A quarter of patients with type 1 diabetes have co-existing non-islet autoimmunity; the findings of a UK population-based family study

Short title:

Multiple autoimmunity in type 1 diabetes

Authors: Aizhan Kozhakhmetova¹, Rebecca C Wyatt¹, Claire Caygill¹, Claire Williams¹, Anna E Long¹, Kyla Chandler¹, Rachel J Aitken¹, Janet M Wenzlau², Howard W Davidson², Kathleen M Gillespie¹, Alistair J K Williams¹

Affiliations: ¹Diabetes and Metabolism, School of Clinical Sciences, University of Bristol, UK; ²University of Colorado, Denver, USA

Corresponding author: Alistair J K Williams

Address: Diabetes & Metabolism, School of Clinical Sciences, Learning & Research, Southmead Hospital, Bristol BS10 5NB, UK

Email address: A.J.K.Williams@bristol.ac.uk

Keywords: type 1 diabetes, autoantibodies, tissue transglutaminase, gastric H⁺/K⁺-ATPase, thyroid peroxidase, HLA
Abbreviations:

Summary

Individuals with type 1 diabetes (T1D) are at increased risk of coeliac disease (CD), autoimmune thyroiditis and autoimmune gastritis, but the absolute risks are unclear. The aim of this study was to investigate the prevalence of autoantibodies to tissue transglutaminase (TGA), thyroid peroxidase (TPOA), and gastric H+/K+-ATPase (ATPA) and their genetic associations in a well-characterised population-based cohort of individuals with T1D from the Bart’s-Oxford family study for whom islet autoantibody prevalence data were already available. Autoantibodies in sera from 1072 patients
(males/females 604/468; median age 11.8 years, median T1D duration 2.7 months) were measured by radioimmunoassays; *HLA class II* risk genotype was analysed in 973 (91%) using PCR-SSP. The prevalence of TGA (and/or history of CD), TPOA and ATPA in patients was 9.0%, 9.6%, and 8.2%, respectively; 3.2% had two or more autoantibodies. Females were at higher risk of multiple autoimmunity; TGA/CD were associated with younger age, and TPOA with older age. ATPA were uncommon in patients under 5 years, and more common in older patients. Anti-glutamate decarboxylase autoantibodies were highly predictive of co-existing TPOA/ATPA. TGA/CD were associated with HLA DR3-DQ2, with the DR3-DQ2/DR3-DQ2 genotype conferring the highest risk, followed by DR4-DQ8/DR4-DQ8. ATPA were associated with DR3-DQ2, *DRB1*0404 (in males) and the DR3-DQ2/DR4-DQ8 genotype (in females). TPOA were associated with the DR3-DQ2/DR3-DQ2 genotype. Almost one quarter of patients diagnosed with T1D under 21 years have at least one other organ specific autoantibody. *HLA class II* genetic profiling may be useful in identifying those at risk of multiple autoimmunity.
Introduction

Type 1 diabetes (T1D) is one of the major chronic disorders of childhood with a steady increase in incidence over the last few decades \(^1\)-\(^5\). Approximately half of the susceptibility to T1D is derived from genetic factors, the rest depends on environmental triggers \(^1\), \(^6\)-\(^9\). Autoimmune diseases associated with T1D are often subclinical, and complications are usually recognized retrospectively. Along with the deleterious impact on general health, they can negatively affect glycaemic status in patients with T1D. For example, impaired thyroid function (hypothyroidism) in autoimmune thyroiditis or malabsorption resulting from coeliac disease (CD) lead to frequent hypoglycaemic episodes and poor glycaemic control \(^10\), \(^11\). The long latent stage of autoimmune diseases, when only autoantibodies are present without clinical signs, highlights the opportunity for prevention strategies \(^12\).

Analysis of the literature showed large variations in reported frequencies of CD in children with T1D, ranging from 3.3% to 12% \(^13\)-\(^15\), while in the general population the prevalence is estimated at 1-2% \(^16\). Autoimmune gastritis is present in 5-10% of T1D patients, while in the general population the average prevalence is 2% \(^17\). Autoimmune thyroiditis is one of the most frequent autoimmune diseases associated with T1D. The prevalence of
thyroid antibodies varies considerably in different studies; it was estimated to be 5-40% in children \(^{18-22}\) and 18-30% in adults with T1D \(^{19, 20, 23}\) compared with 3-5% and 8-24% in healthy controls, respectively \(^{23, 24}\). Thyroid hypofunction, which is a sign of progressive thyrocyte damage, was present in 6-10% of patients with T1D, and the prevalence increased after the age of 50 years, eventually reaching 18% in the over 60s \(^{25}\).

Numerous studies in the last few decades have suggested common pathways and genetic elements involved in the development of autoimmune disorders, but few included patients with multiple autoimmunity (MA). Recent genome wide association studies have underlined the contribution of HLA to the development of different autoantibodies in T1D \(^{26}\), but the genetic determinants critical to the development of MA are not well defined. This study aimed to identify the interplay between genetic determinants and co-existent non-islet autoimmunity in patients with T1D.
Materials and Methods

Patients

A cohort of children and young adults (n=1072, 468 females, median age 11.8 years, range 0.8-28 years; median age at T1D onset 10.9 years, range 0.4-21 years; median T1D duration 2.7 months, range 0-16.4 years) with T1D from the well-characterized population-based Bart’s-Oxford (BOX) family study was investigated. Since 1985, the study has been recruiting individuals under the age of 21 years with newly-diagnosed T1D and their first-degree relatives (residents of the area formerly administered by Oxford Regional Health Authority, UK), of whom 76% are still in regular contact with the study. For the majority (86%) of the cohort, serum samples were available close to diagnosis (within 2 years), while sera from the rest were collected post-diagnosis (within 2-16 years). Thirty-seven (3.4%) patients were diagnosed with CD, as reported by questionnaire. Genetic samples (whole blood or mouth brush) were available from 973 participants (91%) of whom 958 (98%) were tested for all three non-islet autoantibodies.

The BOX study is currently approved by the South Central - Oxford C National Research Ethics Committee. Participants provided informed, written consent and the study was performed according to the principles of the Declaration of Helsinki.
Methods

Autoantibody measurement by radioimmunoassay

Autoantibodies specific for the T1D specific antigens, insulin (IAA), glutamate decarboxylase (GADA), islet antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A), as well as the CD specific antigen tissue transglutaminase (TGA IgG/IgA), were measured using fully-validated in-house radioimmunoassays (RIAs) as described previously \(^{28,29}\). Of the 1072 patients, 1071 (99\%) were tested for TGA.

The measurement of autoimmune gastritis specific anti-\(\text{H}^+/\text{K}^+\)-ATPase autoantibodies (ATPA IgG) was performed in 1055 of the 1072 patients (98\%) using a newly established in-house RIA. Plasmid pcDNA3.1 with the \(ATP4A\) gene encoding a 251 amino acid fragment of the \(\text{H}^+/\text{K}^+\)-ATPase 4A polypeptide \(^{30,31}\) was used for *in vitro* transcription and translation in the TnT coupled reticulocyte system (*Promega, Madison, WI, USA*) to obtain \(^{35}\text{S}\) methionine labelled human-\(\text{H}^+/\text{K}^+\)-ATPase. Radioactive antigen (20000 cpm at 25 µl) bound by serum antibodies (incubated for 19-21 hours) was precipitated with protein-A sepharose (*GE Healthcare, Sweden*) and measured in a beta scintillation counter. Standards were prepared from a serum highly positive for ATPA, serially diluted with seronegative human serum, spanning the range from 0.4 (1/1024) to 100 arbitrary units/ml (1/4).
The inter-assay coefficients of variation for positive control samples were 14% at 24 units/ml and 23% at 79 units/ml. Thyroid autoimmunity was assessed in 1066 of the 1072 patients (99%) by measurement of anti-thyroid peroxidase autoantibodies (TPOA IgG) using a commercial RIA kit (RSR Ltd, Cardiff, UK) following minor modification of the protocol.

Positivity thresholds for RIAs

The TGA assay positivity threshold (1.31 units) was set at the 97.5th percentile of 5470 children (median age 7.5 years, range 6.9 to 9.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based birth cohort study 29. Sera collected from healthy children attending schools in the Oxford and Windsor regions during 1989-1990 were tested to establish in-house positivity thresholds for TPOA and ATPA. The threshold for the ATPA assay was 21.6 units/ml, set at the 97.5th percentile of 318 schoolchildren tested (median age 11 years, range 9 -14 years). The threshold for the TPOA assay using the calibrators provided was 8.8 units/ml (kit threshold, 0.3 units/ml), set at the 97.5th percentile of 205 schoolchildren tested (median age 10 years, range 9-13 years).
HLA genotyping

All DNA samples extracted from whole blood or mouth swab samples were whole genome amplified utilizing a PCR-based whole genome amplification protocol (*Illustra GenomiPhi V2 DNA Amplification Kits*). HLA class II genotype for high risk DR3-DQ2 (*DRB1*03-*DQA1*0501-*DQB1*0201) and DR4-DQ8 (*DRB1*04-*DQA1*0301-*DQB1*0302) and low risk DRX (representing all other HLA DRB1 variants) alleles was analyzed using PCR with sequence-specific primers as previously described 32. Genotypes were coded as either DR3-DQ2/DR3-DQ2, DR3-DQ2/DR4-DQ8, DR4-DQ8/DR4-DQ8, DR3-DQ2/DRX, DR4-DQ8/DRX or DRX/DRX. The *DRB1*0404 gene, recently reported to increase the risk of MA 33, was also analysed.

Statistical analysis

Data analysis was performed using IBM SPSS Statistics 23 software. Differences in categorical data were investigated by Chi-squared or Fisher’s Exact test. Non-parametric data analysis included Pearson correlation. Models adjusted for independent factors and covariates (age, gender, HLA DR-DQ) were analyzed by logistic regression; a two-tailed p value <0.05 was considered statistically significant. The reference genotype for genetic analysis was DRX/DRX.
Results

Prevalence of multiple autoimmunity in patients with T1D and non-genetic risk factors

The distribution of non-islet autoantibodies in patients and schoolchildren is shown in ESM Figure 1. Overall, coeliac autoimmunity (TGA and/or CD) was detected in 9% (n=97, median age 9.7 years, median age at T1D onset 8.7 years) of cases tested and was associated with younger age (OR 0.9, 95%CI 0.8-0.9, p<0.0001). When those with a medical history of CD alone were not considered, TGA positivity was present in 7.3% (n=78) of patients. Gastric autoantibodies were detected in 8.2% of patients (n=87, median age 12.8 years, median age at T1D onset 11 years), and were less common in children under 5 years of age (p<0.05). Thyroid autoantibodies were detected in 9.6% of patients (n=102, median age 13 years, median age at T1D onset 11.7 years), and were associated with older age (OR 1.1, 95%CI 1.04-1.1, p=0.0001) (Figure 1). Thirty-three T1D patients (3.2%) had more than one type of non-islet autoantibody, and autoimmunity to TPO and H+/K+-ATPase was the most common (n=23) combination of MA in individuals with T1D.

Non-islet autoantibodies were not associated with T1D duration. All non-islet autoantibodies were associated with female gender (OR 1.9, 95%CI 1.2-
2.9, p=0.006; OR 2.1, 95%CI 1.3-3.3, p=0.002, OR 2.7, 95%CI 1.7-4.2, p<0.0001 and OR 3.4, 95%CI 1.6-7.2, p=0.002 for TGA/CD, ATPA, TPOA and multiple non-islet autoantibodies, respectively).

Genetic risk factors for multiple autoimmunity in patients with TID

Haplotype analysis found significant associations of TGA/CD (OR 2.4, 95%CI 1.4-3.9, p=0.001) and ATPA (OR 2.7, 95%CI 1.6-4.7, p=0.0003) with HLA DR3-DQ2. Gender analysis of HLA effects also identified an increased risk of ATPA in males carrying the DRB1*0404 allele (OR 2.9, 95%CI 1.1-7.2, p=0.025) (Table 1).

Genotype analysis showed that increased risk for TGA/CD was associated with DR3-DQ2/DR3-DQ2, DR4-DQ8/DR4-DQ8, DR3-DQ2/DRX and DR3-DQ2/DR4-DQ8 genotypes compared with the reference genotype DRX/DRX; OR 6.4 (95%CI 1.7-24.2, p=0.006), OR 6.0 (95%CI 1.5-22.9, p=0.009), OR 4.7 (95%CI 1.3-16.5, p=0.016), and OR 4.2 (95%CI 1.3-14.1, p=0.019), respectively. Risk for TPOA was associated with DR3-DQ2/DR3-DQ2 (OR 2.7, 95%CI 1.1-7.1, p=0.036), and risk for ATPA with DR3-DQ2/DR4-DQ8 (OR 3.6, 95%CI 1.2-10.3, p=0.019).
Individuals with T1D who were seropositive for more than one non-islet autoantibody

Of 1052 individuals tested for all 3 non-islet autoantibodies, 33 (3.1%) had antibodies of more than 1 specificity (ESM Table 1). No significant associations between HLA DR risk haplotypes and MA characterised by more than one non-islet autoantibody were observed. In individuals with thyrogastric autoimmunity, the frequency of the HLA DR3-DQ2 (n=17; 73.9%) and the HLA DR4-DQ8 (n=15; 65.2%) haplotypes was not different from the rest of the cohort (n=546; 57.3%, p=0.061, and n=702; 73.7%, p=0.565, respectively for DR3-DQ2 and DR4-DQ8).

Islet-autoantibodies in patients with multiple autoimmunity

Weak correlations of ATPA (r=0.184, p<0.0001) and TPOA (r=0.176, p<0.0001) with GADA positivity were observed, but no associations of non-islet antibodies with IAA, IA-2A or ZnT8A were found.

Discussion

Although the association between T1D and other autoimmune disorders is well-known, and risk factors for each autoimmune disease have been investigated extensively, studies of MA, or autoimmune polyglandular
syndromes, are very limited, especially including genetic analysis \(^{19, 30, 33}\). This study is the first population-based study in the UK to investigate the prevalence of MA in children and young adults with T1D, as well as genetic and non-genetic risk factors.

Prevalence of multiple autoimmunity in T1D and non-genetic risk factors

Multiple autoimmunity was common in patients with T1D diagnosed during childhood and adolescence. The prevalence of MA was higher in females and was strongly influenced by age. It was also strongly associated with HLA genotypes, particularly those including DR3-DQ2 haplotypes. Furthermore, risk of ATPA increased with DRB1*0404 in males.

The high frequency of TGA in individuals with T1D established in this study is in line with previous reports \(^{20, 23, 34-41}\). The prevalence of ATPA and TPOA was lower than previously reported (18-25\%) \(^{19, 30, 33, 41, 42}\), although exceeding that in the general population by up to 3 times. Discrepancies could be caused by differences in study design (population-based vs hospital-based), use of different testing techniques, assay thresholds or variations in the age of the cohorts tested. For example, our patient cohort comprises children and young adults and we therefore based our threshold on a schoolchild cohort. Using the commercial kit threshold, which is based on
healthy adult blood donors, would increase the prevalence of TPOA in our patients to 17.2%.

The detection of non-islet autoimmunity does not necessarily presage the onset of clinical disease, especially in those with levels close to the threshold. Complete clinical data were not available for the patients in this study and therefore we were unable to estimate the prevalence of latent disease or calculate predictive values for the different antibodies. However, it is likely that the majority of antibody positive patients will develop subclinical disease. While pernicious anaemia was found in only a minority of ATPA positive Belgian T1D patients, more than half of adult patients with parietal cell antibodies had autoimmune gastritis. Thyroid dysfunction was also common in those with TPOA. A Romanian study, found 87% of TPOA positive, but initially euthyroid patients with T1D progressed to subclinical hypothyroidism within 5±3.3 years. The high prevalence of multiple autoimmunity we observed therefore, even from a relatively young age, supports the case for targeted screening of T1D patients. However, the optimal timing and frequency of autoantibody testing as an aid to cost-effective diagnosis still needs to be determined. Prospective clinical studies of non islet autoimmunity in T1D patients are needed.
The increased risk for females developing most autoimmune diseases is well-known \cite{30, 33, 43, 45-48}, with sex hormones speculated to be involved \cite{43, 49}. Coeliac-specific autoantibodies were more common in younger children \cite{33, 50-52}, in contrast to ATPA and TPOA \cite{19, 20, 33, 43, 53-55}. However, as the majority of individuals in this cohort were tested close to T1D diagnosis, it was difficult to discriminate between the effects of age and age at T1D onset on non-islet autoantibody prevalence.

The cross-sectional design of this study could not inform us as to the timing of seroconversion and we cannot identify which component of MA could trigger or predict another. However, the highest frequency of coeliac autoimmunity was in children with T1D diagnosed under 5 years, which may suggest the presence of shared causative factors predisposing to early development of these diseases. Later onset of gastric autoimmunity may suggest that infectious agents such as \textit{H.pylori} or local gastric inflammation, which are more common in older age, could contribute to the loss of tolerance to ATPase \cite{56, 57}. The importance of \textit{H.pylori} however, remains doubtful as these bacteria are detected in only 16% of autoimmune gastritis cases \cite{58}. An age-dependent increase in TPOA demonstrates the overall tendency of autoimmunity, especially thyroiditis, to develop more often in puberty and beyond \cite{19, 43, 54, 55}. Furthermore, while we have attempted to
match the median age of the schoolchild controls to those of the patients, the
distribution of ages within the cohorts was different and this should be
considered when interpreting these results.

Our genetic findings provide additional evidence of the contribution of the
HLA DR3-DQ2 haplotype to the risk of clustering of T1D, coeliac and
thyroid autoimmunity \[19, 33, 59-62\], as well as novel information concerning its
contribution to the clustering of T1D and gastric autoimmunity. The HLA
DR4-DQ8/DR4-DQ8 genotype demonstrated an unexpectedly strong effect
on risk (second after DR3-DQ2/DR3-DQ2) for developing coeliac
autoimmunity in T1D patients, given the fact that the DR4-DQ8 haplotype
shows a much weaker association with CD than DR3-DQ2 \[61\]. The observed
risk effect of \textit{DRB1*0404} on the development of ATPA, replicates findings
of a recent large study \[30\]. No significant associations between genes and the
presence of more than one non-islet autoantibody was observed, probably
because of the small number of affected individuals, although an effect of
the HLA DR3-DQ2 haplotype on the development of thyrogastric
autoimmunity came close to significance. Further work is needed to reveal
the precise contribution of HLA and non-HLA genes to the risk of MA.

\textit{Overlap with islet autoantibodies}
Our results confirm the overlap between ATPA/TPOA and GADA in spite of correction for HLA DR3-DQ2 and DR4-DQ8, genes which are known to predispose to GADA. This may suggest common disease pathways, given that the GAD65 enzyme is ubiquitously expressed in the pancreas, thyroid gland and stomach. Chance coincidence should also be considered however, as GADA and ATPA/TPOA tend to be more common in older age and in patients with a longer duration of T1D.

Conclusion

In summary, T1D is frequently associated with additional autoimmune conditions such as coeliac, gastric and thyroid disease, which are also characterized by production of organ-specific autoantibodies. Measurement of non-islet autoantibodies in young individuals with T1D is important for early detection of multiple autoimmunity as this can improve the in-time diagnosis and prognosis. Knowledge of the genetic and non-genetic risk factors predisposing to clustering of autoimmune diseases may allow a deeper understanding of shared pathogenetic mechanisms and inform targeted screening strategies.
Acknowledgments

Financial support: this work was supported by Diabetes UK. A.K. acknowledges support from an International Scholarship of the President of Kazakhstan. H.W.D. and J.M.W. acknowledge support from NIH grant R01 DK052068 (to H.W.D.).

Specific author contributions: study design: Aizhan Kozhakhmetova, Alistair Williams, Kyla Chandler and Kathleen Gillespie, development of the ATPA assay: Aizhan Kozhakhmetova, Janet Wenzlau, Howard Davidson and Alistair Williams; testing for autoantibodies: Aizhan Kozhakhmetova, Rebecca Wyatt, Claire Caygill, Claire Williams, Kyla Chandler and Alistair Williams; HLA class II genotyping: Rachel Aitken, Kathleen Gillespie; data analysis: Aizhan Kozhakhmetova, Anna Long, Rebecca Wyatt; first draft of the manuscript: Aizhan Kozhakhmetova; and all authors contributed to its completion. All authors approved the final draft submitted.

We also thank the diabetes teams, paediatricians, physicians and families in the Oxford region for sera and genetic material made available through the Bart’s-Oxford family study. We are grateful to Georgina Mortimer for her
contribution to genotyping this cohort. The plasmid encoding the H⁺/K⁺-
ATPase A polypeptide was gifted by Dr H.W. Davidson (University of
Colorado, USA). Gratitude is extended to Dr Bob Lock from the Severn
Pathology Services at Southmead Hospital for assistance with validating the
newly established ATPA assay, and to Dr Christopher Penfold from the
University of Bristol for statistical advice.

Conflicts of Interest: none

References

2. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J. Worldwide increase in incidence of
type 1 diabetes - the analysis of the data on published incidence trends. Diabetologia
3. Patterson CC, Dahlquist GG, Gyurus E, Green A, Soltesz G. Incidence trends for childhood
type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a
5. Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence--
6. Krause I. Anti-infectious antibodies and autoimmune-associated autoantibodies in
patients with type I diabetes mellitus and their close family members. Ann N Y Acad
7. Lee YC, Nielsen JH. Regulation of beta cell replication. Mol Cell Endocrinol 2009; 297:18-
27.
rising incidence of type 1 diabetes is accounted for by cases with lower-risk human
formula and early β-cell autoimmunity: a randomized clinical trial. JAMA 2014;
311:2279-87.
presentation and early course of type 1 diabetes in patients with and without thyroid
11. Scaramuzza AE, Mantegazza C, Bosetti A, Zuccotti GV. Type 1 diabetes and celiac
disease: The effects of gluten free diet on metabolic control. World Journal of Diabetes
16. Rewers M. Epidemiology of celiac disease: What are the prevalence, incidence, and progression of celiac disease? Gastroenterology; 128:S47-S51.
46. Abrams P, De Leeuw I, Vertommen J. In new-onset insulin-dependent diabetic patients the presence of anti-thyroid peroxidase antibodies is associated with islet cell

Tables and figures

Table 1. Summary of HLA DR-DQ effects on the development of multiple autoimmunity in individuals with T1D

<table>
<thead>
<tr>
<th>HLA DR-DQ</th>
<th>TGA/CD (n=91)</th>
<th>ATPA(n=79)</th>
<th>TPOA (n=96)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haplotype Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR3-DQ2</td>
<td>2.4, p=0.001</td>
<td>2.7, p=0.0003</td>
<td>1.3, p=0.251</td>
</tr>
<tr>
<td>DR4-DQ8</td>
<td>0.9, p=0.556</td>
<td>1.1, p=0.588</td>
<td>0.8, p=0.432</td>
</tr>
<tr>
<td>DRB1*0404</td>
<td>1.3, p=0.457</td>
<td>1.6, p=0.106</td>
<td>1.6, p=0.127</td>
</tr>
<tr>
<td>Genotype Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR3-DQ2/DR3-DQ2</td>
<td>6.4, p=0.006</td>
<td>2.5, p=0.153</td>
<td>2.7, p=0.036</td>
</tr>
<tr>
<td>DR3-DQ2/DR4-DQ8</td>
<td>4.2, p=0.019</td>
<td>3.6, p=0.019</td>
<td>1.3, p=0.498</td>
</tr>
<tr>
<td>DR3-DQ2/DRX</td>
<td>4.7, p=0.016</td>
<td>2.6, p=0.104</td>
<td>1.4, p=0.506</td>
</tr>
<tr>
<td>DR4-DQ8/DR4-DQ8</td>
<td>6.0, p=0.009</td>
<td>1.2, p=0.797</td>
<td>1.8, p=0.280</td>
</tr>
<tr>
<td>DR4-DQ8/DRX</td>
<td>1.4, p=0.621</td>
<td>1.2, p=0.769</td>
<td>1.1, p=0.832</td>
</tr>
<tr>
<td>Gender Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DR3-DQ2</td>
<td>M</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DR4-DQ8</td>
<td>M</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DRB1*0404</td>
<td>M</td>
<td>NS</td>
<td>2.9, p=0.025</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DR3-DQ2/DR3-DQ2</td>
<td>M</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>8.0, p=0.017</td>
<td>NS</td>
</tr>
<tr>
<td>DR3-DQ2/DR4-DQ8</td>
<td>M</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DR3-DQ2/DRX</td>
<td>M</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DR4-DQ8/DR4-DQ8</td>
<td>M</td>
<td>F</td>
<td>NS</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>7.9, p=0.013</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>DR4-DQ8/DRX</td>
<td>M</td>
<td>F</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

TGA/CD, ATPA and TPOA – antibodies to transglutaminase and/ coeliac disease, antibodies to ATPase and antibodies to thyroid peroxidase, respectively. Odds ratios and p-values are represented. NS – not significant result (p>0.05). Increased risk of TGA/CD was linked to the DR3-DQ2 haplotype, with the highest risk in DR3-DQ2/DR3-DQ2 individuals; Increased risk of ATPA was linked to DR3-DQ2, DRB1*0404 (in males) and DR3-DQ2/DR4-DQ8; Increased risk of TPOA was linked to DR3-DQ2/DR3-DQ2. Reference genotype – DRX/DRX.
Figure 1. The prevalence of non-islet autoantibodies in children and young adults with T1D stratified by age group. The prevalence of TGA/CD reduced with age (p<0.0001), while ATPA were uncommon in children under 5 (p<0.05), and the prevalence of TPOA increased with age (p<0.0001).
(a)
ESM Figure 1. The distribution of non-islet autoantibodies in healthy children and young patients with T1D. Antibody levels are shown for (a) TGA, (b) TPOA and (c) ATPA. The thresholds indicated by the dotted lines were set at the 97.5th percentile of the 5470 children of the ALSPAC cohort for TGA, 318 schoolchildren for ATPA and 205 schoolchildren for TPOA. Those samples with levels below 1 TGA unit, 5 ATPA units/ml and 2 TPOA units/ml are represented by the numbers in boxes. The distribution of ATPA and TPOA levels in patients appears distinct from those of controls, while that of TGA seems similar in the two cohorts.