\
\vdots \\
1 \\
\end{pmatrix}
\]

(Keir et al., 2006). Our approach differs from many previous studies that have used an iterative technique (Langston et al., 1998; Baumbach et al., 2003). The direct inversion method is computationally much faster and has been tested by Pujol (2003) on data from Tanzania that was previously analyzed using the iterative technique (Langston et al., 1998). The method used in this study has been tested on data from the Main Ethiopian rift and yielded identical results to those produced by Keir et al. (2006).

Results

The inversion produced an equation for the distance correction term $\log(A_0)$ for the Danakil region using a 17 km normalization

$$-\log(A_0) = 1.274336 \log(r/17) - 0.0002731(r - 17) + 2. \quad (5)$$

Attenuation rates for the Danakil region (Fig. 4) are very similar to that of the Main Ethiopian rift for hypocentral distances up to ~70 km. For larger distances, the attenuation is significantly lower than in the Main Ethiopian rift (Keir et al., 2006). The curve also shows that the attenuation rate in the Danakil region is significantly higher than in Tanzania (Langston et al., 1998).

The effect that the newly derived attenuation curve has on magnitude estimates is shown in Figure 5. We show the magnitude residuals with increasing hypocentral distance when using the magnitude scale for the Danakil region, the Main Ethiopian rift (Keir et al., 2006), and Tanzania (Langston et al., 1998). Magnitude residuals calculated with the new Danakil magnitude scale display no bias with hypocentral distance, and hence an average residual of near zero at all hypocentral distances. In contrast, the Main Ethiopian rift scale overestimates magnitudes with increasing hypocentral distance, and the Tanzanian scale underestimates magnitudes, as shown by the respective gradients of the residual averages in Figure 5. The average variance of the residuals
for the Danakil magnitude scale is $M_L 0.2$; therefore the average error in magnitude calculation is given as $M_L \pm 0.2$. Individual magnitude errors for each event are listed in Tables S1 and S2, available in the electronic supplement to this article. To test whether the error in magnitude is dependent on magnitude value, we plot box plots of error values for events grouped at 0.5 magnitude intervals (Fig. 6). This clearly shows that magnitude error is stable for the full range of magnitudes in this study. As a further test of the magnitude scale, we compare Global Centroid Moment Tensor moment magnitudes (M_w) from the Danakil region with local magnitude values calculated with the derived magnitude scale (Table 1). The listed events are assumed to be representative, and worldwide comparisons of M_w and M_L find the two scales to be, on average, consistent for shallow earthquakes (<33 km; Kanamori, 1983).

Station Corrections

The set of equation (4) includes a station correction term C_{jk} for each component of each station. There is also a condition included that all station corrections sum to zero. The station corrections calculated for the east–west components range from $M_L 0.48$ to -0.25 units, and the north–south component corrections range from $M_L 0.42$ to -0.39 units (Fig. 7). Most stations have very similar station correction values for the north–south and east–west components. Through examining the distribution of station corrections, there is no obvious link between regional geology and station correction. It is therefore most likely that station correction values are dependent on very local effects, such as near-surface geology and the level of coupling between the seismometer and the soil.

Magnitude residuals, the magnitude calculated at a single station minus the average magnitude, were calculated at all stations for both the north–south and east–west components with and without station corrections (Fig. 8). Magnitude residuals calculated without station corrections have an average of almost zero ($M_L - 1.3 \times 10^{-2}$) and a variance of 0.096.

Figure 4. Comparison of attenuation curves for the Danakil region (this study), the Main Ethiopian rift (Keir et al., 2006), Tanzania (Langston et al., 1998), and southern California (Richter, 1958; Hutton and Boore, 1987). The attenuation rate in Danakil is significantly lower than that for the Main Ethiopian rift for hypocentral distances >70 km.

Figure 5. Magnitude residuals calculated for all events using three different scales; the newly derived magnitude scale for (a) Danakil, (b) the Main Ethiopian rift magnitude scale (Keir et al., 2006), and (c) the Tanzania magnitude scale (Langston et al., 1998). The Danakil magnitude scale minimizes residuals at all hypocentral distances, whereas the Main Ethiopian rift scale and the Tanzania scale overestimate and underestimate magnitudes, respectively.
Magnitude residuals calculated with station corrections included have an average of very nearly zero ($M_L - 3.3 \times 10^{-8}$) and a variance of 0.042. This shows that including the calculated station corrections brings the average residual closer to zero and reduces the variance by >64%.

Discussion

We compare the attenuation curve derived for the Danakil region with those from other regions worldwide (Fig. 4). Attenuation is significantly higher in the Danakil region than in Tanzania for all hypocentral distances greater than 50 km (Langston et al., 1998). The two regions are geologically very different; Tanzania is a region of early-stage nonvolcanic continental rifting of Archaean cratonic lithosphere. Archaean cratons generally consist of thick crystalline rock with very low geothermal gradients, both of which promote low seismic attenuation. The observed difference in seismic attenuation can therefore be explained by the presence of the Tanzanian craton.

Our new attenuation curve shows that at hypocentral distances of less than 100 km, the attenuation in Danakil is very similar to that in the Main Ethiopian rift and in southern California (Hutton and Boore, 1987; Keir et al., 2006). High attenuation in southern California is explained by high geothermal gradients beneath the San Gabriel Mountains (Schlotterbeck and Abers, 2001). In the Main Ethiopian rift, the high rate of attenuation is ascribed to the presence of magmatic intrusions and partial melt within the crust (Keir et al., 2006). The Danakil region has an abundance of active volcanism and a thinned crust that suggests the presence of partial melt and high geothermal gradients. These conditions can explain the high level of attenuation at hypocentral distances less than 100 km.

The attenuation rate in Danakil is significantly lower than that in the Main Ethiopian rift at hypocentral distances of over 100 km. Ray paths for earthquakes with hypocentral distances of over 100 and 150 km are shown in Figure 9. The rays at these hypocentral distances predominantly traverse from the Danakil depression in the north to the Dabbahu segment in the south. We then calculated 2D travel-time curves using MacRay (Luetgert, 1992) and a velocity model based on the seismic refraction survey by Makris and Ginzburg (1987), the results of which are shown in Figure 10. Earthquakes at these large hypocentral distances are sampling the lower crust and uppermost mantle at a maximum depth of ∼45 km; therefore the low attenuation observed for the Danakil region is originating from these depths. A low attenuation rate could be consistent with a paucity of partial melt. However, previous geophysical work including high conductivity in magnetotelluric data and high V_P/V_S of >2 imaged by receiver functions strongly suggest that there is a large amount of melt present in the lower crust and uppermost mantle (Hammond et al., 2011; Desissa et al., 2013).

It is therefore unlikely that low attenuation is caused by low-melt fractions. Seismic attenuation in the upper mantle is thought to occur through two potential mechanisms: grain boundary sliding (Faul et al., 2004) and melt squirt (Mavko and Nur, 1975; O’Connell and Budiansky, 1977). Grain boundary sliding has been shown to cause a broad absorption peak in the seismic frequency band and so cannot explain the low attenuation that we observe (Faul et al., 2004). Hammond and Humphreys (2000) modeled the effect that melt squirt has on attenuation in the upper mantle with melt percentages ranging from 0% to 3%. They demonstrate that as

Table 1
A Comparison between Independently Calculated Moment Magnitudes (M_w) and Local Magnitudes (M_L)

<table>
<thead>
<tr>
<th>Date (yyyy/mm/dd) and Time (hh:mm:ss)</th>
<th>Moment Magnitude M_w</th>
<th>Local Magnitude M_L</th>
<th>Depth (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/12/06 15:37:04</td>
<td>5.1</td>
<td>5.2</td>
<td>12</td>
</tr>
<tr>
<td>2011/12/06 19:21:50</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2011/12/06 20:32:40</td>
<td>5.6</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>2011/12/06 21:03:23</td>
<td>5.4</td>
<td>5.7</td>
<td>2</td>
</tr>
<tr>
<td>2011/17/06 09:16:12</td>
<td>5.6</td>
<td>5.8</td>
<td>1</td>
</tr>
</tbody>
</table>

The events occurring on 12 June 2011 are associated with the eruption of Nabro volcano.

† Local magnitude calculated with local magnitude scale derived from this study.
melt percentage increases, melt pockets become more interconnected and melt squirt can occur at a faster rate. This has the effect of pushing the frequency at which attenuation occurs toward higher frequencies and away from the seismic frequency band. This interpretation of melt squirt causing low attenuation in the seismic frequency band has also been observed at the East Pacific Rise (Yang et al., 2007). We suggest that the low attenuation observed in the uppermost mantle of Danakil can therefore be explained by a high melt fraction undergoing melt squirt.

We used the new magnitude scale for the Danakil region to investigate the seismicity that occurred in the region between February 2011 and February 2013. Figure 11 shows the Gutenberg–Richter distribution of log of the cumulative number of earthquakes of magnitude M_L or greater (Gutenberg and Richter, 1956). The time period of the study featured the eruption and associated seismic swarm of the Nabro volcano (Hamlyn et al., 2014; Goitom et al., 2015). Eruptions at caldera systems, such as Nabro, are extremely rare, and this was the first recorded eruption of the Nabro volcano. Because of the infrequent nature of the eruption, inclusion of the associated seismicity would bias the Gutenberg–Richter distribution. The events associated with the Nabro eruption have therefore been removed, based on their location at the volcano (latitude 13.1°–13.6°; longitude 41.5°–41.9°; Fig. 2). We estimate the magnitude of completeness by initially using the maximum curvature method (Wiemer and Wyss, 2000), which corresponds to the magnitude bin with the highest event frequency. In our data this is M_L 1.8 (Fig. 11). However, Woessner and Wiemer (2005) report that the maximum curvature method tends to under-

![Figure 7](image1.png)
Figure 7. Variation of station corrections across the network. (a) North–south-component corrections. (b) East–west-component corrections. There is no clear correlation between regional geology and station correction. The corrections are therefore likely controlled by very local geology and site-specific variables.

![Figure 8](image2.png)
Figure 8. (a) Magnitude residuals calculated with station corrections. (b) Magnitude residuals calculated without station corrections. Magnitude residuals calculated with station corrections sum to nearly zero, and the variance (0.042) has been reduced by >64% when compared with the variance without station corrections (0.096).
estimate the magnitude of completeness by 0.1–0.2 magnitude units, and we therefore estimate a magnitude of completeness of $M_L 2.0$. A b-value of 0.9 was calculated using the maximum-likelihood calculation (Aki, 1965). We calculated an error of ± 0.06 by performing a bootstrap analysis following the method of Pickering et al. (1995). Including the events associated with the Nabro eruption in the b-value calculation reduces it to 0.8 ± 0.04. This is unsurprising given the number of large-magnitude events that occurred during the eruption. It is important to note that b-values have been observed to change significantly over small distances and through time, particularly in areas of volcanic activity (Wyss and McNutt, 1998; Barton et al., 1999; Wyss et al., 2001).

The Danakil region has a higher b-value than most other areas in the East African rift. South Sudan, Tanzania, and Kenya, which are all regions of continental rifting, have b-values that range from 0.7 to 0.9 (Tongue et al., 1992; Ayele and Kulhanek, 1997; Langston et al., 1998). The Danakil region b-value is also significantly higher than that in other continental rift systems, such as the Rio Grande and Eger rifts, both of which exhibit b-values of 0.8 (Ibs-von Seht et al., 2008). In these regions, rifting is less developed and also less magmatically accommodated. A lack of magmatic activity during rifting allows greater stresses to accumulate in the crust, facilitating larger earthquakes and a lower b-value.

The b-value for Danakil is lower than values recorded at mid-ocean ridges. At the Mid-Atlantic ridge, b-values have been observed to vary, but they are consistently above 1 and can reach values of up to 1.5 (Kong et al., 1992; Barclay et al., 2001; Tilmann et al., 2004). Wilcock et al. (2002) performed a microearthquake study on the Endeavour segment of the Juan...
Figure 11. Analysis of earthquake magnitude distribution of earthquakes in the Danakil region, excluding those associated with the eruption of Nabro on 12 June 2011. (Left axis) Gutenberg–Richter distribution in which \(\log(N) \) represents the log of the cumulative number of earthquakes of magnitude \(M_L \), or greater. (Right axis) Number of events represents the frequency of events in each magnitude bin. The magnitude of completeness (\(M_L \), 2.0) is calculated using the maximum curvature method (Wiemer and Wyss, 2000). We calculate the b-value using the maximum-likelihood method. The calculated b-value suggests that geodetic strain is primarily released through swarms of low-magnitude earthquakes, rather than large-scale faulting.

Conclusions

We calculated the first local magnitude scale for the Danakil region of northern Afar. The study used 32,904 amplitude measurements from 4275 earthquakes on 11 seismometers and yields the following equation:

\[
- \log(A_0) = 1.274336 \log(r/17) - 0.000273(r - 17) + 2.
\]

in which \(r \) is the hypocentral distance from station to earthquake. This equation and the corresponding attenuation curve show that the attenuation rate of seismic energy in Danakil is relatively high in the crust, consistent with the presence of magmatic intrusions and melt. The relatively low attenuation observed at greater depths could indicate a low melt percentage, inconsistent with independent geophysical data. We therefore suggest that the low attenuation rate is due to a sufficiently high melt fraction in the upper mantle beneath Danakil undergoing melt squirt and causing the seismic attenuation to occur outside the seismic frequency band.

We used the seismicity in Danakil to produce a Gutenberg–Richter relationship. The catalog is complete above \(M_L \), 2.0 and the calculated b-value is given as 0.9 \pm 0.06. Our b-value is consistent with the area transitioning to seafloor spreading. Our improved magnitude scale and seismicity rate are critical for better quantification of seismic hazard. These results will also help quantify the distribution and amount of seismic strain.

Data and Resources

Seismograms used in this study were collected as part of the Afar0911 experiment using Seismic Equipment Infrastructure in the UK (SEIS-UK) instruments. We provide the catalog of earthquakes used in this study in the electronic supplement to this article. Plots were made using the Generic Mapping Tools v. 4.5.8 (www.soest.hawaii.edu/gmt, last accessed September 2015; Wessel and Smith, 1998).

Acknowledgments

We thank Seismic Equipment Infrastructure in the UK (SEIS-UK) for use of the instruments and their computing facilities. The facilities of SEIS-UK are supported by the Natural Environment Research Council (NERC) under Agreement R8/H10/64. F. I.-K. is funded through NERC studentship NE/L002531/1 and a grant to Graduate School of the National Oceanography Centre of Southampton (GSNOCs) from Roy Franklin O.B.E. D. K. is supported by NERC Grant Number NE/L013932. Funding for fieldwork is from BHP Billiton. We also acknowledge assistance from Addis Ababa University and the Afar National Regional State Government. We would like to thank Yavor Kamer and an anonymous reviewer for constructive reviews of the article.

References

