Title: A General, Rhodium-Catalyzed, Synthesis of Deuterated Boranes and N-Methyl Polyaminoboranes

Authors: Annie L. Colebatch, Benjamin W. Hawkey Gilder, George R. Whitell, Nicola L. Oldroyd, Ian Manners, and Andrew S. Weller

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201800737

Link to VoR: http://dx.doi.org/10.1002/chem.201800737
A General, Rhodium-Catalyzed, Synthesis of Deuterated Boranes and N–Methyl Polyaminoboranes

Abstract: The rhodium complex [Rh(PhoPCH2CH2CH2PPh2)(η^6-FC6H5)][BAF_2d]., 2, catalyzes BH/BD exchange between D_2 and the boranes H_2B-NMe_2, H_2B-SMe_2 and HBpin, facilitating the expedient isolation of a variety of deuterated analogues in high isotopic purity, and in particular the isotopologues of N-methylamineborane: R_2B-NMeR; 1-d_x (R = H, D; x = 0, 2, 3 or 5). It also acts to catalyze the dehydropolymerization of 1-d_x to give deuterated polyaminoboranes. Mechanistic studies suggest a metal-based polymerization involving an unusual hybrid coordination insertion chain-growth/step-growth mechanism.

Deuterated polymeric materials can possess different properties to their hydrogen-isotopologues, and their synthesis and characterisation is thus of considerable interest.[1] The tailoring of chemical, physical and material characteristics of polymers by deuteriation has been exploited in a variety of areas, such as the modification of optoelectronic[2] and electromagnetic[3] properties, structure,[2, 4] analysis of polymer chain dynamics and morphology using small angle neutron scattering,[5] spectroscopic studies,[4, 6] and nuclear applications.[7]

One area which is the subject of current attention in main group polymer chemistry is the dehydropolymerization of N–methylamineborane, H_2B-NMe_2, for the preparation of BN chain polyaminoboranes (H_2B-NMe_2)[8] that are isoelectronic to polypropylene. Although a range of transition metal catalysts are known to catalyze dehydropolymerization, Scheme 1,[9] the preparation of deuterated analogues, e.g. (R_2B-NMeR)_x, R = H or D, has not been reported. In order to prepare such d-labeled N-methylpolyaminoboranes cost-effective access to gram-scale quantities of the amine–borane isotopologues H_2B-NMe_2 (1-d_0), D_2B-NMe_2 (1-d_1) and D_2B-NMeD_2 (1-d_2) in high isotopic purity is required. The limited commercial availability,[10] expense and restricted storage lifetime[11] of the precursor D_2B-THF[12] necessitated exploration of an alternative route to 1-d_x (x = 3, 5), namely catalytic BH/BD exchange at preformed amine–boranes using D_2O.[13] In this contribution we report that [Rh(dpdp)][η^6-FC_6H_5]_2[BAF]_2 (2, dpdp = bis(diphenylphosphino)propane, ArF = 3-(CF_3)_2C_6H_4)_1 acts as a simple and practical precatalyst for BH/BD exchange at H_2B-NMe_2, facilitating reliable access to the four isotopologues of R_2B-NMeR (R = H, D) in good isolated yield and high isotopic purity (Scheme 2). The scope of this H/D exchange strategy is further demonstrated by extension to the synthesis of d-labeled boronic esters. Subsequent dehydropolymerization of R_2B-NMeD_2, also using 2, provides the variously isotopically-enriched polyaminoboranes (R_2B-NMeR). Mechanistic studies suggest dehydropolymerization occurs via a sequential coordination insertion chain-growth/step-growth mechanism.

As discussed, the preparation of deuterated polyaminoboranes requires the synthesis of appropriate d-labeled precursors. Although BH/BD exchange has been observed in transition metal borane o-complexes,[15] examples of catalytic H/D exchange for the synthesis of deuterated boranes are scarce. Examples include reaction of pinacol- or catecholborane with D_2 using [Ru(PCy_3)_2H_2](H_2);[16] or [IrHCl(C(NBuCH_2)(CN)(CH_2Me)(CH_2))_2][17] catalysts; although the latter complex was also shown to be ineffective for deuteration of H_2B-L (L = SMe_2, R(N(HCMe_2)CH_2)O, R = H, Me). H/D exchange of H_2B-NMe_2 has been reported using a RuHCl(PPh_3)_2 catalyst, by bubbling D_2 through a toluene solution at 100°C for 24 hours,[18] but no comment as to the yield obtained was made. Complex 2 has been shown to promote B–H activation of primary and secondary amine–boranes.[14] This proceeds via initial oxidative cleavage of a Rh=H–B sigma interaction to give a base-stabilized boryl hydride, as indicated by complimentary studies using phosphate boranes.[19] Such an intermediate could

Scheme 1. Dehydropolymerization of H_2B-NMe_2.

Scheme 2. H/D exchange and dehydropolymerization.

[a] Dr A. L. Colebatch, B. W. Hawkey Gilder, Prof. A. S. Weller
Department of Chemistry, Chemistry Research Laboratory
University of Oxford
Mansfield Road, Oxford, OX1 3TA, UK
E-mail: andrew.weller@chem.ox.ac.uk

[b] Dr G. R. Whittell, N. L. Oldroyd, Prof. I. Manners
School of Chemistry
University of Bristol
Cantock’s Close, Bristol, BS8 1TS, UK

Supporting information for this article is given via a link at the end of the document.
also be captured by exogenous D₂ leading to H/D exchange,\(^\text{[19a]}\) via α-complex assisted metathesis (α-CAM),\(^\text{[20]}\) Scheme 3.

\[\text{[Rh]} \text{H·NMe₃} \xrightarrow{\text{[Rh]}} \text{[H·NMe₃]} \xrightarrow{\text{D}} \text{[H·NMe₃]} \xrightarrow{\text{D}} \text{[H·NMe₃]} \xrightarrow{\text{D}} \text{[H·NMe₃]} \]

Scheme 3. Proposed mechanism for H/D exchange.

H₃B·NMe₃ is an ideal substrate for such BH/BD exchange as it can be sublimed, is air-stable, does not have N–H groups needed for onward dehydrogenation, and also forms an α-complex with 2, a precursor to B–H activation.\(^\text{[14a]}\) Existing methods for the formation of D₂B·NMe₃ include acid- or ruthenium-catalyzed H/D exchange of H₂B·NMe₃ using D₂O (which suffers from competitive hydrolysis),\(^\text{[21]}\) ion exchange,\(^\text{[22]}\) or crown-ether-catalyzed reaction of NaBD₄ with NMe₃HClO₃.\(^\text{[23]}\)

\[\text{H₂B·NMe₃} \xrightarrow{\text{2 (0.8 mol%)}; \text{D₂O (2.5 atm)}} \text{D₂B·NMe₃} \]

Scheme 4. (A) Deuteration of H₂B·L (L = NMe₃, SMEO₃) catalyzed by 2. D₂O added in 3 x 3-fold excess. (B) Deuteration of HBpin. Conditions as in (A). (C) Preparation of D₂B·NMe₃ (1-d₁₂, L = NMe₃, SMEO₃).

Initial screening showed that 2 promotes BH/BD exchange in H₃B·NMe₃ with D₂ in Et₂O, THF or 1,2-F₂C₆H₄ solvents. Limited reactivity was observed in CH₂Cl₂. Low boiling Et₂O was selected for further studies, which can be removed under a gentle vacuum whilst minimizing loss of D₂B·NMe₃. Optimized catalytic H/D exchange using 2 (0.8 mol%, Et₂O, 2.5–12 hrs, Table S1) gave D₂B·NMe₃ in isolated yields of up to 83% and up to 99% isotopic purity (~1 gram scale), Scheme 4A. Monitoring the rate of deuteration by in situ NMR spectroscopy showed that the reaction proceeded only upon agitation of the solution, indicating the rate is controlled by diffusion through the gas and liquid phases. Rapid stirring and sufficient reaction times were thus used in the bulk synthesis. Catalyst 2 is required, as there is no reaction observed in its absence.

Applying these conditions to the borane reagents H₃B·SMEO₃ and HBpin produced D₂B·SMEO₃ and DBpin, demonstrating the broader applicability of the method, Scheme 4B. DBpin (99% D) was produced in 95% spectroscopic yield and isolated in 40% yield after distillation. For D₂B·SMEO₃, H/D exchange proceeds more slowly (days), and vacuum distillation to remove the catalyst provides an Et₂O solution of D₂B·SMEO₃ (88% D) that can be used directly in onward reactions. Both D₂B·SMEO₃ and D₂B·NMe₃ act as precursors to D₂B·NMe₃H₃, 1-d₁₂, by reaction with NMe₃H₃, with full retention of isotopic purity. Scheme 4C. 1-d₁₂ can in turn be prepared by treatment of 1-d₁ with D₂O (Supporting Materials). 1-d₁ can similarly be prepared from 1-d₅,\(^\text{[24]}\) thus providing access to the four isotopes arising from H/D exchange at B or N in high isotopic purities.

With these four isotopes of 1-d₁, in hand, the dehydrogenolysis catalyzed by 2 was studied, Scheme 5. All four precursors produced off-white polymeric material using 0.5 mol% 2 (0.4 M [1-d₁], 1.2–F₂C₆H₄, 90 min) in moderate isolated yield (up to 67%). H₁ and H₃ NMR spectroscopy of the polymer produced using 1-d₁ and 1-d₅ revealed the presence of both B–H and B–D environments. This indicates that BH/BD scrambling occurs during the reaction (~25%), likely due to reversible H/D exchange at a boryl hydride intermediate with liberated HD (e.g. Scheme 3).\(^\text{[15a]}\) Very little NH/ND scrambling was observed (less than 3%), consistent with N–H activation being irreversible.\(^\text{[24]}\) The 1B NMR spectra of isolated polymer produced using 1-d₁ were very similar to those reported previously, showing a broad resonance at ca. δ ~ 6 (Figure S4). A small shoulder to lower field of the main chain ‘BH₂’ signal, which has been attributed to B/NH or BN units,\(^\text{[25,26]}\) was also observed in all samples (δ ~2).

Gel permeation chromatography (GPC), from which polymer molecular weight was determined from relative hydrodynamic radii using a refractive index (RI) detector, showed a modest variation in molecular weight (ca. 10,000 g mol⁻¹) with isotope distribution. No strong trend is evident, although 1-d₁ produced the smallest polymer. Whether this data is indicative of any changes in chain length, which would result from perturbation of the reaction kinetics upon deuteration (e.g. rate of propagation versus rate of termination), is not clear. Non-covalent interactions, such as N–H⋯H–B dihydrogen bonding, are likely to play a pivotal role controlling the polymer conformation in polyaminoboranes,\(^\text{[26]}\) and the magnitude of such interactions will be affected by isotopic substitution. Such effects on polymer conformation have been noted in polystyrene, wherein a 0.5% increase in volume was observed upon substitution of H for D.\(^\text{[40]}\) These polymers were also studied by electrospray ionization mass spectrometry (ESI–MS, positive mode, CH₂Cl₂ solvent, Figures 1 and S5 – S6). The maximum observed m/z is ca. 3,000 for all samples, indicating a degree of polymerization (DP) ~ 70 as measured by this technique. This is much lower than the

![Scheme 3. Proposed mechanism for H/D exchange.](image_url)

![Scheme 4. (A) Deuteration of H₂B·L (L = NMe₃, SMEO₃) catalyzed by 2. D₂O added in 3 x 3-fold excess. (B) Deuteration of HBpin. Conditions as in (A). (C) Preparation of D₂B·NMe₃ (1-d₁₂, L = NMe₃, SMEO₃).](image_url)

![Scheme 5. Dehydrogenolysis of R₂B·NMe₃ (R = H, D). Conditions: 0.4 M [R₂B·NMe₃] (R = H, D), 90 min, system open to Ar flow.](image_url)
molecular weights determined by GPC (e.g., DP = 690 for 1-ds), but replicates the maximum m/z measured by ESI-MS for high molecular weight (H₂BNMeH)ₐ, (Mₐ = 107,000 g mol⁻¹), demonstrating the limitation of ESI-MS for molecular weight determination in polyaminoboranes, as noted previously.⁹⁶

Nevertheless, with this caveat, useful information regarding repeat units can be obtained. The ESI-MS for 1-ds shows a major distribution corresponding to [H₂BNMeH₂]⁺, alongside two minor distributions which best match [(H₂BNMeH)₂]⁺ and [(H₂BNMeH₂)₂]⁺ (Figure S5).⁹⁶,⁹⁷ All three distributions have repeat units of m/z = 43.1 (H₂BNMeH). Polymer prepared from 1-ds (Figure 1A) and 1-ds (Figure S6) showed similar isotope patterns suggesting monomer repeat units of both m/z = 44.1 (BNMeH₂D) and 45.1 (BNMeHD₂), consistent with the NMR spectroscopic data. Interestingly, H/D scrambling was also observed for polymer prepared from 1-ds (Figure 1B) with an isotopic distribution that best fits monomer repeat units (BNMeH₂D):BNMeHDH in a 4:1 ratio (m/z = 46.1, 45.1). This is despite ¹H NMR spectroscopy indicating levels of B-H and N-H incorporation less than 3%, that reflects the isotopic purity of precursor 1-ds, and suggests that H/D exchange can occur under ESI-MS analysis, likely from adventitious water in the solvent.

Thermogravimetric analysis (TGA, 10°C/min, 25 – 500°C) demonstrated a slight variation in decomposition temperature (Tᵈ) across the range of polymer isotopologues (125 – 139°C), that suggests a correlation with the site of deuterium, with BD substitution promoting slightly lower Tᵈ, although the differences are small (Table S4). Interestingly, polymers with ND groups give lower ceramic yields: 36%, 1-ds 10%, 1-ds 46%, 1-ds 20% 1-ds. Previously reported high molecular weight (H₂BNMeH)ₐ, (Mₐ = 107,000 g mol⁻¹) gave TGA data (Tᵈ = 150°C, ceramic yield 25%)⁹⁶ that is different from medium molecular weight material from 1-ds (134°C, 36%) suggesting that polymer chain length and/or any entrained catalyst also affect thermal decomposition processes. These data on polyaminoborane samples of similar molecular weight prepared from the same catalyst suggest isotopic substitution has a measurable effect on thermal decomposition characteristics, with the lowest Tᵈ and ceramic yield provided by BD and ND substitution respectively. Little mechanistic detail for amine–borane dehydropolymerization catalyzed by 2 is known beyond observation of an induction period and [Rh₂(µ-H)(µ-H₂BNMeH)(dpdf)]²⁺[(BA²⁺)] as the first formed species.¹⁴ The closely related precatalyst [Rh(n²-H₂BNMeH₂CH₂CH₂Bu)(Xantphos)]²⁺ has been studied in more detail, and mechanistic studies suggest a single-site coordination / dehydrogenation / insertion growth mechanism for dehydropolymerization.⁹⁶ This is signaled by an inverse relationship between Mₐ and catalyst loading, H₂ acting as a termination agent to strongly modify chain length, and H₂ release studies (0.2 M 1-ds) that show an induction period followed by a temporal profile that is best modelled using saturation kinetics (i.e. quasi irreversible substrate binding). Although similar kinetic profiles for H₂ release are observed using 2 and all the isotopologues of 1-ds (Figure S8), initially suggesting a similar mechanism (vide infra), significant variability in rate between different batches of amine–borane and solvent was noted, and thus we are reluctant to interpret the effect of isotopic substitution on any turnover limiting step. There was no significant variability in the final molecular weight of polymer isolated between different batches. We have recently made similar observations for P–alkyl substituted (Rh(Xantphos)) catalysts.⁹⁶

Polymer growth kinetics thus focused on 1-ds using the same batch of substrate and solvent. At the limit these can be chain-growth, characterized by significant polymerization and unreacted monomer being observed at early reaction times; or step-growth, where complete monomer consumption (to form dimers and oligomers) is achieved early and high molecular weights are only reached at very high conversions.²⁹ A plot of conversion versus polymer weight (Mₐ) (Figure 2) reveals an unusual profile, that captures elements of both chain- and step-growth.

Figure 1. ESI-MS of polyaminoborane from the dehydropolymerization of H₂BNMeD₂ (1-ds) and D₂BNMeD₂ (1-ds) showing the three distributions present: [RₓBNMeRₓ]⁺ (red) and [RₓBNMeRₓ]⁺ (green); R = H or D.

Figure 2. Molecular weight of (H₂BNMeH)ₐ versus conversion of 1-ds for dehydropolymerization catalyzed by 2 at 1 mol % (●) or 0.5 mol % (○) 0.4 M [1-ds].
These experiments show that at 0.5 mol% loadings of 1 between low (<10%) to high (~90%) conversions, medium molecular weight polyaminoborane was observed ($M_w \sim 10,000$ g mol$^{-1}$) alongside significant, but diminishing, quantities of unreacted 1-d_6, consistent with a chain-growth process. However, at very high conversions (>90%) a dramatic increase in molecular weight was observed to $M_w \sim 30,000$ g mol$^{-1}$, characteristic of a step-growth polymerization. An alternative explanation is that late-stage chain branching leads to a dramatic increase in hydrodynamic radius at high conversion. However as the 11B NMR spectrum of isolated polymer at 99% conversion closely resembles those for the materials isolated at lower conversions, we discount this particular process (Figure S7).

We thus propose a hybrid mechanism for dehydropolymerization, in which chain-growth polymerization occurs at initially high concentrations of 1-d_6, but at high conversions, i.e. low [1-d_6], an alternative step-growth coupling becomes dominant. Support for the early–stage mechanism being single–site coordination / dehydrogenation / insertion chain–growth comes from the inverse dependence of M_w upon catalyst loading during the chain–growth phase, that is amplified by the late-stage–growth process: 0.25 mol%, $M_w = 43,300$ g mol$^{-1}$; 0.5 mol%, $M_w = 27,700$ g mol$^{-1}$; 1 mol%, $M_w = 10,100$ g mol$^{-1}$ (Table S2).[30] H$_2$ also acts as a chain transfer agent as shown by significantly lower degrees of polymerization in a closed system (0.5 mol% 2, $M_w = 4,700$ g mol$^{-1}$, $D = 2.04$) when H$_2$ is allowed to build up. Support for the late-stage step-growth coupling comes from treatment of lower molecular weight (H$_2$BMeNH$_2$, $M_w = 6,900$ g mol$^{-1}$, $D = 2.25$) with 0.5 mol% 2 for 90 minutes, that provides an effective doubling in molecular weight ($M_w = 15,000$ g mol$^{-1}$, $D = 2.01$), an observation which also argues against significant depolymerization occurring. In the absence of 2, the polymer remains essentially unchanged under these conditions ($M_w = 7,400$ g mol$^{-1}$, $D = 2.03$).

Based on the collected data presented a mechanistic outline for dehydropolymerization is postulated in Scheme 6A. Precatalyst 2 reacts with 1-d_6 to form an active, as yet undefined, catalyst. This active catalyst binds 1-d_6, which undergoes dehydrogenation via BH and NH activation to form a latent source of aminoborane H$_2$B=NH$_2$, which inserts into the growing polymer chain and propagation ensues. Once 1-d_6 is consumed 2 catalyzes step-growth-like coupling between the thus formed polymer chains, to ultimately deliver higher molecular weight (H$_2$BMeNH$_2$). Chain-growth and subsequent step-growth is rare in polymerization chemistry, but has been observed in the copolymerization of ε-caprolactone and tetrahydrofuran using a Lu(OTf)$_2$/propylene oxide catalytic system.[31] A number of cases where simultaneous chain- and step-growth polymerization occur are known.[32]

Possible mechanisms for this step-growth process are (Scheme 6B): (i) dehydrogenation of a polymer–(BH$_2$MeNH$_2$) end group, catalyzed by 2, to form an amino–borane end group that undergoes dimerization to form a cyclic diborazane,[33] (ii) dehydrogenative B–N coupling between amino–borane and amine–polymer end groups to give a dialkylaminoborane, polymer–NMe–BH–NMe–polymer linking unit,[34] or (iii) head to tail[35] coupling of appropriate amino–boranes. We see no evidence for a dialkylaminoborane [11B ca. 6 +30]; while a broad signal at ~11B ca. 6 +2 may be indicative of (i), that also appears broader in the deuterated samples suggesting a B–H (or B–D) group, but we cannot discount this is due to chain–branching. Importantly, this resonance is present from early stages of the reaction (evident at 9% conversion, Figure S7), and hence does not result exclusively from late-stage coupling. As ESI–MS also gives no evidence for (i) and (ii) in terms of absolute m/z, the data tentatively point towards (iii) as a probable linking motif.

In summary, 2 acts as a reliable precatalyst for H/D exchange of boranes and boronic esters to produce B–D labeled boranes in high isotopic purities using low catalyst loadings. Deuterated polyaminoboranes have been produced using the thus prepared isopolymers of H$_2$BMeNH$_2$ and found to possess physical properties largely similar to (H$_2$BMeNH)$_n$, with only relatively small variations in chain length and thermal decomposition characteristics. An unusual hybrid chain-growth/step-growth mechanism is proposed, with chain-growth polymerization at high [1-d_6], likely via a coordination-insertion mechanism, and step-growth coupling following at low [1-d_6]. The ability to access step-growth pathways[36] in amine–borane dehydropolymerization offers a potential route to further precisely control the molecular weight of BN–backbone polymeric materials, which will benefit from ongoing optimizations of catalyst structure, loadings and experimental conditions.

Acknowledgements

The EPSRC (A.S.W. EP/M024210/1).

Keywords: rhodium • deuterium • borane • dehydropolymerization • H/D exchange

We found that commercial suppliers of DiTHF would not import this chemical into the UK as such deuterated complexes are on the UK Strategic Export Control List.

We thank the EPSRC (Grant No. EP/I005212/1) for ﬁnancial support.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.

We thank the EPSRC for funding this work through grant EP/I005212/1.
COMMUNICATION

Deuterated amine–boranes, prepared in high isotopic purities and yields, can be dehydropolymerized to give deuterated polyaminoboranes; for which mechanistic studies suggest an unusual hybrid coordination insertion chain-growth/step-growth mechanism.