
Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available):
10.1002/sim.7491
10.1002/sim.7491

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1002/sim.7491/abstract. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Supporting Information: WinBUGS code for label-invariant models

Univariable model for the influence of a single study-level characteristic

Data required:
- \(N_{\text{study}} = \text{no. of studies} \)
- \(N = \text{no. of studies} \times 2 \text{ arms} \)
- \(N_{\text{ma}} = \text{no. of meta-analyses} \)

Study-level:
- \(\text{treat} = 1 \) if treatment arm, 0 if control
- \(r = \text{no. of events} \)
- \(n = \text{no. of participants} \)
- \(C1[i] = 1 \) if the \(i \)th study has the characteristic of interest, 0 otherwise
- \(ma[i] \) <- meta-analysis index
- \(s[i] \) <- study index

Meta-analysis level:
- \(\kappa_{\text{ok}}[m] = 1 \) if there are at least two studies with, and two studies without, the characteristic in the \(m \)th meta-analysis, 0 otherwise

The WinBUGS model

```winbugs
model {
  for (i in 1:N) {
    r[i] ~ dbin(p[i],n[i]) # likelihood (binary data \( r/n = \text{no. of events/ no. of participants} \))
    logit(p[i]) <- alpha[s[i]] + treat[i] * (theta.minus[i] + beta[i] * C1[i])
      # model (treat indicator of treatment group; C1 indicator of study characteristic)
    beta[i] ~ dnorm(mean[ma[i]],p.k2[ma[i]])I(-10,10) # between study, within meta-analysis, variation in difference in effect associated with characteristic
    theta.minus[i] ~ dnorm(d[ma[i]],p.d[ma[i]])I(-10,10) #RE for intervention effect within meta-analysis
    rhat[i] <- p[i] * n[i] # calculate residual deviance
    dev[i] <- 2 * (r[i] * (log(r[i]) - log(rhat[i])) + (n[i] - r[i]) * (log(n[i] - r[i]) - log(n[i] - rhat[i])))
  }
  resdev <- sum(dev[])

  for (j in 1:N_study) {alpha[j] ~ dnorm(0,0.001)}           # priors for study baseline effects - unrelated

  for (m in 1:N_ma) {
    mean[m] <- d[m] + b[m]
    d[m] ~ dnorm(0,0.001)                            # priors for true fixed (unrelated) intervention effects
    b[m] ~ dnorm(b0,p.phi)                          # between meta-analysis variation in average difference in effect associated with characteristic
    var_d[m] ~ dlnorm(mu,p.tau) # log-normal distribution for between-study variances
    p.d[m] <- 1/var_d[m]
    p.k2[m] <- equals(kappa_ok[m],1)/(var_d[m]*lambda)
       + equals(kappa_ok[m],0)/(var_d[m]*cut(lambda))
  }
  b0 ~ dnorm(0,0.001)            # vague prior for overall average difference in effect associated with characteristic
  lambda ~ dlnorm(0,0.1)        # vague prior for change in between-study variation associated with characteristic
}
```

Prior for unknown parameters
p.phi1 ~ dgamma(.001,.001) # vague prior for between meta-analysis variation in average difference in effect associated with characteristic
phi <- pow(p.phi,-0.5)
p.phi <- p.phi1/(1-patom.phi)
patom.phi ~ dbeta(1,1)
mu~dnorm(0,0.001)
p.tau<-(1/(sd.tau*sd.tau))
sd.tau~dunif(0,2)

log.tau2.new~dlnorm(mu,p.tau) # predictive distn for heterogeneity among studies without the characteristic
tau2.new<-exp(log.tau2.new)

Parameters to monitor
q[1] <- b0
q[2] <- exp(b0)
q[3] <- lambda
q[4] <- phi
q[5]<-log.tau2.new
q[6]<-tau2.new

}

Multivariable model for the influence of three study-level characteristics

Data required:
 N_study=no. of studies
 N=no. of studies x 2 arms
 N_ma=no. of meta-analyses

Study-level:
 treat=1 if treatment arm, 0 if control
 r=no. of events
 n= no. of participants
 C1[i,j] = 1 if the ith study has the jth characteristic, 0 otherwise
 ma[i]<- meta-analysis index
 s[i]<-study index

Meta-analysis level:
 kappa_ok[m,j] = 1 if there are at least two studies with, and two studies without, the jth characteristic in the mth meta-analysis, 0 otherwise
 clambda[m,j] = 1 if there are 1, K-1 or K studies with or without the jth characteristic in the mth meta-analysis, 0 otherwise, where K is the no. of studies in the meta-analysis.
 C0[m,j]=1 if there are no studies in the mth meta-analysis with the jth characteristic

The WinBUGS model

model {
 for (i in 1:N) {
 r[i] ~ dbin(p[i],n[i]) # likelihood (binary data r/n=no.of events/no. of participants)
 logit(p[i]) <- alpha[s[i]] + theta[i]*treat[i]
 }
 theta[i]<-theta.minus[i]* (1-C1[i,1]) *(1-C1[i,2]) *(1-C1[i,3]) # effect in study without any of the characteristics
 +theta.plus[i]* (1-(1-C1[i,1]) *(1-C1[i,2]) *(1-C1[i,3])) effect in studies with one or more characteristics
theta.plus[i] ~ dnorm(mean[i], p.k2[i])(-10,10)

theta.minus[i]~dnorm(d[ma[i]],p.d[ma[i]])(-10,10) #RE for treatment effects within meta-analysis

mean[i]<-d[ma[i]]+b[ma[i],1]*C1[i,1]+b[ma[i],2]*C1[i,2]+b[ma[i],3]*C1[i,3]

k2[i]<- ((1-C1[i,1]) + # without characteristic 1
C1[i,1] * kappa_ok[ma[i],1] * lambda[1] + # with characteristic 1 and inform
C1[i,1] * clambda[ma[i],1] + # with characteristic 1 but don't inform
C1[i,1] * C0[ma[i],1] * C0[ma[i],1] * 1) * # no studies have characteristic 1 in the MA
((1-C1[i,2]) + # without characteristic 2
C1[i,2] * kappa_ok[ma[i],2] * lambda[2] + # with characteristic 2 and inform
C1[i,2] * clambda[ma[i],2] + # with characteristic 2 but don't inform
C1[i,2] * C0[ma[i],2] * C0[ma[i],2] * 1) * # no studies have characteristic 2 in the MA
((1-C1[i,3]) + # without characteristic 3
C1[i,3] * kappa_ok[ma[i],3] * lambda[3] + # with characteristic 3 and inform
C1[i,3] * clambda[ma[i],3] + # with characteristic 3 but don't inform
C1[i,3] * C0[ma[i],3] * C0[ma[i],3] * 1) * # no studies have characteristic 1 in the MA

var_d[ma[i]]

p.k2[i]<-1/k2[i]

rhat[i] <- p[i] * n[i] #calculate residual deviance
dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i])) + (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))

resdev <- sum(dev[])

for (j in 1:N_study) {alpha[j] ~ dnorm(0,.01)} # priors for study baseline effects - unrelated

for(m in 1:N_ma){
 d[m] ~ dnorm(0,0.01) # priors for true fixed (unrelated) intervention effects
 for(r in 1:3){b[ma[m],r] ~ dnorm(b0[r], p.phi[r])} # between meta-analysis variation in average difference in effect associated with characteristic
 var_d[m]~dlnorm(mu,p.tau) # log-normal distribution for between-study variances
 p.d[m] <- 1/var_d[m]
}

#Prior for unknown parameters
for(j in 1:3){
 b0[j] ~dnorm(0,0.001) # vague prior for overall average difference in effect associated with characteristic
 lambda[j] ~ dlnorm(0,0.1) # vague prior for change in between-study variation associated with characteristic
 p.phi1[j] ~ dgamma(0.001, 0.001)
 phi[j] <- pow(p.phi[j],-0.5)
 p.phi[j] <-p.phi1[j]/(1-patom.phi[j]) # vague prior for between meta-analysis variation in average difference in effect associated with characteristic
 patom.phi[j] ~ dbeta(1,1)
exp.b0[j]<-exp(b0[j])
}

mu~dnorm(0,0.01)
p.tau<-1/(sd_tau*sd_tau)
sd_tau~dunif(0,2)

log.tau2.new~dlnorm(mu,p.tau) # predictive distn for heterogeneity among studies without the characteristics
tau2.new<-exp(log.tau2.new)
}