Modelling Tensile/Compressive Strength Ratio of Artificially Cemented Clean Sands

A. Diambra, PhD, MEng, Lecturer, Queen’s School of Engineering, University of Bristol, Bristol, UK

L. Festugato, PhD, MEng, Lecturer, Engineering School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

E. Ibraim, PhD, MEng, Reader, Queen’s School of Engineering, University of Bristol, Bristol, UK

A. Peccin, MEng, Engineering School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

N. C. Consoli, PhD, MEng, Professor, Engineering School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Revised manuscript submitted for publication to:
Soils and Foundations
on September 2017

Author to receive correspondence: Dr Andrea Diambra
Senior Lecturer in Geomechanics
Queen’s School of Engineering
University of Bristol
Bristol (UK)
andrea.diambra@bristol.ac.uk

Number of words: 4500 approx
Number of figures: 9
Number of tables: 3
ABSTRACT:

The present work proposes a new theoretical model for predicting both the splitting tensile ($q_t$) and compression strengths ($q_u$) of artificially cemented sands and assesses their ratio for a given material. The proposed developments are based on the concept of superposition of failure strength contributions of the sand and cement phases. The sand matrix obeys the critical state soil mechanics concept, while the strength of the cemented phase can be described using the Drucker-Prager failure criterion. The analytical solutions are challenged against experimental tests on three different cemented clean sands, cured for different time periods. While the analytical relation fits well the experimental data, it also provides a theoretical basis for the explanation of some features related to the experimentally derived strength relationships for cemented clean sands. The value of the power relationship between strengths and the porosity/cement ratio index seems governed by soil matrix properties, while the dependency between the strengths and the curing time can also be captured. For a given cemented sand, the model equally confirms the existence of a unique tensile/compressive strength ($q_t/q_u$) ratio, independent of the curing time and primarily governed by the compressive to tensile strength ratio (or the friction properties) of the cement. It is also confirmed that the $q_t/q_u$ ratio changes within a narrow range for different frictional properties of the cementing phase.

Keywords: Modelling, sands, Portland cement, tensile strength, compressive strength, porosity/cement ratio.
1 INTRODUCTION

Improving the mechanical characteristics of soils by mixing with small amounts of binding agents, such as cement, is employed worldwide to foster the reuse of locally available soils and decrease construction costs. The main purpose of this ground improvement technique is to reproduce the stable internal structure of naturally cemented or weakly bonded soils, resulting in an increased stiffness and peak frictional strength (e.g. Saxena and Lastrico 1978; Dupas and Pecker 1979; Clough et al. 1981) as well as in the development of some tensile strength (e.g. Leroueil and Vaughan 1990; Clough et al. 1981). These mechanical improvements generally come at the limited expense of a pronounced post-peak brittleness (e.g. Abdulla and Kiousis 1997a; Wang and Leung 2008), caused by the breakage of the artificial cementing bonds during loading.

The addition of cementing agents, especially Portland cement, has been widely adopted in many geotechnical applications to control excessive displacements or settlements of shallow foundations, in slope protection for earth dams, to prevent liquefaction of loose granular soils and in subgrades and base courses for roads and airfield (e.g., Saxena et al. 1988; Porbaha et al. 1998; Gallagher and Mitchell 2002; Thomé et al. 2005; Mitrani and Madabhushi 2010). The technique seems particularly beneficial when applied as a compacted stratum on the top of weak soil layers (Consoli et al., 2009a). Consoli et al. (2009a) has shown that the failure mechanism of cemented sand top layers vertically loaded with plates is triggered once the tensile stresses at the bottom of the cemented top layer reach the tensile resistance of the material. Faro et al. (2015) has shown that cement treated sand layers built around the top of laterally loaded piles collapse due to the development of excessive compressive stresses. All the above mentioned geotechnical applications have in common a low confining stress level and in these situations the compressive and tensile strength characterisation of the cemented
soil from unconfined compression and splitting tensile tests can offer relevant data for the appropriate design of cement-soil mixture (e.g., Gomez and Anderson 2012).

Possible dosage methodologies of sand-cement blends must consider the effect of distinctive variables (e.g. quantity of cement and porosity). Based on laboratory experiments, Consoli et al. (2009b) found out an index named porosity/cement ratio ($\eta/C_{iv}$) that plotted against unconfined compressive strength ($q_u$) defines a power relationship for a given clean sand and Portland cement type under unsaturated conditions (i.e low moisture contents in which pores of the sample are not predominantly water filled during fabrication (Consoli et al. 2009c)) of the following form:

$$q_u = X \left( \frac{\eta}{C_{iv}} \right)^Z$$  \hspace{1cm} (1)

where porosity ($\eta$) is expressed as percentage of the volume of voids divided by total volume of the specimen while volumetric cement content ($C_{iv}$) is expressed as percentage of the volume of cement divided by the total volume of the specimen. $X$ and $Z$ are material parameters that depend on the sand and binder type. Volume changes during curing are neglected in this approach. Consoli et al. (2010) have experimentally extended and confirmed the usefulness of such index in controlling the splitting tensile strength ($q_t$) of artificially cemented sands. They employed the same sand and Portland cement as used in previous research, and a power relationship with similar shape was obtained:

$$q_t = Y \left( \frac{\eta}{C_{iv}} \right)^Z$$  \hspace{1cm} (2)

where $Z$ appears to retain the same value as for the compression case (1), while $Y$ parameter shows a distinct value from $X$. In order to check if a $q_t/q_u$ relationship was a function of the porosity, cement content or porosity/cement ratio, Consoli et al. (2010) deduced experimental
relationships of types (1) and (2) for Osorio sand–Portland cement blend and then divided the relation (2) by (1), yielding a scalar:

\[
\frac{q_t}{q_u} = \frac{4.266 \eta c_{iv}}{20.327 \eta c_{iv}}^{1.30} = 0.15
\]  

(3)

This result indicates that there is a straight proportionality between tensile and compressive strengths, and this relation is independent of porosity, cement content and porosity/cement ratio, and that was valid for the whole studied porosity and cement ranges (see Fig. 1 for Osorio sand–Portland cement blend).

The q_t/q_u ratio of artificially cemented granular soils is an important parameter that allows the estimation of q_t knowing q_u or vice versa, considering the whole porosity and volumetric cement content studied. Besides, Consoli (2014) has shown a theoretical framework proving that the friction angle of cemented granular soil is unique for a given soil and cement and its value is a function only of q_t/q_u ratio. Conversely, the cohesion of cemented granular soil can be determined if both q_u and q_t/q_u are known. Floss (2012) extended such studies to other clean sands (a gravelly sand and a sand derived from crushed basalt) treated with Portland cement. The result trends by Floss (2012) were similar to those obtained by Consoli et al. (2010): the q_t/q_u relationship of the two clean sands treated with cement yielded distinct scalars ranging from 0.15 to 0.18.

While a few constitutive models have been proposed for predicting the complete mechanical behaviour of cemented sands (e.g. Abdulla and Kiousis, 1997b; Sun and Matsuoka, 1999; Vatsala et al., 2001 and Gao and Zhao, 2011), the empirical relationships in Eqs (1), (2) and (3) provide simple means to predict the unconfined compressive and tensile strengths of cemented soils and their ratio, that can be used for dosage determination of sand-cement blends.

To increase confidence for the broader use of such empirical relationships, Diambra et al.
have developed a theoretical framework based on the superposition of the individual
governing the unconfined compressive strength \( q_u \) to both sand and cement properties. The
the present paper extends such theoretical framework to the prediction of tensile strength \( q_t \) of
cement-sand blends and it theoretically corroborates the experimental observations on the
existence of a ratio \( q_t/q_u \), independent of moulding density and cement content, for three
different cemented materials cured for different time periods. Insight on the constituents’
physical parameters role on controlling the strength of the cemented soil and the \( q_t/q_u \) ratio is
also explored.

2 THEORETICAL MODEL

2.1 Testing boundary and stress conditions

Typical boundary stress and strain conditions for the unconfined compression and the splitting
tensile tests at failure are shown in Fig. 2. The unconfined compression test presents
axisymmetric testing conditions (Fig. 2a) and the failure strength \( q_u \) is equal to the vertically
applied stress \( \sigma_z \). The stress and strain conditions of a splitting tensile test are slightly more
complex. A cylinder is placed horizontally and loaded along its cross-section diameter and
plane strain loading conditions \( \varepsilon_y = 0 \) result on this section (Fig. 2b). Stress conditions are
invariably not uniform within the loaded specimen but we could concentrate on a small finite
element at the centre of a cross-section disk. The vertical and horizontal principal stresses on
this element, \( \sigma_z \) and \( \sigma_s \), equal \( 3q_t \) and \( q_t \), respectively, as theoretically demonstrated by Jaeger
et al. (2007).

The stress state for both tests could be expressed in terms of the maximum shear, \( t \), and mean,
\( s \), stress invariants \([t = (\sigma_z - \sigma_x)/2; s = (\sigma_z + \sigma_x)/2]\). By imposing the boundary stress conditions
for both loading cases shown in Fig. 2, the stress ratios at failure for the unconfined compression ($k_u$) and splitting tensile ($k_t$) tests at failure can be expressed respectively as:

$$k_u = \frac{t_u}{s_u} = 1$$ (4)

$$k_t = \frac{t_t}{s_t} = 2$$ (5)

where the subscripts $u$ and $t$ of the stress variables ($t$ and $s$) distinguish between unconfined compression and tensile testing conditions, respectively.

2.2 Modelling hypothesis

The artificially cemented sand is assumed an isotropic composite material made of two separate constituents, each one obeying to its own constitutive law: the granular sand matrix and the cementing phase. Three main assumptions are further introduced:

1) The behaviour of the composite cemented sand at the failure point is determined by superposing the strength contributions of the two constituent phases (similarly to the stress superposition approach used by Abdulla and Kiousis 1997b and Vatsala et al. 2001);

2) the sand matrix is expected to be close to peak strength conditions when the cementing bonds break, therefore the failure of the composite cemented sand can be determined by imposing simultaneous failure of both the cemented and the sand matrix phases;

3) Strain compatibility between the composite and its two constituent phases, sand matrix and cement, applies (similarly to the parallel spring approach assumed in Vatsala et al. 2001).

By using a volumetric averaging approach (Diambra et al., 2011; Diambra et al., 2013; Diambra and Ibraim, 2015), the stress state of the composite material ($t,s$) can be derived from
the failure stress states of the sand matrix \((t_m,s_m)\) and the cementing phase \((t_c,s_c)\) based on the following relationship:

\[
\begin{bmatrix}
    t \\
    s
\end{bmatrix} = \mu_m \begin{bmatrix}
    t_m \\
    s_m
\end{bmatrix} + \mu_c \begin{bmatrix}
    t_c \\
    s_c
\end{bmatrix}
\] (6)

where \(\mu_m\) and \(\mu_c\) are the volumetric concentrations of sand and cement in the composite material, respectively. It should be noted that the volumetric cement concentration \(\mu_c\) equals \(C_i/100\).

### 2.3 Failure relations for constituent phases

#### 2.3.1 Cement phase

It is considered that the strength of the cement phase is simply described by the Drucker-Prager failure criterion, which can be expressed in terms of the maximum shear and mean stresses as follows:

\[ t_c = b_c + M_c s_c \] (7)

where the terms \(b_c\) and \(M_c\) represents the intercept and the slope of the failure line in the \(t-s\) stress plane and, using the developments of Consoli et al. (2014), they can be linked to both the uniaxial compressive \((\sigma_c^c)\) and tensile \((\sigma_c^t)\) strengths of the cement phase by the following expressions:

\[ b_c = -\frac{\sigma_c^c}{\beta+2} \] (8)

\[ M_c = \frac{\beta+4}{\beta+2} \] (9)

where \(\beta\) represents the ratio between the uniaxial compression and extension strengths:

\[ \beta = \frac{\sigma_c^c}{\sigma_c^t} \] (10)
2.3.2 Granular soil phase

In soil constitutive modelling, it is customary to link the strength of the granular soils with a state parameter ($\psi$), which quantifies the difference between the current density state from the corresponding one at the critical state (Been and Jefferies, 1985). It is possible to express the state parameter in terms of the material porosity ($\eta$ for current porosity and $\eta_{cs}$ for the corresponding porosity at the critical state) using the following definition:

$$\psi = \frac{\eta_{cs}}{\eta}$$  \hspace{1cm} (11)

where $\psi > 1$ represents a state on the loose side of the critical state line (CSL), while $\psi < 1$ represents a state on the dense side of the CSL. Thus, the granular soil stress ratio at failure can then be expressed by the following expression:

$$\frac{t_m}{s_m} = M^* = M \left(\frac{\eta_{cs}}{\eta}\right)^a$$  \hspace{1cm} (12)

where $M^*$ represents the peak strength, $M$ is the critical state strength and $a$ is a model parameter which links the peak strength to the state parameter, $\psi$.

2.4 Strength relationship for artificially cemented sand

By substituting equations (6), (7) and (12) into equations (4) and (5) for the composite stress paths, it is possible to obtain the following expressions for the maximum shear stresses $t_u$ and $t_t$ for unconfined compression and splitting tensile testing conditions, respectively:

$$t_u = \mu_c \left(\frac{b_c + M_c s_{cu} - M^* s_{cu}}{1-M^*}\right)$$  \hspace{1cm} (13)

$$t_t = 2\mu_c \left(\frac{b_c + M_c s_{ct} - M^* s_{ct}}{2-M^*}\right)$$  \hspace{1cm} (14)

However, these relationships (13) and (14) are dependent on the mean stresses developed on the cement phase ($s_{cu}$ and $s_{ct}$ for unconfined compression and splitting tensile strengths, respectively), which are actually unknown at this stage. Considering the low strain level...
generally induced during the tests prior to failure, elastic conditions can be generally assumed
to prevail up to the failure point (Jaeger et al., 2007; Consoli et al. 2009a). Thus, by assuming
an elastic behaviour for both the composite and the cementing phases, the developments
detailed in the Appendix can be used to determine the mean stress contribution of the cementing
phase \( (s_c) \) at failure for both testing conditions:

\[
\begin{align*}
s_{cu} &= \frac{b_c}{K_{u}-M_c} \\
s_{ct} &= \frac{b_c}{K_t-M_c}
\end{align*}
\]

where \( K_u \) and \( K_t \) describe the stress paths (in terms of \( t_c/s_c \) ratio) followed by the cement phase
which, according to the developments in the Appendix, can be expressed as:

\[
\begin{align*}
K_u &= 2\frac{\nu_{c}v-1+2\nu_{c}-\nu}{2\nu_{c}v-1+\nu} \\
K_t &= 2\frac{\nu_{c}v-1}{2\nu-1}
\end{align*}
\]

where \( \nu \) is the Poisson’s ratio of the composite cemented soil and \( \nu_c \) is the Poisson’s ratio for
the cement phase. By substitution of equations (15) and (16) into (13) and (14) respectively
and using equations (8) and (9), the following analytical expressions for the unconfined
compressive \( (q_u) \) and tensile \( (q_t) \) strengths can be obtained, respectively:

\[
\begin{align*}
q_u &= 2t_{u} = \frac{2}{(\beta+4)-K_u(\beta+2)} \left( \frac{K_u-M\left(\frac{\eta_c s}{\eta}\right)^{\beta}}{1-M\left(\frac{\eta_c s}{\eta}\right)^{\beta}} \right) \\
q_t &= \frac{t_{t}}{2} = \frac{\nu_c}{(\beta+4)-K_u(\beta+2)} \left( \frac{K_t-M\left(\frac{\eta_c s}{\eta}\right)^{\beta}}{2-M\left(\frac{\eta_c s}{\eta}\right)^{\beta}} \right)
\end{align*}
\]

Relationships (19) and (20) provide direct expressions of the compressive and tensile strengths
of the cemented sand as function of the porosity \( (\eta, \text{ presented as percentage}) \) and the cement
content \( (\mu_c) \) variables, with \( \mu_c = C_{iv}/100 \). The relations employ seven parameters: three for the
soil matrix \( (M, \eta_{cs}, a) \), three for the cement phase \( (\sigma_c^e, \beta, \nu_c) \), and one for the composite
cemented soil ($\nu$), as summarised in Table 1. Since the proposed developments refer to unconfined testing conditions only, it appeared reasonable to consider the soil porosity at critical state $\eta_{cs}$ independent of the mean stress level and thus a material constant.

3 MODEL PREDICTIONS

The validity of the proposed relationships for the unconfined compression and tensile strengths have been assessed by direct comparison with experimental data obtained on three different cemented sands reported in the literature:

1) Uniform Osorio sand + early strength Portland cement cured at 3, 7 and 28 days (Consoli et al., 2010);
2) Gravelly sand + early strength Portland cement cured at 7 days (Floss, 2012);
3) Crushed basalt + early strength Portland cement cured at 7 days (Floss, 2012).

The physical properties and moulding parameters for the three materials are reported in Tables 2 and 3, respectively, while their particle size distribution is shown in Figure 3.

3.1.1 Selection of model parameters

As shown in Table 1, the model requires the calibration of seven parameters: three for the soil matrix, three for the cement phase and one for the composite cemented soil. The values of the constants relative to the sand matrices have been selected based on triaxial experimental results and the assumed values are indicated in Table 1. The critical state friction strength ratio $M$ and the critical state porosity $\eta_{cs}$ for Osorio sand have been derived from published triaxial tests by Dos Santos et al. (2010). The same tests were used to establish a relationship between the peak to critical strength ratio ($M^*/M$) and the state parameter ($\psi$) in order to determine the model parameter $a$ governing relation (12) as shown in Figure 4.

In absence of available triaxial test data performed on uncemented gravelly sand and crushed basalt materials, the critical state strength ratio $M$ for these materials was derived by using large
strain (post peak) strength values for cemented gravelly sand and crushed basalt samples tested under conventional triaxial compression conditions by Floss (2012) which were found to be 0.5 and 0.485, respectively. Unfortunately, the value of the critical state porosity \( \eta_{cs} \) under unconfined testing conditions for these materials could not be derived from the same test results. Thus, a value of critical state porosity \( \eta_{cs} \) corresponding to the average between the minimum, \( \eta_{min} \), and maximum porosity, \( \eta_{max} \), has been assumed for simplicity. A similar condition stands for \( \eta_{cs} \) value for the Osorio sand which, in this case, was calibrated independently based on the results from Dos Santos et al. (2010). The parameter \( a \) for uncemeted gravelly sand and crushed basalt was also assumed to have a similar value to the one for the Osorio sand.

The selection of the model’s parameters for the cement phases and the overall composites is more difficult and typical values published in the literature has been assumed as a guidance. As discussed in Diambra et al. (2017), the value of the model’s parameter \( \beta \) relative to the cement phase has been chosen based on typical ranges for Portland cement. The assumed value of \( \beta = -6 \) agrees also quite well with results of Leonards (1965), who investigated the static and dynamic frictional properties of plain smooth mortar. Chen et al. (2013) have shown values of \( \beta \) ranging between 5 and 7 and decreasing with increasing porosity of the cement mortar. Extensive experimental characterisation of the elastic properties of cemented soils by Felt and Abram (1957) suggests values of the Poisson’s ratio for cemented sand and silts between 0.22 and 0.31 with a median value of about 0.26, while typical values of Poisson’s ratio for mortar matrix are around 0.20, as suggested by Swamy (1971). Therefore, values of 0.26 and 0.20 have been assumed for the Poisson’s ratio of the composite material (\( \nu \)) and the cementing phase (\( \nu_c \)), respectively, leading to the values of the cementing phase stress ratio of \( K_c=1.89 \) (relation (17)) and \( K_c=2.25 \) (relation (18)). The uniaxial compressive strength of the cement phase (\( \sigma_{bc}^c \)) can be finally determined by matching unconfined compression and splitting tensile
strengths using Eqs (19) and (20) and imposing the values selected above for all the other model’s parameters. For each cemented soil blend and curing time, the calibration process has been enforced on three randomly selected unconfined compression and splitting tensile tests. Larger values of strength of the cement phase are associated with fine particles, suggesting that presence of fines may improve the creation of cementing bonds. This calibration procedure resembles the curve-fitting imposed by Abdulla and Kiousis (1997b) and Vatsala et al. (2001) for the calibration of the strength of the cementing bonds in their constitutive modelling developments. A summary of the assumed values for model’s parameters for each cemented soil blend is provided in Table 1.

3.1.2 Simulations

Comparison between model simulation and experimental data for the unconfined compression strength ($q_u$) and splitting tensile strength ($q_t$) is shown in Fig. 5 for cemented Osorio sand cured for different time periods. The data are presented in the strength versus $\eta/C_{iv}$ ratio plot while a direct comparison between model prediction and experimental data is proposed in the $q_{\text{model}}$ versus $q_{\text{exp}}$ graphs for each curing time analysed. The model predicts reasonably well the magnitude of both unconfined compression strength and splitting tensile tests, with the latter results largely lower. The hyperbolic relationship between strength and $\eta/C_{iv}$ ratio is also well captured by the model for both testing modes. The expected gain in strength with the curing period is reproduced by assuming increasing values of the cement strength ($\sigma_c^c$) with time as shown in Table 1. This simulates the progressive occurrence of hydration chemical reaction and the formation of stronger interparticle cement bonds with time. The accuracy of the prediction seems to increase with increasing curing time and this may be the results of a larger variability of results at low curing time.

Comparison between model simulation results and experimental data for the cemented crushed basalt and gravelly sand cured at 7 days are reported in Fig. 6. The model again predicts quite
well the hyperbolic relationship while the direct comparison between experimental and predicted compressive and tensile strengths \((q_{\text{model}}-q_{\text{exp}})\) shows equally a good correlation.

4 DISCUSSION

4.1.1 Parallelism with empirical formula

The proposed relationships (19) and (20) based on theoretical developments have a different form compared with the empirically based relationships (1) and (2) proposed by Consoli et al. (2007) and Consoli et al. (2011). It is possible to simplify relationships (19) and (20) by introducing the following approximations to their bracketed terms:

\[
\frac{K_u - M^*}{1-M^*} \approx M^*(2.07K_i) \quad (21)
\]

\[
\frac{K_t - M^*}{2-M^*} \approx M^*(0.93K_i) \quad (22)
\]

The use of relationships (21) and (22) allows to consider a linear dependency between the cemented soil strengths \((q_u\) or \(q_t\)) and the peak strength of the soil \(M^* = M(\eta_{cs}/\eta)^a\) in equations (19) and (20). After further manipulation, we can obtain the following expressions for the unconfined compression and tensile strengths, respectively:

\[
q_u = \frac{4.14 M \sigma_c \eta_{cs} a K_u}{100 (\beta + 4-K_u(\beta + 2))} \left( \frac{\eta}{C_{iv}} \right)^{-a} \quad (23)
\]

\[
q_t = \frac{0.93 M \sigma_c \eta_{cs} a K_t}{100 (\beta + 4-K_t(\beta + 2))} \left( \frac{\eta}{C_{iv}} \right)^{-a} \quad (24)
\]

As shown in Fig. 7, the transformations introduced by the relations (21) and (22) have no significant effect on the model predictions when compared with those given by relations (19) and (20). The relations (23) and (24) are now of similar form with the experimentally derived strength relationships in Eqs. (1) and (2) by Consoli et al. (2009b) and Consoli et al. (2010) with the exception of a power exponent \(1/a\) to the \(C_{iv}\) term. Nevertheless, it should be noted that for the three materials considered here, the exponent \(a\) was found to be rather close to unity \((a\sim 1.30; 1/a\sim 0.77)\) and the power adjustment to the term \(C_{iv}\) was not required to fit the experimental data in Consoli et al. (2009b) exercise. However, some experimental investigations on cemented materials containing better graded soils (Consoli et al. 2007, Consoli et al. 2012) have shown that the consideration of a power exponent \(1/a<1\) in the
adjusted porosity/cement ratio \((\eta/C_{iv}^{1/a})\) of relation (1) provides a better fit to the experimental data.

The parameter \(a\) of the proposed model corresponds to the power \(Z\) in relations (1) and (2) and it confirms that the same value of the exponent \(Z\) controls the strength in unconfined compression and tension testing conditions. The model also suggests that this parameter is entirely governed by the properties of the soil matrix. On the other hand, the parameters \(X\) and \(Y\) in (1) and (2) differ between them in the two testing modes, as also confirmed by the modelling developments, and they can be analytically expressed by the following relations:

\[
X = \frac{4.14 M \sigma_c^Z \eta_{cs}^a K_u}{100 (\beta+4-K_u(\beta+2)))} \quad (25)
\]

\[
Y = \frac{0.93 M \sigma_c^Z \eta_{cs}^a K_t}{100 (\beta+4-K_t(\beta+2)))} \quad (26)
\]

The two terms are governed by a combination of parameters related equally to the soil matrix and the cementing phase.

Parametric analysis

The influence of the constituent’s properties on the overall compressive and tensile strengths of the cemented soil composite is investigated by performing a parametric analysis. As shown by Diambra et al. (2017), the assumed stress paths for the cement, \(K_u\) and \(K_t\), which depend on both the assumed Poisson’s ratios for the cement phase and the composite material, have a minimal influence on the model predictions and it has not been presented in this work. On the other hand, the model parameter \(\eta_{cs}\) is introduced to normalise the actual porosity \(\eta\) and to estimate the current soil matrix strength following Eq. (12). This parameter is an inherent soil property and it cannot be controlled. Thus, the sensitivity analysis is conducted here only for the four most influential model parameters, which are those governing the strength properties of the two constituents: \(\sigma_c^Z\) and \(\beta\) for the cement phase, \(M\) and \(a\) for the soil phase. The effects of varying the value for these parameters within a reasonable range – compressive strength \(\sigma_c^Z\) between 10 to 60 MPa, cement strength ratio \(\beta\) between -4 and -8, soil matrix strength between 1.1 and 1.5 and the parameter \(a\) controlling the strength to density relationship between 1 and 2 - are reported in Figure 8. Both compressive and tensile strengths are affected in the same way by the variation of the parameters. The strength of the cement phase, \(\sigma_c^Z\), appears to be by far the most influential parameter (Fig. 8 a and b), corroborating the widespread knowledge that the selection of the cement type is indeed fundamental for ensuring adequate strength.
performances. Selecting a soil matrix with better frictional properties may also marginally improve the strength of the cemented soil for the same amount of cement and compaction degree (Fig. 8 e and f) but any strength improvement is not comparable for what can be achieved by selecting a stronger binding agent. Some caution should be placed when assessing the effect of the parameter a (Fig. 8 g and h), since it has a direct connection with the adjusted porosity cement ratio $\eta/C_{iv}^{1/a}$ on the x-axis. Overall, choosing a soil matrix with higher values of a (such as a well graded sand as discussed in Diambra et al., 2017) may have some beneficial improvement on strength but still rather limited if compared to the effect of the strength of the cementing phase.

### 4.1.2 Tensile to compressive strength ratio

The combination of (23) and (24) allows obtaining an explicit relationship that links both tensile and compressive strengths of the cemented soil:

\[
\frac{q_t}{q_u} = \frac{2.07K_t (\beta+4-K_t(\beta+2))}{1.86K_u (\beta+4-K_t(\beta+2))} \tag{26}
\]

This relation is mainly dependent on the strength contribution of the cement phase through the slope stress paths, $K_u$ and $K_t$, and the ratio between the uniaxial compression and tensile strengths of the cementing phase, $\beta$, which actually governs the friction ratio of the cementing phase, $M_c$, through Eq. (9). Direct substitution of the parameters used in this study for the three investigated cemented materials leads to a value of $q_t/q_u = 0.145$, independent of the allowed curing time. This value compares well with the $q_t/q_u = 0.15$ suggested by the experimental data of Consoli et al. (2010) for Osorio sand, and with the $q_t/q_u = 0.16$ and $q_t/q_u = 0.18$ for cemented gravelly sand and crushed basalt experimentally found by Floss (2012).

As shown in the Appendix and by the Eqs. (17) and (18), the slopes $K_u$ and $K_t$ of the cement stress paths (governing the $q_t/q_u$ ratio) are dependent on the assumed values of the Poisson’s ratio for the composite soil $\nu$ and the cementing phase $\nu_c$. However, variation of these values within the reasonable spectrum ($\nu=[0.2-0.31]; \nu_c=[0.2-0.3]$ with $\nu > \nu_c$) resulted in rather limited variation of the $q_t/q_u$ ratio between 0.139 and 0.147. The value to be adopted for the cement strength ratio, $\beta$, which proves indeed of more difficult, has instead a higher effect on the $q_t/q_u$ ratio. The trend of the overall tensile to compression cement ratio with the parameter $\beta$ and the corresponding friction angle of the cement phase $\phi_c=asin(M_c)$ is projected in Figure 9. Reasonable variation of the parameter $\beta$, to obtain friction angles for the cement phase between
about 20° to 42°, would produce a \( q/t \) ratio between 0.12 and 0.17, which is close to the experimental observed values by Floss (2012) and Consoli et al. (2012).

5 CONCLUSIONS

Theoretical derivations for both unconfined compression and splitting tensile strengths have been developed based on the concept of superposition of failure strength contributions of the soil matrix and cementing phases. Comparisons of model predictions with experimental data for three cemented clean sands and different curing times have shown the validity of the theoretical developments which capture the hyperbolic relationship between the strength and the porosity/cement ratio for both unconfined compression and splitting tensile test conditions. The model also provides some useful insights into the role of some material parameters on the behaviour of cemented sands:

- Corroborating experimental findings, the hyperbolic relationships of unconfined compression \( (q_u) \) and splitting tensile \( (q_t) \) strengths versus the porosity/cement ratio \( (\eta/C_{iv}) \) are characterised by a similar exponent \( Z \) (i.e. Eqs (1) and (2)). The proposed model suggests that such exponent is controlled by the properties of the soil matrix and it is related to the peak strength-density relationship of the soil.

- The model suggests that the different values of the scalars \( X \) and \( Y \), governing the hyperbolic relationships of unconfined compression \( (q_u) \) and splitting tensile \( (q_t) \) strengths versus the porosity/cement ratio \( (\eta/C_{iv}) \) respectively, are related to the different stress paths followed by the overall composite cemented soil and its constituents. The values are affected by the strength of the cementing binds and the sand matrix, with the first factor much more influential than the latter.

- For all three materials, the model yields to a constant splitting tensile to compression strength ratio \( (q_t/q_u) \) for the range of porosities and volumetric cement contents considered. The value of this strength ratio is primarily controlled by the frictional strength of the cementing bonds but it varies within a quite narrow range, corroborating past experimental findings. It also seems independent from the curing time.

- Knowledge of the splitting tensile to compression strength ratio \( (q_t/q_u) \) enables the estimation of \( q_t \) knowing \( q_u \) and viceversa. The friction angle of a cemented granular soils is unique for a given soil and cement and its value is a function only of \( q_t/q_u \) ratio. Conversely, the cohesion of cemented granular soil can be determined if both \( q_u \) and \( q_t/q_u \) are known.
Because of the simplicity in both use and calibration, relationships of the form of Eqs (1) and (2) will likely still be preferred for practical use in routine engineering work. Nevertheless, the present work has provided meaningful connections between the governing coefficients of the empirical relationships and fundamental material properties, increasing confidence for the use of the empirical formulas and providing further guidance towards the design of specific soil and cement mixtures to satisfy required strength criteria.

Acknowledgments

The authors gratefully acknowledge the support provided by the UK Royal Academy of Engineering under the Newton Research Collaboration Programme (Grant reference: NRCP1415/2/2).

APPENDIX. Derivation of cement strength contribution

Experimentally observed stress-strain relationship for cemented soil shows a quasi-elastic behaviour up to the peak strength conditions (Consoli et al., 2009a). In fact, the strain levels at failure are generally very small and elastic conditions have been assumed to determine the stress conditions at failure (Jaeger et al. 2007). It is supposed here that both the cemented composite soils and its cemented constituent phase behave under elastic conditions. Therefore, the elastic stress-strain relationship for the cemented soils can be written in the following way:

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z
\end{bmatrix} = \frac{1}{E} \begin{bmatrix}
1 & -\nu & -\nu \\
-\nu & 1 & -\nu \\
-\nu & -\nu & 1
\end{bmatrix} \begin{bmatrix}
\sigma_x \\
\sigma_y \\
\sigma_z
\end{bmatrix}
\] (A1)

where \( E \) and \( \nu \) are respectively the Young’s elastic modulus and Poisson’s ratio of the cemented soil and the material is considered isotropic. By applying the boundary conditions shown in Fig. 2 for unconfined compression (\( \sigma_z=q_u, \sigma_y=0, \sigma_x=0 \)) and splitting tensile (\( \sigma_z=3q_t, \varepsilon_y=0, \varepsilon_x=-q_t \)) tests, it is possible to derive the following strain field for the composite material as function of the material strength (\( q_u \) or \( q_t \)):

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z
\end{bmatrix} = \frac{q_u}{E} \begin{bmatrix}
-\nu \\
-\nu \\
1
\end{bmatrix}
\] for unconfined compression tests (A2)

and
Assuming strain compatibility between the composite material and its constituents, it is possible to impose the strain fields given by (A2) and (A3) in the following elastic stress-strain relationship for the cemented soil material:

\[
\begin{bmatrix}
\sigma_{cx} \\
\sigma_{cy} \\
\sigma_{cz}
\end{bmatrix} = \frac{E_c}{(1+\nu_c)(1-2\nu_c)} \begin{bmatrix}
1 - \nu_c & \nu_c & \nu_c \\
\nu_c & 1 - \nu_c & \nu_c \\
\nu_c & \nu_c & 1 - \nu_c
\end{bmatrix} \begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\varepsilon_z
\end{bmatrix}
\]

(A4)

where \( E_c \) and \( \nu_c \) are respectively the Young's elastic modulus and Poisson’s ratio of the cemented constituent phase. Thus, expressions for \( \sigma_{cx} \) and \( \sigma_{cz} \) in both unconfined compression and splitting tensile testing conditions can be derived and substituted in the conventional definition of the maximum shear and mean stress \((t_c, s_c)\) invariants \((t_c=\frac{\sigma_{cz}-\sigma_{cx}}{2} ; s_c=\frac{\sigma_{cz}+\sigma_{cx}}{2})\), to obtain the following slopes of the stress paths \((K_u \text{ and } K_t \text{ for unconfined compression and splitting tensile tests respectively})\) for the cementing constituents during loading:

\[
K_u = \frac{t_c}{s_c} = \frac{\sigma_{cz}-\sigma_{cx}}{\sigma_{cz}+\sigma_{cx}} = \frac{2\nu_c\nu-1+2\nu_c-\nu}{2\nu_c\nu-1+\nu}
\]

(A5)

\[
K_t = \frac{t_c}{s_c} = \frac{\sigma_{cz}-\sigma_{cx}}{\sigma_{cz}+\sigma_{cx}} = \frac{2\nu_c-1}{2\nu-1}
\]

(A6)

These expressions are function of the Poisson’s ratios of the cemented material \((\nu)\) and cementing phase \((\nu_c)\) only. Intersection of these stress paths with the failure conditions for the cementing phase in Eq. (7), allows the estimation of mean stress contribution of the cementing phase at failure for both testing conditions, \(s_{cu} \text{ and } s_{ct}\):

\[
s_{cu} = \frac{b_c}{K_u-M_c}
\]

(A7)

\[
s_{ct} = \frac{b_c}{K_t-M_c}
\]

(A8)
References


Gomez, N. S., Anderson, D. N. 2012. Soil cement stabilization— Mix design, control and results during construction. ISSMGE - TC 211 Int. Symp. on Ground Improvement IS-GI, ISSMGE TC211 and BBRI, Brussels, Belgium.


Table 1. Parameters of the proposed model

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Variable</th>
<th>Osorio sand</th>
<th>Gravelly sand</th>
<th>Crushed basalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M$</td>
<td>Critical state soil strength ratio</td>
<td>0.54 ($\phi \approx 33^\circ$)</td>
<td>0.5 ($\phi \approx 30^\circ$)</td>
<td>0.485 ($\phi \approx 29^\circ$)</td>
</tr>
<tr>
<td>$\eta_{cs}$</td>
<td>Critical state soil porosity</td>
<td>42.8</td>
<td>29.1</td>
<td>45.5</td>
</tr>
<tr>
<td>$a$</td>
<td>Parameter governing dependence of soil strength on its density</td>
<td>1.30</td>
<td>1.30</td>
<td>1.30</td>
</tr>
<tr>
<td>$\sigma_c^c$</td>
<td>Uniaxial compressive strength of the cement</td>
<td>27 MPa (3 days)</td>
<td>35 MPa (7 days)</td>
<td>28 MPa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42 MPa (28 days)</td>
<td>30 MPa</td>
<td></td>
</tr>
<tr>
<td>$\beta$</td>
<td>Uniaxial compression and extension cement strength ratio</td>
<td>-6</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>$\nu_c$</td>
<td>Cement Poisson’s ratio</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>$\nu$</td>
<td>Composite Poisson’s ratio</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Table 2. Physical properties of the sand materials (after Consoli et al. (2017))

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Uniform Osorio sand</th>
<th>Gravelly sand</th>
<th>Crushed basalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>2.63</td>
<td>2.51</td>
<td>2.63</td>
</tr>
<tr>
<td>Mean particle diameter, ( D_{50} ) mm</td>
<td>0.16</td>
<td>2.0</td>
<td>0.28</td>
</tr>
<tr>
<td>Uniformity coefficient, ( C_u )</td>
<td>1.9</td>
<td>13.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Curvature coefficient, ( C_c )</td>
<td>1.2</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Minimum porosity, ( \eta_{min} )</td>
<td>37.5</td>
<td>23.7</td>
<td>38.3</td>
</tr>
<tr>
<td>Maximum porosity, ( \eta_{max} )</td>
<td>47.4</td>
<td>33.8</td>
<td>51.2</td>
</tr>
<tr>
<td>Preponderant minerals</td>
<td>Quartz</td>
<td>Quartz</td>
<td>Plagioclase &amp; pyroxene</td>
</tr>
<tr>
<td>Particles degree of roundness</td>
<td>Rounded</td>
<td>Sub rounded</td>
<td>Sub rounded</td>
</tr>
<tr>
<td>Particles surface texture</td>
<td>Smooth</td>
<td>Smooth</td>
<td>Rough</td>
</tr>
<tr>
<td>Soil classification (ASTM 2006)</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
</tr>
</tbody>
</table>
Table 3. Granular soils molding parameters.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Uniform Osorio sand</th>
<th>Crushed basalt</th>
<th>Gravelly sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void ratio ($\epsilon$)</td>
<td>0.64, 0.70, 0.78</td>
<td>0.71, 0.84, 0.96</td>
<td>0.65, 0.73, 0.84</td>
</tr>
<tr>
<td>Cement content (%)</td>
<td>1, 2, 3, 5, 7, 9, 12</td>
<td>1, 2, 3, 5, 7, 9</td>
<td>1, 2, 3, 5, 7</td>
</tr>
<tr>
<td>Cement type</td>
<td>PC III</td>
<td>PC III</td>
<td>PC III</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$\eta/C_{ir}$</td>
<td>from 7 to 101</td>
<td>from 10.2 to 70</td>
<td>from 12.1 to 88.4</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1. Variation of $q_t$ and $q_u$ with porosity/cement ratio for Osorio sand – Portland cement (adapted from Consoli et al. 2010).

Figure 2. Assumed boundary conditions for (a) unconfined compression test and (b) tensile splitting test.

Figure 3. Particle size distribution for the three studied materials.

Figure 4. Calibration of parameter $a$ for uncedmented Osorio sand using triaxial tests by Dos Santos et al. (2010).

Figure 5. Comparison between model prediction and experimental results for cemented Osorio sand for 7 days: (a–b) 3 days, (c–b) 7 days and (e–f) 28 days.

Figure 6. Comparison between model prediction and experimental results for (a-b) gravelly sand and (c-d) crushed basalt.

Figure 7. Comparison between experimental data, theoretical prediction and approximated formulas (23) and (24).

Figure 8. Effect of varying values of morel parameters on both unconfined compressive and splitting tensile strengths prediction: baseline values of the parameters: $\sigma_c^c = 35$ MPa, $\beta = -6$, $M = 1.3$, and $a = 1.3$, $\eta_c = 35$, $\nu = 0.26$ and $\nu_c = 0.2$.

Figure 9. Theoretical variation of $q_t/q_u$ with assumed friction ratio of the cementing phase ($\beta$) and corresponding friction angle of the cementing phase ($\phi_c$), imposing $\nu = 0.26$ and $\nu_c = 0.2$. 
Figure 1. Variation of $q_t$ and $q_u$ with porosity/cement ratio for Osorio sand – Portland cement (adapted from Consoli et al. 2010).
Figure 2. Assumed boundary conditions for (a) unconfined compression test and (b) tensile splitting test.
Figure 3. Particle size distribution for the three studied materials.
Figure 4. Calibration of parameter $a$ for uncemented Osorio sand using triaxial tests by Dos Santos et al. (2010).
Figure 5. Comparison between model prediction and experimental results for cemented Osorio sand for 7 days:

(a–b) 3 days, (c–d) 7 days and (e–f) 28 days.

R^2 = 0.80 (UCS)  
R^2 = 0.21 (STS)

R^2 = 0.92 (UCS)  
R^2 = 0.82 (STS)

R^2 = 0.80 (UCS)  
R^2 = 0.84 (STS)
Figure 6. Comparison between model prediction and experimental results for (a-b) gravelly sand and (c-d) crushed basalt.
Figure 7. Comparison between experimental data, theoretical prediction and approximated formulas (23) and (24).
Figure 8. Effect of varying values of morel parameters on both unconfined compressive and splitting tensile strengths prediction: baseline values of the parameters: $\sigma^c = 35$ MPa, $\beta = -6$, $M = 1.3$, and $a = 1.3$, $\eta_c = 35$, $\nu = 0.26$ and $\nu_r = 0.2$. 

---

(a) Cement strength, $\sigma^c$ (MPa) 
(b) Cement strength, $\sigma^c$ (MPa) 
(c) Cement strength ratio, $\beta$ 
(d) Cement strength ratio, $\beta$ 
(e) Matrix strength, $M$ 
(f) Matrix strength, $M$ 
(g) Strength porosity dependency, $a$ 
(h) Strength porosity dependency, $a$
Figure 9. Theoretical variation of $q_t/q_u$ with assumed friction ratio of the cementing phase ($\beta$) and corresponding friction angle of the cementing phase ($\phi_c$), imposing $\nu=0.26$ and $\nu_c=0.2$. 
Notation list

\( a \) Parameter linking peak strength to state parameter

\( b_c \) Cohesion of the cement phase

\( C_{iv} \) Volumetric cement content (expressed in percentage)

\( M \) Critical state strength ratio for the sand in the \( t-s \) stress plane

\( M_c \) Slope of the failure line for the cement phase in the \( t_c - s_c \) plane

\( M^* \) Peak strength ratio for the sand in the \( t-s \) stress plane

\( k_u \) Composite stress ratio at failure for unconfined compression test

\( k_t \) Composite stress ratio at failure splitting tensile test

\( K_u \) Cement stress ratio at failure for unconfined compression test

\( K_t \) Cement stress ratio at failure splitting tensile test

\( s \) Mean stress of the cemented sand

\( s_c \) Mean stress of the cement phase

\( s_m \) Mean stress of the sand matrix

\( t \) Maximum shear stress of the cement sand

\( t_c \) Maximum shear stress of the cement phase

\( t_m \) Maximum shear stress of the sand matrix

\( q_t \) Unconfined compressive strength for the cemented sand

\( q_u \) Unconfined compressive strength for the cemented sand

\( X \) Multiplying parameter in Empirical relationship (1)

\( Y \) Multiplying parameter in Empirical relationship (2)

\( Z \) Exponent of empirical relationships (1) and (2)

\( \beta \) Uniaxial compression and extension cement strength ratio

\( \varepsilon \) Strain for cemented sand

\( \varepsilon_c \) Strain for cemented sand
Friction angle for the sand matrix

Friction angle for the cement phase

Poisson’s ratio for cemented sand

Poisson’s ratio for cement phase

Volumetric cement concentration

Volumetric sand matrix concentration

Uniaxial compression strength of the cementing phase

Tensile strength of the cementing phase

State parameter

Porosity

Porosity at critical state