
Peer reviewed version

Link to published version (if available):
10.1136/bmj.j5757

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
The PRACTICAL CONSORTIUM
Information about the consortium and/or how to access the data used in this model can be found at http://practical.cege.medschl.cam.ac.uk/

Members of the consortium (in addition to those named in the author list):
Margaret Cook
Michelle Guy
Koveela Govindasami
Daniel Leongamornlert
Emma J. Sawyer
Rosemary Wilkinson
Edward J. Saunders
Malgorzata Tymrakiewicz
Tokhir Dadayev
Angela Morgan
Cyril Fisher
Steve Hazel
Naomi Livni
Artitaya Lophathamanon
Robert Szulkin
Jan Adolfsson
Par Statin
Jan-Erik Johansson
Carin Cavalli-Bjöerkmans
Anni Karlsson
Michael Broms
Anssi Auvinen
Paula Kujala
Kirsí Talaha
Teemu Murtoła
Kimmo Taari
Peter Klarskov
Hans Wallinder
Sven Gustafsson
Angela Cox
Paul Brown
Anne George
Gemma Marsden
Athene Lane
Michael Davis
Wei Zheng
Lisa B. Signorello
William J. Blot
Lori Tillmans
Shaun Riska
Liang Wang
Antje Rinckleb
Jan Lubinski
Christa Stegmaier
Julio Pow-Sang
Hyon Park
Selina Radlein
Maria Rincon
James Haley
Babu Zachariah
Darina Kachakova
Elenko Popov
Atanaska Mitkova
Aleksandrina Vlahova
Tihomir Dikov
Svetlana Christova
Peter Heathcote
Glen Wood
Greg Malone
Pamela Saunders
Allison Eckert
Trina Yeatson
Kris Kerr
Angus Collins
Megan Turner
Srilakshmi Srinivasan
Mary-Anne Kebed
Kimberly Alexander
Tracy Omara
Huihai Wu
Rui Henriques
Pedro Pinto
Joana Santos
Joao Barros-Silva
Mohamed El Tibi
Graham G. Giles
Melissa C. Southey
Liesel M. Fitzgerald
John Pedersen
John L. Hopper
Robert MacInnis
Brian E. Henderson
Fredrick Schumacher
Christopher A. Haiman
Janet L. Stanford
Susanne Kolb
Yong-Jie Li
Hong-Wei Zhang

1Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
2The Institute of Cancer Research, London, SM2 5NG, UK
3Institute of Population Health, University of Manchester, Manchester, UK
4Warwick Medical School, University of Warwick, Coventry, UK
5Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
6Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
7Swedish Agency for Health Technology Assessment and Assessment of Social Services, Stockholm, Sweden
8Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
9Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
10Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
11Department of Epidemiology, School of Health Sciences, University of Tampere, Tampere, Finland
12Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
13Finnish Cancer Registry, Helsinki, Finland
14School of Medicine, University of Tampere, Tampere, Finland
15Department of Urology, Tampere University Hospital, Tampere, Finland
16Department of Urology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
Funding for the CRUK study and PRACTICAL consortium:

This work was supported by the Canadian Institutes of Health Research, European Commission's Seventh Framework Programme grant agreement n° 223175 (HEALTH-F2-2009-223175), Cancer Research UK Grants C5047/A7357, C1287/A10118, C5047/A3354, C5047/A10692, C16913/A6135, and The National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative grant: No. 1 U19 CA148537-01 (the GAME-ON initiative).
COGS acknowledgement:
This study would not have been possible without the contributions of the following: Per Hall (COGS); Douglas F. Easton, Paul Pharoah, Kyriaki Michailidou, Manjot K. Bolla, Qin Wang (BCAC), Andrew Berchuck (OCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Lesley McGuffog, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, Andrew Lee, and Ed Dicks, Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoussière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility

Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/101710, C1287/11174, C1287/A12014, CS047/A8384, CS047/A15007, CS047/A10692, C8197/16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.

Additional funding and acknowledgments from studies in PRACTICAL:
The Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden was supported by the Cancer Risk Prediction Center (CRIsP; www.criscenter.org), a Linneus Centre (Contract ID 70867902) financed by the Swedish Research Council, Swedish Research Council (grant no K2010-70X-20430-04-3), the Swedish Cancer Foundation (grant no 09-0677), the Hedlund Foundation, the Soederberg Foundation, the Equipt Foundation, ALF funds from the Stockholm County Council. Stiftelsen Johanna Hagstrand och Sigfrid Linner's Minne, Karlsson's Fund for urological and surgical research. We thank and acknowledge all of the participants in the Stockholm-1 study. We thank Carin Cavalli-Bjorckman and Ami Roennberg Karlsson for their dedicated work in the collection of data. Michael Broms is acknowledged for his skillful work with the databases. KI Biobank is acknowledged for handling the samples and for DNA extraction. Hans Wallinder at Aleris Medilab and Sven Gustafsson at Karolinska University Laboratory are thanked for their good cooperation in providing historical laboratory results.

The coordination of EPIC was financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts (that recruited male participants) are supported by Danish Cancer Society (Denmark); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF), Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro (AIRC-Italy) and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), KNCV Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), PI13/00061 to Granada; PI13/01162 to EPIC-Murcia), Regional Governments of Andalucia, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skane and Vasterbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (10001/43 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php.

The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The ESTHER group would like to thank Hartwig Ziegler, Sonja Wolf, Volker Hermann, Katja Butterbach.
The FHcrc studies were supported by grants RO1CA056678, RO1CA082664, and RO1CA092579 from the US National Cancer Institute, National Institutes of Health, with additional support from the Fred Hutchinson Cancer Research Center.

The IPO-Porto study was in part funded by Liga Portuguesa Contra o Cancro.

The Mayo group was supported by the US National Cancer Institute (R01CA72818).

The Prostate Cancer Program of Cancer Council Victoria also acknowledge grant support from The National Health and Medical Research Council, Australia (126402, 209057, 251533, , 396414, 450104, 504700, 504702, 504715, 623204, 940394, 614296,). VicHealth, Cancer Council Victoria, The Prostate Cancer Foundation of Australia, The Whitten Foundation, PricewaterhouseCoopers, and Tattersall’s. EAO, DMK, and EMK acknowledge the Intramural Program of the National Human Genome Research Institute for their support.

The MEC was supported by NIH grants CA63464, CA54281 and CA098758.

The Moffitt group was supported by the US National Cancer Institute (R01CA128813, PI: J.Y. Park).

The PCMUS study was supported by the Bulgarian National Science Fund, Ministry of Education and Science (contract DOO-119/2009, DUNK012-2009; DENI-B0128/2012) with additional support from the Science Fund of Medical University Sofia (contract 512/2009; B2/2009; 28/2010).

ProtecT would like to acknowledge the support of The University of Cambridge, Cancer Research UK. Cancer Research UK grants [C8197/A10123] and [C8197/A10865] supported the genotyping team. We would also like to acknowledge the support of the National Institute for Health Research which funds the Cambridge Bio-medical Research Centre, Cambridge, UK. We would also like to acknowledge the support of the National Cancer Research Prostate Cancer: Mechanisms of Progression and Treatment (PROMPT) collaborative (grant code G0500966/75466) which has funded tissue and urine collections in Cambridge. We are grateful to staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Clinical Research Centre, Cambridge, UK for their help in conducting the ProtecT study. We also acknowledge the support of the NIHR Cambridge Biomedical Research Centre, the DOH HTA (ProtecT grant) and the NCRI / MRC (PromPT grant) for help with the bio-repository. The UK Department of Health funded the ProtecT study through the NIHR Health Technology Assessment Programme (projects 96/2006, 96/2009). The ProtecT trial and its linked PromPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, England; Cancer Research UK grant number C522/A8649, Medical Research Council of England grant number G0500966, ID 75466 and The NCRI, UK. The epidemiological data for ProtecT were generated though funding from the Southwest National Health Service Research and Development. DNA extraction in ProtecT was supported by USA Dept of Defense award W81XWH-04-1-0280, Yorkshire Cancer Research and Cancer Research UK. The authors would like to acknowledge the contribution of all members of the ProtecT study research group. The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the Department of Health of England. The bio-repository of ProtecT is supported by the NCRI (PromPT) Prostate Cancer Collaborative and the Cambridge BMRC grant from NIHR.

The QLD research is supported by The National Health and Medical Research Council, Australia Project Grant [390130, 1009458] and Enabling Grant [614296 to APCB]; the Prostate Cancer Foundation of Australia (Project Grant [PG7] and Research Grant [to APCB]).

SCCS is funded by NIH grant R01 CA092447, and SCCS sample preparation was conducted at the Epidemiology Biospecimen Core Lab that is supported in part by the Vanderbilt-Ingram Cancer Center (P30 CA68485). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry.

SEARCH is funded by a programme grant from Cancer Research UK [C490/A10124] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge.

The Tampere (Finland) study was supported by the Academy of Finland (251074); The Finnish Cancer Organisations, Sigrid Juselius Foundation, and the Competitive Research Funding of the Tampere University Hospital (9N069 and X51003). The PSA screening samples were collected by the Finnish part of ERSPC (European
Study of Screening for Prostate Cancer). Riina Liikanen is thanked for technical assistance. Riitta Vaalavuo and Liisa Maeattaenen are thanked for their work with databases.

UKGPCS would also like to thank the following for funding support: The Institute of Cancer Research and The Everyman Campaign, The Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), The Orchid Cancer Appeal, The National Cancer Research Network UK, The National Cancer Research Institute (NCRI) UK. We are grateful for support of NIHR funding to the NIHR Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. UKGPCS should also like to acknowledge the NCRN nurses, data managers and Consultants for their work in the UKGPCS study. UKGPCS would like to thank all urologists and other persons involved in the planning, coordination, and data collection of the CAPS study.

The Ulm group received funds from the German Cancer Aid (Deutsche Krebshilfe).

The Keith and Susan Warshaw Fund, C. S. Watkins Urologic Cancer Fund and The Tennity Family Fund supported the Utah study. The project was supported by Award Number P30CA042014 from the National Cancer Institute.
Supplementary Methods

Description of ProtecT Cohort (Validation Set) Selection

As part of the ProtecT study, genotyping with the iCOGS custom Illumina array was performed on cases diagnosed by PSA screening\(^1\). After quality control steps described previously, there were 1,558 cases available for analysis\(^1\). Controls with normal (<3 ng/ml) or elevated (≥3 ng/ml) PSA were selected using the same 5-year age band as the cases and from the same GP register (1,464 analyzed after quality control; 739 with normal PSA, 725 with elevated PSA)\(^1\). Additionally, genotyping was performed for the iCOGS project on ProtecT trial participants who were selected as geographically matched controls for the UK Genetic Prostate Cancer Study (UKGPCS)\(^1,2\). This category comprised 3,395 men from ProtecT; 31 of these subsequently developed PCa after initial selection as controls and are therefore analyzed as cases in the present study.

PHS Model SNP Selection and Model Generation

Because prostate cancer risk increases with age\(^3\) and anticipated age of developing prostate cancer is highly relevant to clinical management, we applied PHS for deriving both predicted absolute risk and potential age at PCa onset\(^4\). A univariate trend test was applied to the entire Development Set (31,747 patients x 201,043 SNPs) to assess association with case or control status. All SNPs with resulting \(p\)-values <10\(^{-6}\) in the trend test were then entered in a forward, stepwise, greedy algorithm, to select the most predictive SNPs. In each step, logistic regression was used first to improve computational efficiency. SNPs were selected for the model only if they improved prediction of case-control status. After forward, stepwise selection, coefficients for selected SNPs were estimated using a Cox proportional hazard model to predict age at diagnosis with PCa.

Evaluation of Proportional Hazards Assumption

The proportionality of each selected SNP was checked by correlating their Schoenfeld residuals and PCa-free survival. In addition, Kaplan-Meier curves and the predicted values from Cox regression were overlaid on a single plot to assess for overlap that would suggest that the proportionality assumption held for the final PHS model.

Accounting for Potential Sampling Bias

The PHS method includes Cox proportional hazards modeling, a method ideally applied to a cohort design with unbiased samples. The Development Set here has the essential advantage of being large enough to support inquiries into modest single-SNP associations, but the contributing studies include case-control and other designs with a net effect of over-representing cases compared to the general population. This disproportionate number of cases in the Development Set would tend to overestimate the general risk of PCa and therefore underestimate the risk (among cases) attributable to a given SNP. Overall, this means our method yields a conservative estimate of SNP effect sizes in the general population\(^5\).

A Cox model was also used to test PHS prediction of age of PCa onset in the Validation Set. Here, we have the advantage of ProtecT’s cohort design, and the Validation Set can be treated as a nested case-control design, with known sampling rates. The sampling weights for cases and controls were determined from the overall ProtecT numbers\(^6\), and adjustments to the Cox model were made according to previously published and validated methods\(^7\) using the R ‘survival’ package (R version 3.2.2)\(^8,9\). Results from the adjusted model were compared to results from the simple model to see whether accounting for potential sampling bias affected PHS performance in the Validation Set.

Estimate of Absolute Risk

Calculation of Confidence Intervals for Cox prediction

Based on the variance in genotypes, \(X\), in the Development Set and the uncertainty of the Cox parameter estimates, \(\hat{\beta}\), we calculated 95% confidence intervals for the Cox prediction, applicable to \(\Delta\)Age and Prostate Cancer-Risk
(PCaR). Assuming the genotypes distribute independently with the effect sizes on the trait of interest, we can estimate the variance of $\hat{X}\hat{\beta}$:

$$
\text{Var}(\hat{X}\hat{\beta}) = \text{Var}(\hat{\beta}) \text{Var}(X) + \text{E}(\hat{\beta}) \text{Var}(X) + \text{Var}(\hat{\beta}) \text{E}(X)^2
$$

The 95% confidence interval of $\hat{X}\hat{\beta}$ can then be derived accordingly, such that the confidence interval of instantaneous hazard at a given age T is:

$$
\lambda_0(T) \exp(95\% CI)
$$

where λ_0 is the baseline hazard.

Calculation of Positive Predictive Value in Validation Set

In the Validation Set, 2,555 patients had positive PSA: 1,580 were then diagnosed with PCa, while 975 were designated controls without PCa. Because genotype information was collected in more cases than controls, we matched the overall ProtecT control:case ratio by taking a random sample of 471 cases with the 975 controls and calculating the positive predictive value of PSA testing without regard to PHS, as well as in subsets based on PHS percentile thresholds of <20th, >50th, >80th, and >95th. This process was repeated for a total of 1,000 random samples of 471 cases.

Polygenic Risk Score Analysis using Previously Reported SNPs from GWAS

Traditional GWAS have revealed a number of SNPs associated with prostate cancer. In the present study, the PHS model was built without prior assumptions on which SNPs would be most useful and then optimized parameter estimates for prediction of age of PCa onset. However, it may also be of interest to consider the performance of a traditional polygenic risk score (PRS), built with previously published SNPs and their corresponding odds ratios (OR). We therefore conducted a post-hoc analysis, reported here.

Two recent papers together published a total of 99 SNPs associated with PCa, along with ORs. Genotype data were available for 63 of those SNPs in our Validation Set. A PRS model was constructed using the log odds ratios (from published ORs) for these SNPs and the allele counts in the 6,411 men from the Validation Set. The resulting PRS was used as the sole predictor in a Cox proportional hazards model, analogous to what was done for PHS in the main manuscript. As before, statistical significance was set at alpha of 0.01.

Supplementary Results

Evaluation of Proportional Hazards Assumption

Supplementary Figure S1 shows the correlation of Schoenfeld residuals and PCa-free survival. Additionally, Figure 1 demonstrates reasonable overlap of the Kaplan-Meier and Cox regression estimates of PCa-free survival in the Development Set.

Accounting for Potential Sampling Bias

After accounting for sampling weights in an adjusted Cox model, PHS showed similar performance, with highly significant prediction of age of onset of aggressive PCa ($z=21.7, p<10^{-9}$). The hazard ratio for high PHS men ($>98^\text{th}$
percentile) compared to average risk was 4.6 [95% CI: 4.0, 5.2]. Overall, these results confirm that sampling bias in the main results leads to a conservative estimate of PHS predictive power.

Positive Predictive Value in Validation Set

As PHS is predictive of PCa risk, we expected it to modulate the PPV of PSA testing. Indeed, risk-stratification with PHS had considerable impact on PPV in the Validation Set. In terms of any PCa (which is what the PSA biopsy threshold was set for in ProtecT), only 18% of those with low PHS were true positives, whereas over half of those with high PHS had PCa (Supplementary Figure S2). A similar pattern was seen for aggressive PCa, though the absolute numbers are much lower, as is to be expected (Figure 2).

Polygenic Risk Score Analysis using Previously Reported SNPs from GWAS

The PRS calculated from 63 previously published SNPs\(^{14,15}\) was predictive of age of aggressive PCa onset in the Validation Set (\(z=9.2, p<10^{-16}, HR=1.4\ [95\% CI: 1.3, 1.4]\)), though its performance was not as good as that of PHS (\(z=11.2, p<10^{-16}, HR=2.9\ [2.4, 3.4]\)).
<table>
<thead>
<tr>
<th>Development Set</th>
<th>Country</th>
<th>Dates</th>
<th>Sourcea</th>
<th>Number of participants</th>
<th>Age - median (interquartile range)</th>
<th>PHS - median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPS</td>
<td>Sweden</td>
<td>2001-2003</td>
<td>Population-based</td>
<td>1,817 1,153 792 664 66.3 (60.3-72.7) 65.7 (59.5-72.0) 67.0 (60.7-73.8) 68.5 (61.2-73.9)</td>
<td>0.16 (-1.30-1.18)</td>
<td></td>
</tr>
<tr>
<td>CPCSI</td>
<td>Denmark</td>
<td>2008-2011</td>
<td>Hospital recruitment</td>
<td>3,610 840 557 2,770 62.0 (51.0-71.0) 69.1 (63.7-75.0) 69.1 (64.0-74.7) 58.0 (46.0-68.0)</td>
<td>0.02 (-2.65-1.02)</td>
<td></td>
</tr>
<tr>
<td>CPCSI2</td>
<td>Denmark</td>
<td>2010-2011</td>
<td>Hospital recruitment</td>
<td>1,273 264 161 1,009 60.7 (49.0-68.7) 64.5 (60.5-68.5) 64.5 (60.6-68.4) 58.0 (45.0-69.0)</td>
<td>0.00 (-0.99-1.01)</td>
<td></td>
</tr>
<tr>
<td>EPIC</td>
<td>EU</td>
<td>1992-2000</td>
<td>Population-based</td>
<td>1,801 722 137 1,079 61.1 (58.1-66.0) 65.2 (61.3-68.7) 65.9 (62.4-69.3) 60.0 (56.0-63.0)</td>
<td>0.08 (-1.01-1.08)</td>
<td></td>
</tr>
<tr>
<td>EPIC-Norfolk</td>
<td>UK</td>
<td>1992-2000</td>
<td>Population-based</td>
<td>1,401 484 28 917 73.2 (65.9-80.0) 72.8 (66.8-77.9) 71.3 (65.5-76.2) 73.7 (65.2-81.5)</td>
<td>0.01 (-3.79-1.20)</td>
<td></td>
</tr>
<tr>
<td>ESTHER</td>
<td>Germany</td>
<td>2000-2002</td>
<td>Population-based</td>
<td>631 313 175 318 66.0 (62.3-69.0) 66.1 (62.8-68.8) 66.2 (62.8-68.9) 66.0 (62.0-69.0)</td>
<td>0.08 (-0.99-1.14)</td>
<td></td>
</tr>
<tr>
<td>IPO-Porto</td>
<td>Portugal</td>
<td>1999-2011</td>
<td>Hospital recruitment</td>
<td>242 183 166 59 58.5 (51.9-62.5) 60.7 (56.9-63.0) 60.8 (57.0-63.0) 54.0 (25.0-47.5)</td>
<td>0.15 (+0.64-0.89)</td>
<td></td>
</tr>
<tr>
<td>MAYO</td>
<td>USA</td>
<td>1994-2007</td>
<td>Hospital recruitment</td>
<td>1,254 766 548 488 65.4 (60.0-70.0) 65.7 (61.3-69.7) 66.2 (61.9-70.0) 65.8 (59.0-71.5)</td>
<td>0.11 (-1.07-1.53)</td>
<td></td>
</tr>
<tr>
<td>MOFFITT</td>
<td>USA</td>
<td>2002-2009</td>
<td>Hospital recruitment</td>
<td>513 413 195 100 64.0 (59.0-71.0) 65.0 (59.8-71.0) 66.0 (61.0-73.0) 62.0 (57.0-67.0)</td>
<td>0.14 (-0.72-0.97)</td>
<td></td>
</tr>
<tr>
<td>PCMSU</td>
<td>Bulgaria</td>
<td>1993-2011</td>
<td>Hospital recruitment</td>
<td>291 151 122 140 68.0 (62.0-74.0) 69.3 (63.4-74.4) 69.3 (63.5-75.4) 67.0 (60.0-73.3)</td>
<td>0.07 (-2.61-0.84)</td>
<td></td>
</tr>
<tr>
<td>PPF-UNIS</td>
<td>UK</td>
<td>1993-2011</td>
<td>Hospital recruitment</td>
<td>433 245 151 188 68.3 (62.1-73.6) 69.4 (63.2-73.5) 70.9 (65.2-75.0) 67.2 (59.8-73.8)</td>
<td>0.12 (-2.28-1.10)</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>Poland</td>
<td>1999-2009</td>
<td>Hospital recruitment</td>
<td>790 438 259 352 67.0 (58.0-72.0) 68.0 (63.0-73.0) 69.0 (63.0-73.8) 62.0 (54.0-71.0)</td>
<td>0.12 (-0.78-0.93)</td>
<td></td>
</tr>
<tr>
<td>ProMPT</td>
<td>UK</td>
<td>2009</td>
<td>Population-based</td>
<td>168 166 130 2 65.0 (61.5-72.0) 65.0 (61.4-72.0) 66.0 (62.2-72.0) 76.1 (65.0-75.2)</td>
<td>0.14 (+0.61-0.98)</td>
<td></td>
</tr>
<tr>
<td>QLD</td>
<td>Australia</td>
<td>2004-2011</td>
<td>Hospital recruitment</td>
<td>212 127 100 85 65.8 (59.5-69.0) 61.0 (57.0-66.0) 62.0 (58.0-67.5) 68.7 (66.4-72.5)</td>
<td>0.13 (-2.74-0.98)</td>
<td></td>
</tr>
<tr>
<td>SEARCH</td>
<td>UK</td>
<td>2005-2013</td>
<td>Population-based</td>
<td>2,613 1,371 565 1,242 60.0 (54.0-65.0) 64.0 (60.0-67.0) 64.0 (61.0-67.0) 55.0 (50.0-66.0)</td>
<td>0.12 (-2.78-1.24)</td>
<td></td>
</tr>
<tr>
<td>STIMI</td>
<td>Sweden</td>
<td>2007</td>
<td>Population-based cohort</td>
<td>4,228 895 758 2,223 66.2 (61.2-71.5) 65.6 (61.4-71.2) 67.3 (62.5-73.2) 66.6 (62.7-71.6)</td>
<td>0.09 (-3.85-1.27)</td>
<td></td>
</tr>
<tr>
<td>TAMPERE</td>
<td>Finland</td>
<td>1993-2008</td>
<td>Population-based</td>
<td>2,754 2,754 1,642 67.5 (63.0-73.1) 67.5 (63.0-73.1) 68.7 (63.7-74.6) 67.3 (63.7-74.6)</td>
<td>0.19 (+0.64-1.05)</td>
<td></td>
</tr>
<tr>
<td>UKGPCS</td>
<td>UK</td>
<td>1993-2011</td>
<td>Hospital recruitment</td>
<td>5,287 4,497 3,083 790 66.3 (57.0-68.8) 62.9 (58.0-68.0) 63.8 (58.4-70.8) 56.0 (53.0-59.0)</td>
<td>0.18 (-2.31-1.35)</td>
<td></td>
</tr>
<tr>
<td>ULM</td>
<td>Germany</td>
<td>1998-2007</td>
<td>Hospital recruitment</td>
<td>800 592 406 208 63.1 (57.6-68.0) 63.8 (59.6-68.2) 64.1 (60.1-68.4) 58.0 (49.0-67.0)</td>
<td>0.16 (+0.86-1.30)</td>
<td></td>
</tr>
<tr>
<td>UTAH</td>
<td>USA</td>
<td>2004-2011</td>
<td>Population-based</td>
<td>685 440 68 245 64.0 (57.0-71.0) 63.0 (56.5-68.0) 64.0 (57.0-71.0) 68.0 (60.0-74.0)</td>
<td>0.16 (+0.83-1.07)</td>
<td></td>
</tr>
<tr>
<td>WUGS</td>
<td>USA</td>
<td>2004-2011</td>
<td>Hospital recruitment</td>
<td>944 944 592 - 61.0 (56.0-66.0) 61.0 (56.0-66.0) 62.0 (56.0-67.0) -</td>
<td>0.29 (+0.62-2.43)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td>31,747 18,868 10,635 12,879 64.0 (58.2-70.1) 65.1 (59.9-70.5) 66.0 (60.1-71.3) 62.0 (55.5-69.6)</td>
<td>0.12 (-3.85-2.43)</td>
<td></td>
</tr>
</tbody>
</table>

Validation Set

<table>
<thead>
<tr>
<th>Country</th>
<th>Dates</th>
<th>Sourcea</th>
<th>Number of participants</th>
<th>Age - median (interquartile range)</th>
<th>PHS - median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProtectI</td>
<td>UK</td>
<td>2001-2009</td>
<td>Population-based cohort</td>
<td>6,411 1,583 628 4,828 60.0 (55.7-64.4) 63.4 (59.0-67.0) 64.3 (60.2-67.5) 59.0 (55.0-63.0)</td>
<td>0.06 (-4.13-1.09)</td>
</tr>
</tbody>
</table>
*Includes the 31 cases and 3,364 controls who participated in both ProtecT and UKPCS
*Case-control design unless otherwise specified. More detailed descriptions of each study are provided in the supplementary material from the original iCOGS publication.
Supplementary Table S2: SNPs in final PHS model

<table>
<thead>
<tr>
<th>SNP name</th>
<th>log(p-value), univariate<sup>a</sup></th>
<th>log(p-value), multivariate<sup>b</sup></th>
<th>β from PHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs4983267<sup>c</sup></td>
<td>-53</td>
<td>-25</td>
<td>-0.095</td>
</tr>
<tr>
<td>c8_pos128146528</td>
<td>-48</td>
<td>-19</td>
<td>0.174</td>
</tr>
<tr>
<td>rs11093994<sup>c</sup></td>
<td>-48</td>
<td>-30</td>
<td>0.100</td>
</tr>
<tr>
<td>rs297759</td>
<td>-42</td>
<td>-22</td>
<td>0.073</td>
</tr>
<tr>
<td>rs11651052</td>
<td>-37</td>
<td>-37</td>
<td>-0.093</td>
</tr>
<tr>
<td>rs12279055</td>
<td>-35</td>
<td>-9</td>
<td>-0.076</td>
</tr>
<tr>
<td>rs7929962</td>
<td>-32</td>
<td>-7</td>
<td>0.048</td>
</tr>
<tr>
<td>rs7697673<sup>c</sup></td>
<td>-27</td>
<td>-22</td>
<td>-0.066</td>
</tr>
<tr>
<td>rs7841806</td>
<td>-26</td>
<td>-21</td>
<td>-0.082</td>
</tr>
<tr>
<td>rs28556604</td>
<td>-25</td>
<td>-11</td>
<td>0.077</td>
</tr>
<tr>
<td>rs12549761</td>
<td>-25</td>
<td>-10</td>
<td>0.054</td>
</tr>
<tr>
<td>rs5946631</td>
<td>-24</td>
<td>-12</td>
<td>-0.192</td>
</tr>
<tr>
<td>rs9889355</td>
<td>-23</td>
<td>-22</td>
<td>0.077</td>
</tr>
<tr>
<td>rs132389706</td>
<td>-22</td>
<td>-6</td>
<td>0.066</td>
</tr>
<tr>
<td>rs6545977<sup>c</sup></td>
<td>-22</td>
<td>-15</td>
<td>-0.066</td>
</tr>
<tr>
<td>rs1326330</td>
<td>-22</td>
<td>-12</td>
<td>-0.060</td>
</tr>
<tr>
<td>rs4907775</td>
<td>-21</td>
<td>-8</td>
<td>0.131</td>
</tr>
<tr>
<td>rs16660513</td>
<td>-20</td>
<td>-16</td>
<td>0.198</td>
</tr>
<tr>
<td>rs718961</td>
<td>-20</td>
<td>-6</td>
<td>-0.075</td>
</tr>
<tr>
<td>rs2977746</td>
<td>-19</td>
<td>-7</td>
<td>0.055</td>
</tr>
<tr>
<td>c17_pos44175675</td>
<td>-19</td>
<td>-10</td>
<td>0.142</td>
</tr>
<tr>
<td>rs17632542</td>
<td>-18</td>
<td>-9</td>
<td>0.140</td>
</tr>
<tr>
<td>rs232964</td>
<td>-18</td>
<td>-15</td>
<td>1.031</td>
</tr>
<tr>
<td>c11_pos21812249</td>
<td>-17</td>
<td>-14</td>
<td>0.068</td>
</tr>
<tr>
<td>rs7725218</td>
<td>-17</td>
<td>-16</td>
<td>-0.070</td>
</tr>
<tr>
<td>rs651164</td>
<td>-16</td>
<td>-8</td>
<td>-0.050</td>
</tr>
<tr>
<td>c3_pos171557211</td>
<td>-16</td>
<td>-13</td>
<td>0.073</td>
</tr>
<tr>
<td>rs6788616<sup>c</sup></td>
<td>-15</td>
<td>-7</td>
<td>-0.040</td>
</tr>
<tr>
<td>rs4643253</td>
<td>-14</td>
<td>-7</td>
<td>0.052</td>
</tr>
<tr>
<td>rs7769879</td>
<td>-14</td>
<td>-10</td>
<td>0.054</td>
</tr>
<tr>
<td>c10_pos8072007</td>
<td>-14</td>
<td>-11</td>
<td>-1.530</td>
</tr>
<tr>
<td>c3_pos87230612</td>
<td>-13</td>
<td>-7</td>
<td>-0.115</td>
</tr>
<tr>
<td>rs11672691<sup>c</sup></td>
<td>-13</td>
<td>-7</td>
<td>-0.059</td>
</tr>
<tr>
<td>rs2736108</td>
<td>-12</td>
<td>-12</td>
<td>0.050</td>
</tr>
<tr>
<td>rs9655016</td>
<td>-11</td>
<td>-9</td>
<td>-0.052</td>
</tr>
<tr>
<td>rs747745</td>
<td>-11</td>
<td>-5</td>
<td>0.044</td>
</tr>
<tr>
<td>rs3910736</td>
<td>-11</td>
<td>-9</td>
<td>-0.068</td>
</tr>
<tr>
<td>SNP</td>
<td>Effect Size</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>rs11568818</td>
<td>-10</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>rs17596465</td>
<td>-10</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td>c22_pos4183564</td>
<td>-10</td>
<td>0.084</td>
<td></td>
</tr>
<tr>
<td>rs1010</td>
<td>-10</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>rs2136486</td>
<td>-9</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>rs4919763</td>
<td>-9</td>
<td>-0.050</td>
<td></td>
</tr>
<tr>
<td>rs10865528</td>
<td>-9</td>
<td>-0.045</td>
<td></td>
</tr>
<tr>
<td>rs3861106</td>
<td>-9</td>
<td>-0.914</td>
<td></td>
</tr>
<tr>
<td>rs4809311</td>
<td>-6</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>rs6853490</td>
<td>-6</td>
<td>-0.054</td>
<td></td>
</tr>
<tr>
<td>rs13252265</td>
<td>-7</td>
<td>-0.055</td>
<td></td>
</tr>
<tr>
<td>rs4857841</td>
<td>-7</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>rs11795627</td>
<td>-7</td>
<td>-0.042</td>
<td></td>
</tr>
<tr>
<td>rs788856</td>
<td>-7</td>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>rs684232*</td>
<td>-8</td>
<td>-0.039</td>
<td></td>
</tr>
<tr>
<td>rs10875943*</td>
<td>-7</td>
<td>-0.041</td>
<td></td>
</tr>
<tr>
<td>rs10051795*</td>
<td>-8</td>
<td>-1.501</td>
<td></td>
</tr>
</tbody>
</table>

*From trend test for this SNP only on Development Set case/control status.

*From logistic regression for prediction of case/control with all SNPs in this table included as predictors, in addition to age and six principal components for European ancestry.

*Previously listed among 99 SNPs associated with prostate cancer in GWAS studies14,15.
Supplementary Figure S1: Each column shows the rho value for Schoenfeld residuals for a single SNP (variable) in the final PHS model.
Supplementary Figure S2: Positive predictive value (PPV) of PSA testing by PHS percentile thresholds for patients in the Validation Set. This is PPV for any PCa. Percentiles refer to the PHS distribution among young controls in the Development Set. Colored lines are 95% confidence intervals from random samples of cases in the Validation Set (see Methods). For reference, the expected PPV for PSA testing at this threshold is displayed as a gray, dashed line, based on a pooled analysis.\(^1\)
Supplementary Figure S3: Lorenz curve to show the percent of the 632 aggressive PCa cases in the Validation Set (ProtecT) that were accounted for with various thresholds for PHS percentile. Dotted lines represent 95% confidence intervals calculated via 1,000 bootstrap samples of 632 aggressive cases. For example, the upper quintile of PHS (20 on upper x-axis, 80th PHS percentile) accounted for approximately 42% of all aggressive cases in the Validation Set.
References from Supplementary Material

