Sirunyan, A. M., & the CMS Collaboration (2018). Measurement of the Splitting Function in pp and Pb-Pb Collisions at $s_{NN} = 5.02$ TeV. Physical Review Letters, 120(14), [142302]. https://doi.org/10.1103/PhysRevLett.120.142302, https://doi.org/10.1103/PhysRevLett.120.142302

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1103/PhysRevLett.120.142302
10.1103/PhysRevLett.120.142302

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via APS Physics at https://doi.org/10.1103/PhysRevLett.120.142302. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Measurement of the Splitting Function in pp and Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 30 August 2017; published 3 April 2018)

Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions. The measurements are compared to various predictions from event generators and analytical calculations.

DOI: 10.1103/PhysRevLett.120.142302

Scattering processes with large momentum transfer Q between the partonic constituents of colliding nucleons occur early in heavy ion collisions. Further interactions of the outgoing partons with the produced (colored) hot and dense quantum chromodynamics (QCD) medium (the quark-gluon plasma, QGP) may modify the angular and momentum distributions of final-state hadronic jet fragments relative to those in proton-proton collisions. This process, known as jet quenching, can be used to probe the properties of the QGP [1,2]. Jet quenching was first observed at the Relativistic Heavy Ion Collider [3–9] and then at the Large Hadron Collider (LHC) [10–25]. This Letter reports an attempt to isolate parton splittings to two well separated partons with high transverse momentum (p_T), probing medium induced effects during the parton shower evolution in the QGP. Information about these leading partons of a hard splitting can be obtained by removing the softer wide-angle radiation contributions, done through the use of jet grooming algorithms that attempt to split (“decluster”) a single jet into two subjets [26–30]. For a parton shower in vacuum, these subjets provide access to the properties of the first splitting in the parton evolution [31,32]. Interactions of the two outgoing partons with the QGP potentially modify the properties of subsequent splittings resulting in different subjet properties. This Letter reports a study of hard parton splittings in pp and PbPb collisions.

An observable characterizing the parton splitting, denoted by z_g, is defined as the ratio between the p_T of the less energetic subjet, $p_{T,2}$, and the p_T sum of the two subjets $[32]$, $z_g = p_{T,2}/(p_{T,1} + p_{T,2})$. A measurement of the z_g distribution in pp collisions, using CMS open data, was recently reported [33,34]. In PbPb collisions, this measurement reflects how the two color-charged partons produced in the first splitting propagate through the QGP, probing the role of color coherence of the jet in the medium [35]. If the partons act as a single coherent emitter, the two subjets will be equally modified, leaving z_g unaffected [36]. If, instead, the partons in the medium act as decoherent emitters, the two subjets should be modified differently, thereby altering z_g. In addition, z_g is sensitive to semihard medium-induced gluon radiation [37], modifications of the initial parton splitting [38], and the medium response [39].

The analysis uses data collected by the CMS experiment in 2015. The PbPb and pp data samples, both at a nucleon-nucleon center-of-mass energy of 5.02 TeV, correspond to integrated luminosities of 404 μb$^{-1}$ and 27.4 pb$^{-1}$, respectively. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity, η, coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [40].

The particle-flow (PF) algorithm reconstructs and identifies each individual particle with an optimized combination of information from the various elements of the CMS detector [41]. The PF candidates identified as a photon or a...
neutral hadron are treated as massless, while for charged hadrons the pion mass is assumed. The electron and muon PF candidates are assigned the corresponding lepton masses. Jets are reconstructed from the PF candidates using the anti-k_T jet algorithm [42-44] with a distance parameter $R = 0.4$. The kinematics of the jet are determined using the vectorial sum of all particle momenta in the jet. For this analysis, jets are required to have $p_{T,jet} > 140$ GeV and $|\eta| < 1.3$.

The online event selection trigger also uses the anti-k_T algorithm with $R = 0.4$ but applies a lower threshold on $p_{T,jet}$; all events with a PF jet with $p_{T,jet} > 80$ GeV were recorded in the pp case, while in PbPb collisions the triggers (based on jets reconstructed from calorimeter deposits including a subtraction for the uncorrelated underlying event) use a 100 GeV threshold. Noncollision events, such as beam-gas interactions or cosmic-ray muons, are rejected offline [19]. The events are required to have a primary vertex reconstructed within 15 cm (0.15 cm) of the nominal interaction point along the beam direction (in the transverse plane). The average number of additional collisions per bunch crossing is less than 0.9 in both data sets, having a negligible effect on the measurement. The PbPb event sample is divided into centrality intervals, reflecting the impact parameter of the colliding nuclei, using the minimum distance requirement by its one standard deviation [45].

The PYTHIA 6.423 [46] event generator (tune Z2* [47,48]) is used to calculate Monte Carlo (MC) corrections. For PbPb simulations, the PYTHIA 6 events are embedded into an underlying event produced with HYDJET 1.9 [49]. All generated events undergo a full GEANT4 [50] simulation of the CMS detector response. Additional cross check samples are produced with PYTHIA 8.212 [51] (tune CUETP8M1 [48]) and HERWIG++ [52] (tune EE5C [53]).

In PbPb collisions, the constituents of the jet are corrected for the underlying event contribution using the “constituent subtraction” method [54], a particle-by-particle approach that removes or corrects jet constituents based on the average underlying event density. The subtraction corrects both the four-momentum of the jet and its impact parameter that removes or corrects jet constituents. The subjet approach that removes or corrects jet constituents is performed on this tree. In each step of the declustering, a branching into two subjets is accepted if they pass the soft drop condition [30],

$$\min(p_{T,i}, p_{T,j}) \geq z_{cut} \left(\frac{\Delta R_{ij}}{R_0} \right)^{\beta},$$

where the subscripts “i” and “j” indicate the subjets at that step of the declustering, ΔR_{ij} is the distance between the two subjets in the $\eta-\phi$ plane, R_0 is the cone size of the anti-k_T jet, and z_{cut} is an adjustable parameter. If the soft drop condition is not satisfied, the softer subjet is dropped. For this study, z_{cut} is set to 0.1 [30]. The parameter β is set to 0, which satisfies an extended version of infrared and collinear safety by absorbing the collinear divergences into a generalized fragmentation function recovering the QCD splitting function [32]. Once the soft drop condition is satisfied, the two subjets at that position in the tree are used in the analysis. If the soft drop condition is never satisfied, the jet is not used. This is the case for 1.5% of the jets measured at $p_{T,jet} = 140$ GeV, increasing to 3.0% at $p_{T,jet} = 300$ GeV, independent of collision centrality.

Groomed jets with a small distance between the two subjets frequently result from the ambiguous case where the two subjets cannot be distinctly resolved, leading to a significant misassignment of particle constituents to subjets. An additional selection of $\Delta R_{ij} > 0.1$ is applied, removing 40% (60%) of the jets measured at low (high) $p_{T,jet}$, to avoid an unphysical modification of z_g. This selection rejects an additional 15% (5%) of the jets at low (high) $p_{T,jet}$ in the 10% most central PbPb collisions, in comparison to the noncentral collisions, an effect well reproduced by the simulation. The systematic uncertainty on the z_g variable is evaluated by varying the ΔR_{ij} minimum distance requirement by its one standard deviation MC resolution of 10%; this variation results in a 2% uncertainty, independent of centrality.

The transverse momentum of the jet after grooming, $p_{T,g}$, is identical to or smaller than the original $p_{T,jet}$. The groomed p_T fraction, $p_{T,g}/p_{T,jet}$, is compared to simulations in Fig. 1 for jets with $160 < p_{T,jet} < 180$ GeV, in pp and central PbPb collisions. The measured and simulated distributions are in agreement.

The potential bias due to the online jet trigger is evaluated by using events collected with a lower threshold...
and also minimum bias events. For the 10% most central PbPb collisions, a bias is found in the lowest \(p_{T,jet}\) range, 140 < \(p_{T,jet}\) < 160 GeV, changing the yield by values linearly decreasing from +6% at \(z_g = 0.1\) to −15% at \(z_g = 0.5\). In the 10%–30% centrality class, the bias is half as large, and it vanishes for more peripheral events. The full bias is corrected for and the magnitude of the correction is treated as a \(z_g\) systematic uncertainty. The trigger has no effect on the measurements at higher \(p_{T,jet}\).

The systematic uncertainty in the jet energy scale, on the measured and simulated distributions, is obtained by propagating the uncertainties in the jet response correction [56,58]. A maximum deviation in yield of 4% is found in central PbPb collisions, decreasing to 2% in \(pp\) and peripheral PbPb collisions. This effect tends to increase (decrease) the \(p_T\) of the leading (subleading) subjet. The systematic uncertainty in the normalization of the \(z_g\) distributions is estimated to be 5% (3%) in central (peripheral) collisions. The relative uncertainty in the jet energy resolution is 10%, leading to an uncertainty smaller than 0.5% on the \(z_g\) distribution.

Figure 2 shows the \(z_g\) distribution measured in \(pp\) collisions measured with \textsc{pythia} 6, \textsc{pythia} 8, and \textsc{herwig}++, including a full simulation of detector effects. Both \textsc{pythia} simulations have a slightly steeper \(z_g\) distribution than the data, while \textsc{herwig}++ shows an opposite trend.

To compare the \(z_g\) distribution in \(pp\) and PbPb collisions, in given \(p_{T,jet}\) and centrality ranges, the measurements in \(pp\) collisions are adjusted to match the subjet resolution in PbPb data. The resolution correction is derived, for each \(p_{T,jet}\) and collision centrality range, from full detector simulation studies of the ratio of the \(z_g\) distributions between \textsc{pythia} and \textsc{pythia} embedded into \textsc{hydjet}. The ratio between simulated PbPb and \(pp\) \(z_g\) distributions shows a relative decrease in the number of PbPb events at high \(z_g\), reaching ~40% in central collisions and negligible in peripheral collisions. The uncertainty in the correlation between the response of the two subjets is estimated by varying the individual subjet resolution by 10%, the relative correlation by 15%, and the subjet energy scale by 5%, corresponding to one standard deviation in resolution. This results in an uncertainty of 8%–10% in \(z_g\). The mismodeling of the \(z_g\) distribution in \textsc{pythia}, evaluated by reweighting to the \(z_g\) measurement in \(pp\) collisions, adds an uncertainty of 4%–5%. These uncertainties are assigned to the “smeared” \(pp\) data points. The resolution correction is validated with a parametric resolution model that uses the jet resolution and a sampled \(z_g\) in each \(p_{T,jet}\) range, and recreates the correction function for each centrality selection by sampling the individual subjet resolutions.

Figure 3 shows the \(z_g\) distributions measured in PbPb collisions, for several centrality intervals, in comparison to the smeared \(pp\) reference data. The systematic uncertainties on the \(z_g\) distributions are fully correlated from point to point, resulting in an anticorrelated uncertainty on the self-normalized distributions, and are uncorrelated between the \(pp\) and PbPb data sets. The \(z_g\) distribution in peripheral PbPb collisions agrees with the \(pp\) reference, while the more central collisions exhibit a steeper \(z_g\) distribution. Differences between the \(z_g\) of quark- and gluon-initiated jets are found to be a few percent [32], so that the observed modification cannot be attributed to the flavor composition within a fixed \(p_{T,jet}\) interval. The observation indicates that the splitting into two branches becomes increasingly more unbalanced as the PbPb collisions become more central.
The modification of the z_g distribution in central PbPb collisions is shown in Fig. 4 over a wide kinematic range in $p_T;\text{jet}$. The measurement is compared to a prediction of the JEWEL event generator (shown with statistical and theoretical uncertainties originating from the treatment of the medium response), which incorporates medium-induced interactions while the partons propagate through the QGP [39,59,60]. The measurement is also compared with a soft-collinear effective theory (SCET) with Glauber gluon interactions [38] for two different quenching strengths, with a calculation incorporating multiple medium-induced gluon bremsstrahlung (BDMPS) [2,61,62] assuming that the two hard partons radiate gluons as a coherent emitter [37], and with a higher twist (HT) approach employing both coherent and incoherent energy loss [63]. Each of the three models is presented for two settings of the parameters reflecting their medium properties, as indicated in the legends, where L is the medium length, \hat{q} and \hat{q}_0 denote medium transport coefficients, and g is the coupling strength between the jet and the medium. The BDMPS medium effect is too weak to describe the observed $p_T;\text{jet}$ dependence, while the other models reproduce the data at low and high $p_T;\text{jet}$, using medium properties previously tuned to match measurements of the nuclear modification factors of charged hadrons and jets. For the HT calculation, the presence or absence of color coherence makes a significant difference. Since the detector resolution effects have a negligible impact on the theoretical calculations, given that they largely cancel in the PbPb to $(smeared)$ pp ratio, the theoretical curves are shown without detector smearing.
In summary, the first measurement of the splitting function in \(pp \) and \(PbPb \) collisions at a center-of-mass energy of 5.02 TeV per nucleon pair has been presented. This represents the first application of a grooming technique to \(PbPb \) data, removing soft wide-angle radiation from the jet and thereby isolating the two leading subjets. The momentum sharing between these subjets is used to obtain information about hard parton splitting processes during the shower evolution. The \textsc{Pythia} and \textsc{Herwig++} event generators reproduce the hard parton splitting processes during the shower evolution.

The momentum sharing removing soft wide-angle radiation from the jet and thereby the first application of a grooming technique to \(PbPb \) data, 5.02 TeV per nucleon pair has been presented. This represents

\[\sqrt{s}_{NN} = 200 \text{ GeV} \]

of the LHC and the CMS detector provided by the following infrastructures essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLOCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAЕ and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

<table>
<thead>
<tr>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro de Investigación y de Estudios Avanzados del IPN, Mexico</td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>Universidad Iberoamericana, Mexico City</td>
<td>Mexico</td>
</tr>
<tr>
<td>Benemerita Universidad Autónoma de Puebla, Puebla, Mexico</td>
<td></td>
</tr>
<tr>
<td>Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico</td>
<td></td>
</tr>
<tr>
<td>University of Auckland, Auckland, New Zealand</td>
<td></td>
</tr>
<tr>
<td>University of Canterbury, Christchurch, New Zealand</td>
<td></td>
</tr>
<tr>
<td>National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan</td>
<td></td>
</tr>
<tr>
<td>National Centre for Nuclear Research, Swierk, Poland</td>
<td></td>
</tr>
<tr>
<td>Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland</td>
<td></td>
</tr>
<tr>
<td>Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal</td>
<td></td>
</tr>
<tr>
<td>Joint Institute for Nuclear Research, Dubna, Russia</td>
<td></td>
</tr>
<tr>
<td>Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia</td>
<td></td>
</tr>
<tr>
<td>Institute for Nuclear Research, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Institute for Theoretical and Experimental Physics, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Moscow Institute of Physics and Technology, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>P.N. Lebedev Physical Institute, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia</td>
<td></td>
</tr>
<tr>
<td>Novosibirsk State University (NSU), Novosibirsk, Russia</td>
<td></td>
</tr>
<tr>
<td>State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia</td>
<td></td>
</tr>
<tr>
<td>University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia</td>
<td></td>
</tr>
<tr>
<td>Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain</td>
<td></td>
</tr>
<tr>
<td>Universidad Autónoma de Madrid, Madrid, Spain</td>
<td></td>
</tr>
<tr>
<td>Universidad de Oviedo, Oviedo, Spain</td>
<td></td>
</tr>
<tr>
<td>Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain</td>
<td></td>
</tr>
<tr>
<td>CERN, European Organization for Nuclear Research, Geneva, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Paul Scherrer Institut, Villigen, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Institute for Particle Physics, ETH Zurich, Zurich, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Universität Zürich, Zurich, Switzerland</td>
<td></td>
</tr>
<tr>
<td>National Central University, Chung-Li, Taiwan</td>
<td></td>
</tr>
<tr>
<td>National Taiwan University (NTU), Taipei, Taiwan</td>
<td></td>
</tr>
<tr>
<td>Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand</td>
<td></td>
</tr>
<tr>
<td>Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey</td>
<td></td>
</tr>
<tr>
<td>Middle East Technical University, Physics Department, Ankara, Turkey</td>
<td></td>
</tr>
<tr>
<td>Bogazici University, Istanbul, Turkey</td>
<td></td>
</tr>
<tr>
<td>Istanbul Technical University, Istanbul, Turkey</td>
<td></td>
</tr>
<tr>
<td>Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine</td>
<td></td>
</tr>
<tr>
<td>National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine</td>
<td></td>
</tr>
<tr>
<td>University of Bristol, Bristol, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Rutherford Appleton Laboratory, Didcot, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Imperial College, London, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Brunel University, Uxbridge, United Kingdom</td>
<td></td>
</tr>
<tr>
<td>Baylor University, Waco, Texas, USA</td>
<td></td>
</tr>
<tr>
<td>Catholic University of America, Washington DC, USA</td>
<td></td>
</tr>
<tr>
<td>The University of Alabama, Tuscaloosa, Alabama, USA</td>
<td></td>
</tr>
<tr>
<td>Boston University, Boston, Massachusetts, USA</td>
<td></td>
</tr>
<tr>
<td>Brown University, Providence, Rhode Island, USA</td>
<td></td>
</tr>
<tr>
<td>University of California, Davis, Davis, California, USA</td>
<td></td>
</tr>
<tr>
<td>University of California, Los Angeles, California, USA</td>
<td></td>
</tr>
<tr>
<td>University of California, Riverside, Riverside, California, USA</td>
<td></td>
</tr>
<tr>
<td>University of California, San Diego, La Jolla, California, USA</td>
<td></td>
</tr>
<tr>
<td>University of California, Santa Barbara—Department of Physics, Santa Barbara, California, USA</td>
<td></td>
</tr>
<tr>
<td>California Institute of Technology, Pasadena, California, USA</td>
<td></td>
</tr>
<tr>
<td>Carnegie Mellon University, Pittsburgh, Pennsylvania, USA</td>
<td></td>
</tr>
<tr>
<td>University of Colorado Boulder, Boulder, Colorado, USA</td>
<td></td>
</tr>
<tr>
<td>Cornell University, Ithaca, New York, USA</td>
<td></td>
</tr>
<tr>
<td>Fermi National Accelerator Laboratory, Batavia, Illinois, USA</td>
<td></td>
</tr>
<tr>
<td>University of Florida, Gainesville, Florida, USA</td>
<td></td>
</tr>
<tr>
<td>Florida International University, Miami, Florida, USA</td>
<td></td>
</tr>
<tr>
<td>Florida State University, Tallahassee, Florida, USA</td>
<td></td>
</tr>
</tbody>
</table>
Florida Institute of Technology, Melbourne, Florida, USA
University of Illinois at Chicago (UIC), Chicago, Illinois, USA
The University of Iowa, Iowa City, Iowa, USA
Johns Hopkins University, Baltimore, Maryland, USA
The University of Kansas, Lawrence, Kansas, USA
Kansas State University, Manhattan, Kansas, USA
Lawrence Livermore National Laboratory, Livermore, California, USA
University of Maryland, College Park, Maryland, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
University of Minnesota, Minneapolis, Minnesota, USA
University of Mississippi, Oxford, Mississippi, USA
University of Nebraska-Lincoln, Lincoln, Nebraska, USA
State University of New York at Buffalo, Buffalo, New York, USA
Northeastern University, Boston, Massachusetts, USA
Northwestern University, Evanston, Illinois, USA
University of Notre Dame, Notre Dame, Indiana, USA
The Ohio State University, Columbus, Ohio, USA
Princeton University, Princeton, New Jersey, USA
University of Puerto Rico, Mayaguez, Puerto Rico, USA
Purdue University, West Lafayette, Indiana, USA
Purdue University Northwest, Hammond, USA
Rice University, Houston, Texas, USA
University of Rochester, Rochester, New York, USA
The Rockefeller University, New York, New York, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
University of Tennessee, Knoxville, Tennessee, USA
Texas A&M University, College Station, Texas, USA
Texas Tech University, Lubbock, Texas, USA
Vanderbilt University, Nashville, Tennessee, USA
University of Virginia, Charlottesville, Virginia, USA
Wayne State University, Detroit, Michigan, USA
University of Wisconsin—Madison, Madison, Wisconsin, USA

Deceased.

Also at Vienna University of Technology, Vienna, Austria.
Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Universidade Federal de Pelotas, Pelotas, Brazil.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Helwan University, Cairo, Egypt.
Also at Zewail City of Science and Technology, Zewail, Egypt.
Also at Fayoum University, El-Fayoum, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Ain Shams University, Cairo, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhuvaneswar, Bhuvaneswar, India.
Also at Institute of Physics, Bhuvaneswar, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
cc Also at Yazd University, Yazd, Iran.

dd Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
e Also at Università degli Studi di Siena, Siena, Italy.
f Also at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy.
g Also at Purdue University, West Lafayette, USA.
h Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
i Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
j Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
k Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
l Also at Institute for Nuclear Research, Moscow, Russia.
m Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
o Also at University of Florida, Gainesville, USA.
p Also at University of Florida, Gainesville, USA.

Also at P.N. Lebedev Physical Institute, Moscow, Russia.
q Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
r Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
s Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
t Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
u Also at National and Kapodistrian University of Athens, Athens, Greece.
v Also at Riga Technical University, Riga, Latvia.
w Also at Universität Zürich, Zurich, Switzerland.
x Also at Stefan Meyer Institute for Subatomic Physics.
y Also at Adiyaman University, Adiyaman, Turkey.
z Also at Istanbul Aydin University, Istanbul, Turkey.
a Also at Mersin University, Mersin, Turkey.
b Also at Cag University, Mersin, Turkey.
c Also at Piri Reis University, Istanbul, Turkey.
d Also at Izmir Institute of Technology, Izmir, Turkey.
e Also at Necmettin Erbakan University, Konya, Turkey.
f Also at Marmara University, Istanbul, Turkey.
g Also at Kafkas University, Kars, Turkey.
h Also at Istanbul Bilgi University, Istanbul, Turkey.
i Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
j Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
k Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
l Also at Utah Valley University, Orem, USA.
m Also at Beykent University.
n Also at Bingol University, Bingol, Turkey.
o Also at Erzincan University, Erzincan, Turkey.
p Also at Sinop University, Sinop, Turkey.
q Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
r Also at Texas A&M University at Qatar, Doha, Qatar.
s Also at Kyungpook National University, Daegu, Korea.