
Publisher's PDF, also known as Version of record

This is the exhibited version of the conference poster. Please refer to any applicable terms of use of the author.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Many captive Carnivora thrive, but some species show high levels of stereotypic behaviour (SB; mainly route-tracing, RT) & infant mortality (IM).

When Phylogenetic Comparative Methods (PCMs) were used to compare species and identify specific intrinsic risk factors [1,2], being naturally wide-ranging emerged as a key predictor of RT [1,2].

I. Why does home range size predict Carnivora welfare?

Background to the ranging behaviour study

- We aimed to identify why wide-ranging Carnivora species are more prone to welfare issues.
- This could help in better predicting at-risk species, and also inform future enclosure design.
- Natural annual home ranges (AHRs) are driven by many factors that we sought data on, including energy needs, predation pressure, and social organisation [1].
- Being wide-ranging has consequences too, e.g. on no. of dens used, relocations made per year, distances travelled [2,3], and potentially on aspects of brain development, especially larger hippocampi for improved spatial learning [3]. We therefore sought data on these too.

Results: What correlates of annual home range size (AHR) predict route-tracing better or more fully than AHR itself?

These factors do predict RT on their own, BUT when combined with AHR in models, AHR proves to drive the effect. Thus these factors cannot explain the relationship between AHR and RT.

Both AHR and these factors predict RT independently. Thus wide ranging species that also possess these traits are most prone to RT.

When combined with AHR in models, the AHR effect vanishes while these factors do predict RT. These factors may therefore explain why AHR predicts RT.

What these results mean:

Analyses are ongoing, but so far, results suggest that high RT Carnivora species are:
- Naturally non-territorial with low population densities;
- Top predators (unlike preyed-on species, familiar terrain with known hiding places is not a priority for them; e.g. 3) Cover very small fractions of their annual range daily, relocating completely multiple times every year. Perhaps they are therefore novelty-seekers who prefer high levels of control: features that could improve their lives in zoos.

Conclusions: RT-prone wide rangers may be naturally fearless, autonomous and nomadic

Methods for the ranging behaviour study

- After updating the relevant databases (see poster to right; also see [2] for details), we replicated the previous work. RT was still strongly predicted by AHR (PGLS, $p=0.012$, $t_{1,21}=2.45$), but IM was not (PGLS, $p=0.15$, $t_{1,39}=1.03$). We therefore focussed on RT.
- For data on potential correlates of AHR - see Results for details - we used our extensive wild behaviour (WB) database, plus several specialised sources [4].
- First we identified which of these factors did covary with AHR in our sample.
- For those that did, the degree to which they explained the AHR effect on RT was then investigated statistically (controlling for body mass where appropriate).
Captive Carnivora cannot hunt & kill live vertebrate prey. Does this compromise welfare in naturally hunting-reliant species?

Evidence in support includes that Carnivora are more prone to RT than other mammals [7]; that long chase distances may be a risk factor (see poster on left); and that RT often peaks pre-feeding.

But evidence against includes that some non-hunters show RT (e.g. giraffes [10] & primates [11]), and that RT peaks at other times too (e.g. when shut indoors during poor weather [12]).

We therefore used PCMs to resolve this by asking, do aspects of natural foraging niche predict welfare problems across the Carnivora?

Background to both studies b) Our general approach

We built on the past work, increasing the route-tracing (RT) database [1,2] to now include c. 2,300 animals across 56 species, 27 with RT data from 5 or more subjects (our focus); expanding the captive infant mortality (IM) database [1,2] to now cover c. 24,500 births across the 56 species; and updating the wild behaviour (WB) database [1,2] plus finding new sources for data on wild carnivore behavioural biology [3,4,6,7].

For PCMs we used Phylogenetic Generalized Least Squares (PGLS) regressions in R (‘Caper’) [8] and a recent phylogeny [9].

II. Does foraging niche predict poor welfare in Carnivora?

Emma Mellor¹, Mike Mendl¹, Miranda Bandeli², Innes Cuthill³, Georgia Mason²

1: School of Veterinary Sciences, Bristol University, Langford, UK; 2: Animal Biosciences, University of Guelph, Ontario, Canada; 3: School of Biological Sciences, Bristol University, UK

Background to the foraging niche study

Captive Carnivora cannot hunt & kill live vertebrate prey. Does this compromise welfare in naturally hunting-reliant species?

Evidence in support includes that Carnivora are more prone to RT than other mammals [7]; that long chase distances may be a risk factor (see poster on left); and that RT often peaks pre-feeding.

But evidence against includes that some non-hunters show RT (e.g. giraffes [10] & primates [11]), and that RT peaks at other times too (e.g. when shut indoors during poor weather [12]).

We therefore used PCMs to resolve this by asking, do aspects of natural foraging niche predict welfare problems across the Carnivora?

Methods for the foraging niche study

Our measures of captive welfare were again RT and captive IM (see 2 for details).

Reliance on hunting was assessed via: kill rate & hunt rate /24hrs (from the updated WB database) and dietary classification [4].

Hunting style was assessed via: chase distance (m) (from WB database) and hunting strategy [6,7].

Prey selection effects were assessed via: prey mass: predator’s own body mass [13].

To establish if foraging niche explains the variance in RT not explained by annual home range size (see poster to left), home range data were taken from the WB database.

Results: Are RT and/or captive IM predicted by...

...reliance on hunting in the wild?

NO: P > 0.39 in all the six models investigating whether hunting intensity predicted RT or IM in captivity. E.g...

...hunting style?

NO: P > 0.33 in four models investigating whether captive pursuit predators are more prone to RT or IM. E.g...

... or hunting large prey?

NO: P > 0.60 in both models. E.g...

Conclusions: Natural foraging niche does not predict welfare in captive Carnivora

Foraging niche does not predict RT or IM in captive Carnivora. The previous chase distance effect [2] thus seems to have been a Type I error.

Thus RT is not redirected hunting, and based on the measures used here, hunters do also not seem to have behavioural needs to hunt. This may be because hunting is naturally risky [14], making ‘risk-free’ food a good option for captive hunters.

That RT often peaks pre-feeding may simply reflect food anticipation (e.g. 15), with RT perhaps inadvertently being reinforced because the animal is fed.

Acknowledgements

Thanks to NSERC and Bristol University’s Alumni Foundation for funding Emma Mellor’s travel, and the University of Bristol for her studentship. Also Pixabay for images.

References cited