Highlights

- We investigate the relationship between financial volatility and the real economy
- Adverse shocks to aggregate demand and supply increase persistent volatility
- Shocks to persistent volatility deteriorate macroeconomic fundamentals
- Transitory volatility is unrelated to macroeconomic fundamentals
- Transitory component is instead associated with changes in investor sentiment
Financial Market Volatility, Macroeconomic Fundamentals and Investor Sentiment

CHING-WAI (JEREMY) CHIUa \quad RICHARD D.F. HARRISb

EVARIST STOJAc \quad MICHAEL CHINd

a Bank of England, London, UK (e-mail: jeremy.chiu@bankofengland.co.uk)
b Corresponding author. Xfi Centre for Finance and Investment, University of Exeter, Exeter EX4 4ST, UK (e-mail: R.D.F.Harris@exeter.ac.uk)
c School of Economics, Finance and Management, University of Bristol, UK (e-mail: e.stoja@bristol.ac.uk)
d Bank of England, London, UK (e-mail: mail@michael-chin.com)

We would like to thank the Editor, the Associate Editor and two anonymous referees for the insightful comments and suggestions that have greatly helped to improve the paper. We have also benefited from discussions with George Bulkley, Nick Taylor, seminar participants at the University of Bristol and the Bank of England. Harris and Stoja gratefully acknowledge the support of the Economic and Social Research Council Impact Acceleration Account (grant number ES/M50046X/1).
Abstract

In this paper, we investigate the dynamic relationship between financial market volatility, macroeconomic fundamentals and investor sentiment, employing a two-factor model to decompose volatility into a persistent long run component and a transitory short run component. Using a structural VAR model with Bayesian sign restrictions, we show that adverse shocks to aggregate demand and supply cause an increase in the persistent component of both stock and bond market volatility, and that adverse shocks to the persistent component of either stock or bond market volatility cause a deterioration in macroeconomic fundamentals. We find no evidence of a relationship between the transitory component of volatility and macroeconomic fundamentals. Instead, we find that the transitory component is more closely associated with changes in investor sentiment. Our results are robust to a wide range of alternative specifications. Out-of-sample forecasting shows that the components of volatility can improve forecasts of macroeconomic fundamentals, and vice versa.

Keywords: Stock and bond market volatility; Two-factor volatility model; Macroeconomic fundamentals; Structural vector autoregression; Bayesian estimation.

JEL classification: C32, E32, E44.
1. Introduction

It is by now well established that financial market volatility and macroeconomic fundamentals are inextricably linked. This link has been analysed from two, quite distinct perspectives. Early studies focussed on the macroeconomic determinants of financial market volatility (see, for example, Officer, 1973; Schwert, 1989), and these have been used to develop improved models for forecasting volatility, particularly over longer horizons (see, for example, Engle and Rangel, 2008; Engle, Ghysels and Sohn, 2013). Paye (2012) and Christiansen, Schmeling and Schrimpf (2012) analyse the link between financial volatility and macroeconomic conditions by means of predictive regressions. Further, Asgharian, Hou and Javed (2013) and Conrad and Loch (2015) extend the results in Engle, Ghysels and Sohn (2013) by investigating a much broader set of macroeconomic variables. These studies find evidence that macroeconomic conditions are linked to the long-term component of volatility.

Another, more recent strand of the literature has investigated the impact that financial market volatility has on the real economy, both theoretically (see, for example, Bloom, 2009; Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry 2014; Basu and Bundick, 2015; Berger, Dew-Becker and Giglio, 2017; Gourio, 2013; Leduc and Liu, 2015) and empirically (see, for example, Bloom, 2009; Bloom, Baker and Davis, 2016; Gilchrist, Sim and Zakrajsek, 2014; Jurado, Ludvigson and Ng, 2015; Ludvigson, Ma and Ng, 2015). This strand of the literature focusses on total volatility. However, it is well documented that financial market volatility is characterised by a two-factor process, with a slowly varying long run component and a strongly mean-reverting short run component (see, for example, Ding and Granger, 1996; Engle and Lee, 1999; Gallant, Hsu and Tauchen, 1999; Alizadeh, Brandt and Diebold, 2002; Chernov, Gallant, Ghysels and Tauchen, 2003; Adrian and Rosenberg, 2008).

In this paper, we decompose the volatility of stock and bond returns into a long run persistent component and a short run transitory component and investigate the bidirectional relationships that each of these has with macroeconomic fundamentals and investor sentiment. These
relationships are interesting for three reasons. Firstly, since the commonly used measure of total volatility conflates these two components, policy makers and practitioners are better served by utilizing a volatility measure that is more closely associated with the macroeconomic fundamentals. Secondly, having a good understanding of how these volatility components interact with the economy will enable policy makers and practitioners to obtain more accurate forecasts of volatility conditional on macroeconomic shocks. Thirdly, although the financial economics literature has extensively documented that volatility is characterized by a two-component process, the macroeconomics literature has yet to investigate the economic implications of this. Following Engle and Rangel (2008) and Engle et al. (2013), we hypothesise that the long run component of volatility is related to macroeconomic fundamentals that are associated with future cash flows and discount rates, while the short run component is related to the transitory determinants of volatility, such as investor sentiment. To explore this notion, we use the semi-parametric cyclical volatility model of Harris, Stoja and Yilmaz (2011) to decompose financial market volatility into a long run persistent component and a short run transitory component. We then estimate a structural vector autoregression (SVAR) model for the components of financial market volatility, real activity (measured by output growth and inflation), monetary policy (as reflected in the short term interest rate) and investor sentiment. We impose standard a priori sign restrictions that are defined according to well established micro-based macroeconomic principles in order to identify the structural shocks. We measure the impact of adverse shocks to aggregate demand, aggregate supply and investor sentiment on both stock and bond market volatility and the impact of adverse shocks to stock and bond market volatility on macroeconomic fundamentals and investor sentiment.

The model is estimated for the U.S. using monthly data over the period July 2001 to June 2015. We show that adverse shocks to aggregate demand and aggregate supply cause an increase in both stock and bond market volatility and that adverse shocks to either stock or bond market volatility cause a deterioration in macroeconomic fundamentals. Moreover, we show that it is the persistent component, not the transitory component, that is more closely related to macroeconomic fundamentals. In light of these findings, we then estimate a smaller SVAR model to examine the dynamic relationship between changes in investor sentiment and
transitory volatility. We find that an unanticipated improvement in sentiment first reduces and then increases transitory volatility. Moreover, negative shocks to transitory volatility lead to a significant improvement in sentiment. This suggests that transitory volatility and investor sentiment are closely linked. Our results are robust to a wide range of alternative model specifications. Finally, we show that our in-sample results also hold out-of-sample. In particular, we show that conditioning on volatility helps to improve forecasts of macroeconomic fundamentals, and conditioning on macroeconomic fundamentals helps to improve forecasts of volatility. Moreover, persistent volatility is shown to be more useful than transitory volatility for forecasting output growth, while transitory volatility is more useful than persistent volatility for forecasting investor sentiment.

Our work is related to Berger et al. (2017), who investigate the relationship between stock market volatility and the real economy in the U.S., using data on both realized volatility and option-implied expectations of volatility. They show that, consistent with the findings of Bloom (2009) and Basu and Bundick (2015), shocks to current realized volatility are contractionary, while shocks to expected volatility are expansionary although often insignificant. The authors argue that these facts are inconsistent with models in which increases in expected volatility cause contractions, but are in line with the predictions of a simple model in which aggregate technology shocks are negatively skewed. Our work differs from that of Berger et al. (2017) in a number of respects. First, we consider the bidirectional relationship between financial market volatility and the wider economy; in other words, we are interested also in the impact that conventional macroeconomic shocks have on volatility. Second, by decomposing total volatility into its long run persistent and short run transitory components using a statistical method, we are able to more precisely define the relationship between financial market volatility and macroeconomic fundamentals and we present evidence to support this. Moreover, it allows us to investigate the impact of non-macroeconomic determinants of volatility and in particular, to test hypotheses about the relationship between the transitory component of volatility and investor sentiment. Standard asset pricing theory suggests that sentiment has no influence on economic activity. However, De Long, Shleifer, Summers and Waldmann (1990) show that with limits to arbitrage, sentiment-based decisions of uninformed investors lead to excess volatility.
Changes in sentiment can trigger strong liquidity shocks with a significant impact on volatility (Campbell, Grossman and Wang, 1993). In the short run, a change in one set of prices may influence investor sentiment triggering changes in a seemingly unrelated set of prices (Eichengreen and Mody, 1998). Indeed, Baek, Bandopadhyaya and Du (2005) argue that changes in investor sentiment explain asset price movement in the short-term better than fundamental factors. Finally, while Berger et al. (2017) focus on the U.S. stock market, we examine both the stock and bond markets.

Our work is also related to Bekaert, Hoerova and Lo Duca (2013), who decompose the VIX index (which is an estimate of the risk neutral volatility of the S&P 500 index) into the conditional variance of the S&P 500 and the variance risk premium, and explore the relationship between each of these components and US monetary policy. Using a structural VAR with a variety of identification schemes for monetary policy shocks, they show that loose monetary policy leads to a sustained reduction in risk aversion and, to a lesser extent, a reduction in uncertainty. The causal link from risk aversion and uncertainty to monetary policy is shown to be much weaker. Using the same decomposition, Bekaert and Hoerova (2014) show that the variance risk premium is a good predictor of stock returns, while conditional volatility is a much better predictor of financial activity, as measured by growth in industrial production, and is also a better predictor of financial instability. While a number of our findings are consistent with the results that both Bekaert et al. (2013) and Bekaert and Hoerova (2014) report, our work is distinguished by the fact that it is concerned with the statistical decomposition of conditional volatility into its short run transitory component and long run persistent component, and the relationship that each of these has with macroeconomic fundamentals, monetary policy and investor sentiment. In addition, this paper contributes to the literature which applies SVAR to finance, such as Boubaker, Gounopoulos, Nguyen and Paltalidis (2017) who provide evidence

1 Non-economic events such as weather, sport and aviation disasters can also shift sentiment leading to changes in asset prices in the short term (see, for example, Hirshleifer and Shumway, 2003; Kamstra, Kramer and Levi, 2003; Edmans, Garcia and Norli, 2007; Kaplanski and Levy, 2010).
that monetary policy shocks lead to substantial increase in pension funds’ allocation to stocks, especially during times of unconventional monetary policy.

Finally, our work is related to the literature on the macroeconomic determinants of multifactor volatility. Engle and Rangel (2008) develop a Spline-GARCH model in which volatility is modelled as a combination of a low frequency component that is determined by both the level and volatility of macroeconomic variables, market development and market size, and a high frequency component that is modelled as a GARCH process. They estimate the model for a sample of developed and emerging markets and show that the Spline-GARCH model provides less noisy estimates of low frequency volatility than annual realized volatility. Engle et al. (2013) develop this idea further and propose a GARCH-MIDAS model that combines a GARCH model for daily stock return data and a MIDAS polynomial for monthly, quarterly and bi-annual macroeconomic variables. They compare the GARCH-MIDAS model with the Spline-GARCH model of Engle and Rangel (2008) and a component GARCH model that combines realized volatility measured at different frequencies. They find that over a long sample of data for the U.S., the levels and volatility of output growth and inflation are useful predictors of future market volatility. Similarly, Conrad, Loch and Rittler (2014) use a MIDAS approach to study the relationship between the oil-stock return correlations and the US macroeconomic variables. They show that movement in long-term oil market volatility and oil-stock correlation can be well predicted by macroeconomic factors. Nowak, Andritzky, Jobst and Tamirisa (2011) adopt a two-step approach to examine how emerging market bond prices and volatility respond to macroeconomic news. They find that surprises about macroeconomic conditions in emerging markets affect both conditional returns and volatility, but have a longer and stronger effect on volatility. Like Engle and Rangel (2008), we also recognise the component structure of volatility and use a semi-parametric approach to estimate it. However, our objective is to map the bidirectional relationships between financial market volatility and the wider economy. Moreover, the structural VAR estimation framework also allows us to better uncover the dynamics of these relationships. Additionally, while Engle and Rangel (2008) and Engle et al. (2013) focus on the low frequency long run component of volatility, which they relate to macroeconomic fundamentals, we also explore the role of the high frequency short run
component of volatility and its relationship with investor sentiment. The literature contains few studies that examine this relationship with no clear picture emerging. Brown (1999) shows that shifts from the average level of sentiment are positively related to volatility, while Lee, Jiang and Indro (2002) find that bullish changes in sentiment lead to decreases in volatility and vice versa. However, Wang, Keswani and Taylor (2006) find limited evidence in support of a relationship between sentiment and volatility.

The remainder of this paper is organized as follows. In the following section, we describe the decomposition of volatility into its persistent and transitory components. In Section 3, we discuss the data used in the analysis and the structural VAR methodology. Section 4 presents the empirical results of the analysis. Section 5 considers the relationship between the persistent and transient components of volatility and market sentiment. Section 6 presents the results of the out-of-sample forecasting exercise. Section 7 provides a summary of the paper, some concluding comments and suggestions for further work. The results of further robustness checks are available in the online Appendix.

2. The Cyclical Volatility Model

In this section, we outline the cyclical volatility model of Harris, Stoja and Yilmaz (2011, hereafter HSY), which we use to extract the long run persistent and short run transitory components of volatility that are used in the empirical analysis. While other models could also be used, the HSY framework offers a simple and flexible way to decompose volatility. Suppose that the natural logarithm of the asset price at time s, denoted $p(s)$, follows a continuous time diffusion given by:

$$ dp(s) = \sigma^2(s) dW(s) \quad (1) $$
where \(dW(s)\) is the increment of a Wiener process and \(\sigma^2(s)\) is the instantaneous variance, which is strictly stationary and independent of \(dW(s)\). Suppose that we observe the price at intervals \(t = 1, \ldots, T\). Conditional on the sample path of \(\sigma^2(s)\), the logarithmic return, \(r_t = p_t - p_{t-1}\), is normally distributed with integrated variance defined by:

\[
\sigma_t^2 = \int_{t-1}^t \sigma^2(s) \, ds
\]

HSY assume that the integrated standard deviation follows a two-factor dynamic structure, with a persistent long run component, \(q_t\), and a transitory short run component, \(c_t\):

\[
\sigma_t = q_t + c_t
\]

This specification is motivated by the findings of a number of authors who show that volatility is characterised by a factor structure. For example, Engle and Lee (1999) find that the component GARCH model which decomposes volatility into a persistent long run component and a transitory short run component that is mean-reverting towards the persistent component, provides a better fit to the data than an equivalent one-factor model. Alizadeh et al. (2002) estimate both one-factor and two-factor range-based stochastic volatility models for the daily returns of a number of exchange rates and find that the evidence strongly supports a two-factor model with one highly persistent factor and one rapidly mean-reverting factor. Similarly, Brandt and Jones (2006) estimate one-factor and two-factor range-based EGARCH models for daily returns on the S&P 500 index. They too show that volatility is well characterised by a two-factor model with one highly persistent factor and one strongly stationary factor. In contrast with

\(^2\) For convenience, we assume that the drift of the log price process is zero, which is a common assumption when dealing with short horizon returns. However, it is straightforward to relax this assumption.
these authors, however, HSY leave the precise dynamics of the long run component, q_t, unspecified and instead estimate it non-parametrically. Conditional on the trend, HSY assume that the transitory component $c_t = \sigma_t - q_t$ follows a stationary first order autoregressive process:

$$c_t = \alpha c_{t-1} + u_t$$

where u_t is a random error term with zero mean and constant variance. The parameter $\alpha < 1$ measures the speed of reversion of volatility to the long run trend q_t. The integrated volatility, σ_t, is unobserved, but can be easily estimated using a measure of realized volatility (see, for example, Andersen, Bollerslev and Diebold, 2004) or the intraday range (see, for example, Parkinson, 1980). HSY use the range-based cyclical model to generate multi-step out-of-sample forecasts of daily exchange rate volatility and show that it provides a significant improvement over the one-and two-factor range-based EGARCH models and the range-based FIEGARCH model of Brandt and Jones (2006).

In this paper, we use the cyclical volatility model of HSY to estimate the persistent and transitory components of the realized standard deviation of monthly stock and bond returns. Rather than applying the model directly to monthly returns, we extract the persistent component from the daily standard deviation and aggregate this to yield the persistent component of the monthly realized standard deviation. We then use this persistent component to compute the transitory component of the monthly realized standard deviation. We proxy the daily integrated standard deviation by the absolute return and, following HSY, apply the one-sided low-pass filter of Hodrick and Prescott (1997) to estimate the persistent component. We set the smoothing parameter in the Hodrick-Prescott filter to the commonly used value of 100 multiplied by the squared frequency of the data, which for daily data (assuming 240 trading days per year) is 5,760,000 (see, for example, Baxter and King, 1999). In order to prevent look-ahead bias, we apply the cyclical volatility estimator to a rolling window of 500 observations. For each iteration
of the rolling window procedure, we save the estimated value of the persistent component for the most recent day, which we denote $q_{t,i}$, where t_i represents day i of month t. The rolling window daily persistent component is then aggregated to yield the persistent component of the standard deviation for each month t:

$$q_t = \left(\sum_{i=1}^{N_t} q_{t,i}^2\right)^{0.5}$$

(5)

where N_t is the number of days in month t. The transitory component of the month t standard deviation is then computed as:

$$c_t = \sigma_t - q_t$$

(6)

where the realized standard deviation of month t is given by:

$$\sigma_t = \left(\sum_{i=1}^{N_t} r_{t,i}^2\right)^{0.5}$$

(7)

The monthly persistent and transitory components are then used in the empirical analysis, as described below.\(^3\)

\(^3\) To check that our results are not sensitive to the precise way in which the monthly persistent and transitory components of volatility are estimated, we undertook a number of robustness tests. First, we used the realized variance, range-based variance and range-based standard deviation in place of the realized standard deviation. Second, we used a range of values for the smoothing parameter of Hodrick-Prescott filter from 10^5 to 10^7. Third, we used the band pass filter of Christiano and Fitzgerald (2003), with oscillation parameters of $(2, 120)$, $(2, 240)$, $(12, 240)$, $(120, 240)$ and $(200, 240)$. We used alternative rolling window lengths of 250 and 750
3. Data and Estimation Methodology

3.1. Sample and Data

Our volatility estimation sample comprises monthly data for the period January 1990 to June 2015. We use the cyclical volatility model described in the previous section to estimate the persistent and transitory components of the standard deviation of aggregate stock and bond returns for the U.S. daily return index data for equities and bonds were obtained from Datastream (codes TOTMKUS and BMUS10Y, respectively) for the period 03 February 1988 to 30 June 2015, and used to construct daily log returns. For the sake of brevity, we do not report summary statistics for the daily return series, but note that consistent with evidence reported elsewhere, for both markets, the series are highly non-normal with positive excess kurtosis and negative skewness. Returns are serially uncorrelated, but squared returns are highly autocorrelated, indicative of volatility clustering. The first 500 observations (i.e. 03 February 1988 to 02 January 1990) were reserved for initial estimation of the cyclical volatility model and then the rolling window procedure described in the previous section was used to estimate the persistent and transitory components of the monthly realized standard deviation over the estimation sample. Panel A of Figure 1 plots the realized standard deviation and the persistent days. In addition, we estimated the persistent component using high-frequency prices and with the GARCH-MIDAS and Spline-GARCH techniques. The parameters of the Spline-GARCH are estimated simultaneously, by maximizing the log likelihood. The usual restrictions on the GARCH equation parameters are imposed to ensure the variance is non-negative. There are no restrictions on the parameters of the spline (see Engle and Rangel, 2008 for full details). Again, estimated by maximising the log likelihood, the GARCH-MIDAS model assumes that the long-run component of volatility is determined by the history of realised volatility weighted by the MIDAS polynomials (see Engle et al. 2013 for details). In all cases, our results are qualitatively similar and our conclusions are broadly unchanged. We plot selected alternative measures of persistent volatility in Figure A10 in the online Appendix. We would like to thank Eric Ghysels and Brian Reis for the Matlab code for the GARCH-MIDAS and Spline-GARCH models.

The SVAR estimation sample starts in July 2001 because we are constrained by the availability of the monthly Crash Confidence Index, which we discuss below.
component of stock market volatility, while Panel B plots the transitory component. Realized volatility displays very pronounced volatility clustering. The three periods of high volatility during the dotcom boom and bust, the 2008-2009 financial crisis and the 2010-2011 Eurozone crisis are evident, with increases in both the persistent and transitory components of volatility.\(^5\)

![Figure 1](image)

We are interested in exploring the relationship between financial market volatility and various aspects of the wider economy. In particular, we construct a model that captures the dynamics of the real economy (measured by output and prices), the monetary policy (as reflected in the short term interest rate) and investor sentiment. The data used to construct the macroeconomic variables in our model are obtained from Datastream. Real output growth \((g_t) \) for the U.S. is measured by the monthly logarithmic change of seasonally adjusted industrial production at constant prices (code USIPTOT.G). The inflation rate \((\pi_t) \) is measured by the monthly logarithmic change in the seasonally adjusted consumer price index (code CPIAUCSL). The short term interest rate \((r_t) \) is the Federal Funds rate (code USFDFUND). As a proxy for investor sentiment \((s_t) \), we use the U.S. Crash Confidence Index provided by Robert Shiller.\(^6\) Owing to the

\(^5\) The autoregressive parameters for total, persistent and transitory stock volatility are 0.76, 0.93 and 0.33, respectively, while for bond volatility they are 0.66, 0.90 and 0.14 respectively. Results from statistical tests, including the Augmented Dickey-Fuller test and Kwiatkowski-Phillips-Schmidt-Shin test, show no evidence of a unit root in any series.

\(^6\) The U.S. Crash Confidence Index was obtained from http://som.yale.edu/faculty-research/our-centers-initiatives/international-center-finance/data/stock-market-confidence-indices/us-crash-confidence-index. The index is based on a survey of respondents who attach a probability of less than 10 percent to a stock market crash in the next six months. Higher index values are associated with more positive investor sentiment.
availability of this index, the estimation sample for the SVAR that includes investor sentiment starts from July 2001.

3.2. VAR Methodology

In order to explore the relationship between volatility and the wider economy, we employ the structural vector autoregression methodology (Sims, 1980). In particular, we consider the following VAR system:

\[Y_t = A_0 + \sum_{k=1}^{p} A_k Y_{t-k} + u_t \]

(8)

where \(Y_t = [vol_t, g_t, \pi_t, r_t, s_t]' \) is the 5 × 1 vector of variables measured in month \(t \), \(A_0 \) is an 5 × 1 vector of constants, \(A_k \) is the 5 × 5 matrix of parameters for lag \(k \) and \(u_t \) is a 5 × 1 vector of reduced form residuals that are assumed to be normally distributed with mean zero and covariance matrix \(\Sigma \). \(vol_t \) is, in turn, total volatility, \(\sigma_t \), the long run persistent component of volatility, \(q_t \), or the short run transitory component, \(c_t \). We first estimate the model using OLS and employ the Schwartz Bayesian Criterion to select a lag length for the VAR of \(p = 3 \). Diagnostic tests suggest that the resulting model is well specified.

3.3. Structural Shock Identification

We adopt the Bayesian sign restriction framework to identify structural shocks (see Uhlig, 2005; Arias, Rubio-Ramirez and Waggoner, 2014). There are two advantages to this approach. First, with respect to the structural macroeconomic shocks, we are able to draw on standard theoretical predictions concerning output, prices and the short-term interest rate. Second, we
remain agnostic about the responses of financial market volatility and investor sentiment to the structural macroeconomic shocks. Denoting v_t as the vector of structural shocks, we assume the following relationship between reduced-form and structural shocks:

$$v_t = S^{-1}u_t$$

(9)

In the current set-up, the orthogonal structural shock identification lies in the specification of the ‘contemporaneous’ matrix S. Technically, if P is the Cholesky decomposition of Σ such that $S^{-1} = P$ and $\Sigma = PP'$, it follows that $S^{-1} = PD$ also satisfies $\Sigma = PP'$ if D is orthonormal (that is $DD' = I$). In other words, we can repeatedly draw orthonormal rotation matrices D and retain those matrices $S^{-1} = PD$ which give impulse response functions satisfying our a priori sign restrictions.

We identify the following structural macroeconomic shocks:

- Adverse aggregate demand shocks drive down output growth, the inflation rate and short-term interest rate contemporaneously;

- Adverse aggregate supply shocks drive down output growth, but drive up the inflation rate and short-term interest rate contemporaneously.

7 These structural shocks are not explained by any endogenous variables. Instead, they are constructed from the reduced-form residuals that are unexplained by the endogenous variables in the SVAR system.

8 The assumption of a contemporaneous rise in short-term interest rate is consistent with the Taylor rule principle (Taylor, 1993) which specifies how monetary policy systematically responds to inflation and output gap. Our baseline identification scheme of adverse aggregate supply shock is based on Smets and Wouter (2007). They propose
• Adverse monetary policy shocks drive up the short-term interest rate but lead to lower output growth and inflation rate contemporaneously.

This way of identifying the three macroeconomic shocks is based on micro-founded macroeconomic models and is subject to a broad consensus in the macroeconomics literature (see, for example, Canova and de Nicolo, 2003). We deliberately leave out any restrictions on the contemporaneous responses of financial market volatility and investor sentiment, reflecting the fact that we are agnostic about the endogenous responses of these variables with respect to the structural macroeconomic shocks. To complete our shock identification scheme, we introduce two more shocks:

• Adverse investor sentiment shocks are assumed to be associated with no contemporaneous change in real activity, but its subsequent impact is unrestricted. This reflects the assumption that a shock to investor sentiment takes at least one period to be transmitted to the economy. The direction of the resulting impact on financial market volatility is unrestricted;

• Adverse financial market volatility shocks are assumed to be associated with no contemporaneous change in either investor sentiment or real activity, but its subsequent impact is unrestricted. This reflects our assumption that a shock to a canonical dynamic stochastic general equilibrium (DSGE) model for the U.S. and show that a good productivity shock (i.e. aggregate supply shock) raises output, reduces inflation and interest rate. However, robustness checks presented in Table A2 and Figures A3-A5 in the online Appendix show that this assumption is not crucial to our shock identification scheme.
financial market volatility takes at least one period to impact investor sentiment and
the real economy.\footnote{The assumption that it takes one period for volatility and investor sentiment shocks to
be transmitted to the real economy is different from that of Bloom (2009), who assumes
ccontemporaneous responses are possible. This departure reflects the trade-off in our
structural shock identification: since the aim is to be agnostic about how volatility is
contemporaneously affected by macro shocks, we cannot assume that volatility shocks
can impact macro variables contemporaneously. However, we reverse this assumption
in the alternative shock identification scheme and find that our results are robust.}

The sign restrictions associated with the three macroeconomic shocks, the investor sentiment
shock and the financial market volatility shock are summarised in Table 1. The five structural
shocks, which by construction are orthogonal to each other, enable us to investigate the causal
relationship from financial volatility to macroeconomic fundamentals and vice versa. The results
reported below are robust to an alternative shock identification scheme discussed in the
robustness section.

\[\text{Table 1}\]

3.4. Model Estimation and Impulse Response Functions

The model is estimated using Bayesian methods with uninformative priors. Bayesian estimation
carries the advantage of incorporating both parameter and shock uncertainty during estimation.
Being a simulation-based method, it is also compatible with the simulation requirement of sign
restrictions. Each model is estimated with 5000 simulations, with the first 1000 draws as burn-
in.
Impulse response functions, which are determined by the estimated SVAR coefficients and our structural shock identification schemes, provide a useful way to investigate the endogenous propagation of structural shocks within an economic system. The responses are interpreted as deviations from the long run, steady-state value that prevails before the system is perturbed by the shock. Our objective is to uncover the bidirectional relationship between financial market volatility and the wider economy. For this reason, we focus on two types of impulse response. The first is the endogenous responses of financial market volatility conditional on the following four adverse shocks: aggregate demand shocks; aggregate supply shocks; monetary policy shocks; and investor sentiment shocks. The second is the response of output growth, inflation, the interest rate and investor sentiment to an adverse shock to financial market volatility. As noted above, we separately consider the role of total volatility, the long run persistent component of volatility and the short run transitory component of volatility.

4. Empirical Results

4.1. Main Shock Identification Scheme

In this section, we report the impulse response results of estimating the SVAR model given by (8). We focus on the impulse responses that are implied by the estimated SVAR coefficients. We first present detailed results for the U.S. using stock market volatility. We then provide a brief summary of our findings using bond market volatility. For these cases, we report only a selection of the empirical results. In each case, the figure presents the response from the SVAR specified using either total volatility (the black line) or the persistent component of volatility (the blue line). Following Sims and Zha (1999), the figure shows also the associated 68 percent confidence interval (the black and blue dashed lines, respectively).}

Sims and Zha (1999) argue that the conventional frequentist error bands can be misleading because they mix information about parameter location with information about model fit. They propose likelihood-based bands and suggest using 68% interval.
Figure 2 presents the responses of output growth, inflation, the interest rate, sentiment and stock market volatility to an adverse aggregate demand (AD) shock, represented by a reduction of 35 basis points (bp) in output growth, a fall of 10 bp in inflation and a slight decrease in the interest rate on impact.11,12 Such a shock causes significant impact to the real economy for about eight months. An AD shock has a statistically significant, positive impact on stock market volatility, with a similar magnitude for both total volatility and persistent volatility. The peak response of persistent volatility of about 40 bp occurs later than it does for total volatility and the impact stays significant for longer as it takes longer to dissipate, reflecting the smoothed nature of the persistent component. An AD shock has a negative impact on investor sentiment, but this is only marginally statistically significant.

Figure 3 presents the impulse responses of the five variables to an adverse aggregate supply (AS) shock, represented by an initial reduction in output growth by 43 bp and an increase in inflation of 20 bp, as well as a short-lived rise in the interest rate. The response pattern following an AS shock is very similar to that following an AD shock. In particular, it yields a

bands to provide a more precise estimate of the true coverage probability (see also Blanchard and Perotti, 2002; Uhlig, 2005).

11 Sign restrictions identify a set of models and hence do not uniquely pin down a single structural model. The estimation gives no information about the size of one standard deviation structural shocks (see Fry and Pagan, 2011; Baumeister and Hamilton, 2015).

12 For reference, the standard deviation of the monthly industrial production growth rate in the sample is 70 basis points, whereas the standard deviation of the inflation rate is 33 basis points. At the zenith of the 2008 financial crisis, the industrial production growth rate experienced a 280 basis point fall, from -1.5% to -4.3% between September and October 2008.
statistically significant increase in both total volatility and persistent volatility, and a reduction in investor sentiment. In contrast with the AD shock, the reduction in investor sentiment becomes statistically significant after four months. As with an AD shock, the peak response for persistent volatility of about 45 bp occurs somewhat later than for total volatility. The conclusion from Figures 2 and 3, therefore, is that macroeconomic shocks, whether to demand or supply, create a significant and sustained increase in both persistent and total volatility, with the former peaking later and staying significant for a longer period. We also find that adverse shocks to financial market volatility cause a deterioration in macroeconomic fundamentals. Shocks to persistent volatility have a deeper recessionary impact than shocks to total volatility. In particular, given the same shock to persistent volatility and total volatility, the former leads to a more sustained rise in volatility and a deeper contraction in economic activity.

[Figure 3]

Figure 4 presents the impulse response functions of the five variables to an adverse monetary policy (MP) shock, which is associated with a 3 bp increase in the interest rate. An MP shock yields a small and marginally significant reduction in output growth and inflation, although in both cases, the impact is short lived. Both investor sentiment and volatility increase, but in neither case is the impact statistically significant.

[Figure 4]

Figure 5 shows the responses to an adverse sentiment shock. The effect on volatility is insignificant and very short lived. This supports the hypothesis that sentiment shocks do not lead to significant changes in either volatility or macroeconomic fundamentals.

[Figure 5]
Having considered the causal links from macroeconomic fundamentals to financial market volatility, we now consider the links in the reverse direction, as many other papers do in the literature. Figure 6 presents the impulse response functions of the five variables to an adverse volatility shock. To facilitate comparison of the responses caused by shocks in total and persistent volatility, we normalise the size of the volatility shock to be 70 basis points (not annualised). In other words, our results below are all conditional on a volatility shock of identical size. Increasing volatility – whether total volatility or persistent volatility – leads to a significant drop in output growth, inflation and sentiment. The key difference is that shocks to persistent volatility lead to deeper economic contractions, which can be explained by its protracted rise in magnitude after the shock. For example, a shock to persistent volatility leads to a drop of about 15 bp in output growth, about 9 bp in inflation and about 1.6 percent in investor sentiment. The magnitude of these responses is almost double that of the responses to a shock to total volatility. The interest rate displays a sustained reduction, but this is not statistically significant. These results are consistent with the burgeoning empirical evidence on the impact of financial volatility shocks on the macroeconomy.

[Figure 6]

We now turn to the SVAR analyses for transitory volatility. Figure 7 displays the responses of transitory volatility (the green line) to macroeconomic and investor sentiment shocks. We find little evidence that these shocks lead to a significant increase in transitory volatility. Figure 8 shows the responses of the economic system to transitory volatility shocks. Apart from a very

13 This is the size of a one standard deviation shock obtained with the recursiveness assumption. This normalisation is motivated by the fact that sign restrictions only set-identify models (see footnote 11), and our desire to conduct a fair and unbiased comparison among impulse responses caused by different volatility shocks.
short-lived fall in prices and real activity, these shocks do not in general cause a significant macroeconomic response.

[Figure 7]

[Figure 8]

To summarize, we provide empirical evidence to support the hypothesis that persistent volatility is closely associated with macroeconomic fundamentals. We first show that traditional macroeconomic structural shocks cause significant responses in persistent volatility but not in transitory volatility. We then show that shocks to persistent volatility lead to macroeconomic fluctuations, but transitory volatility shocks do not have this effect. This provides support to the hypothesis that it is the persistent component of volatility that is linked to the market’s expectations of future cash flows and discount rates. We also differentiate the dynamic responses between total volatility and persistent volatility subject to various shocks.

4.2. Results Using Bond Market Volatility

In this section, we present results for the SVAR analysis for bond market volatility. Again, rather than reporting all of the impulse response functions, we focus on the role of volatility. Figure 9 reports the response of U.S. bond market volatility to adverse shocks to aggregate demand, aggregate supply, monetary policy and sentiment. The results using bond market volatility are very similar to those using stock market volatility. In particular, there is a significant increase in volatility following an adverse shock to AD, AS and MP, and for an AD or AS shock, the response is statistically significant. Following an adverse sentiment shock, volatility rises, but not significantly so.
Figure 10 reports the response of output growth, inflation, the interest rate and sentiment to an adverse shock to U.S. bond market volatility. An adverse shock to volatility leads to a reduction in sentiment and the interest rate, but neither is statistically significant. There is an initial increase in output growth followed by a sharper reduction, which is marginally significant. The effect in inflation mirrors this, with an initial reduction followed by a larger increase. The impact on inflation is greater for the persistent component of volatility than it is for total volatility.14

4.3. Alternative shock identification

Table 2 reports an alternative shock identification scheme in which we allow volatility shocks to get transmitted to the real economy contemporaneously in line with Bloom (2009), among others, although macroeconomic shocks cannot impact volatility within the same period. Figures 11 and 12 display results using stock market volatility. Our main conclusions remain unchanged: (i) macroeconomic shocks lead to mostly insignificant increases in transitory volatility and its shocks do not in general cause a significant macroeconomic response; (ii) increasing total or persistent volatility leads to a significant drop in output growth, inflation and sentiment, whereas shocks to persistent volatility lead to deeper economic contractions.

14 We also find that transitory volatility in the bond market is not significantly associated with macroeconomic shocks. In the interests of space, we do not report these results.
4.4. Further Robustness Tests

We also conduct the SVAR analysis without the U.S. Crash Confidence Index, which allows us to extend the sample back to January 1990. In addition, we consider a range of alternative shock identification schemes by relaxing different assumptions. The results of these robustness tests, which are reported in the online Appendix, show that our conclusions remain unchanged. We additionally undertake the analysis using alternative estimates of the persistent component of volatility, as described in Section 3. In particular, we use different values of the smoothing parameter in the HP filter, the Christiano-Fitzgerald band pass filter with different oscillation bounds and different rolling window lengths in each case. Again, the results are qualitatively similar and our conclusions are unchanged. We conclude that it is the persistent component, not the transitory component, that is more closely related to macroeconomic fundamentals. Shocks to transitory volatility create short-lived and mostly insignificant macroeconomic responses.

5. Volatility and Investor Sentiment

In the previous section, we have shown that adverse shocks to the long run persistent component of volatility have a measurable and economically significant impact on the real economy. Moreover, the association between volatility and the real economy is stronger for the persistent component of volatility than it is for total volatility, supporting our hypothesis that it is the persistent component of volatility that is linked to the market’s expectations of future cash flows and discount rates. We also provide evidence that transitory volatility is largely unrelated to macroeconomic fundamentals. This is consistent with and indeed provides support for, the economic model of volatility presented by Engle et al. (2013).
De Long et al. (1990) show that sentiment-based decisions of uninformed investors may lead to excess volatility and Campbell et al. (1993) argue that changes in investor sentiment can trigger strong liquidity shocks with a significant impact on volatility. In this section, we test this hypothesis by further exploring the dynamic relationship between transitory volatility and investor sentiment. To that end, we estimate an SVAR model including transitory volatility and the change in investor sentiment, defined as the first difference in the investor sentiment index. We do not include macroeconomic variables in this system because our empirical results in the previous section suggest that neither investor sentiment nor transitory volatility is significantly related to macroeconomic fundamentals. We also include persistent volatility in the system in order to control for the possible interaction between the two volatility factors. The model is again estimated with three lags with non-informative priors.\footnote{The results reported below are robust to (i) different orderings of the variables and (ii) using macroeconomic variables as control variables.}

Adopting the Cholesky decomposition approach to identify structural shocks, we place the changes in investor sentiment as the first variable. As in Berger et al (2015), we do not literally interpret this as reflecting the timing of shocks, but rather that shocks to changes in investor sentiment will transmit to volatility within the same time period but not the other way round. Figure 13 presents the relevant impulse responses. Conditional on positive shocks to investor sentiment (Panel A), we find a significant drop in persistent volatility for the first five months. Transitory volatility decreases slightly, although insignificantly, on impact, followed by a significant rise between three and four months after the shock. One reason for this may be that a positive change in investor sentiment affects noise traders who enter the market and increase the transitory volatility in the process. Conversely, negative shocks to transitory volatility cause stronger and more persistent improvement in sentiment than persistent volatility shocks do (Panel B).
Overall the empirical evidence suggests that changes in investment sentiment are associated with both volatility factors. However, the causal link from transitory volatility to changes in investment sentiment is stronger. We also uncover interesting dynamics resulting from sentiment shocks: while an improvement in sentiment tends to lower persistent volatility, the transitory volatility experiences a short-lived increase.

6. Out-of-Sample Forecasting

In this section, we investigate the extent to which the decomposition of volatility into its persistent and transitory components improves out-of-sample forecasts of both the macroeconomic fundamentals and volatility itself. We have five variables: volatility (total, persistent or transitory); investor sentiment; industrial production growth; consumer price inflation; the Federal funds rate. We first measure the incremental information content of each measure of volatility for forecasting each of the four macroeconomic variables. In particular, we estimate a first order autoregressive model for each macroeconomic variable and use it to generate out-of-sample forecasts over horizons ranging from one to 12 months. We then augment the benchmark autoregressive model with the first lag of volatility, and again generate forecasts of the macroeconomic variable.\(^\text{16}\) We do this separately for total, persistent and transitory volatility. For each macroeconomic variable, we compare the root mean square error (RMSE) of the forecasts from each of the augmented models with those from the benchmark model, using the modified Diebold Mariano test. We estimate the models with a 7-year rolling

\(^\text{16}\) More specifically, we consider a bivariate VAR between a macroeconomic variable and a volatility measure, allowing us to model any potential feedback effects between these variables, hence enabling us to better capture the dynamics between the real economy and volatility.
window.17 Except for the models that include investor sentiment, where the data is available only from July 2001, all the models start from January 1990.

Panel A of Table 3 reports the modified Diebold-Mariano test statistics.18 The statistics in bold mean that the forecasts of the augmented model are significantly better than those of the benchmark model. From the table, it is clear that both persistent and total volatility significantly improve forecasts of output growth at all horizons, while transitory volatility does not improve forecasts of output growth at any horizon. Moreover, the rejection of the null hypothesis of no improvement in RMSE is stronger for persistent volatility than for total volatility. All three measures of volatility significantly improve forecasts of consumer price inflation at all horizons. Interestingly, and somewhat unexpectedly, transitory volatility is associated with the most significant reduction in RMSE. All three measures of volatility also significantly improve forecasts of the Federal funds rate, although the rejection of the null hypothesis is stronger for persistent and total volatility than for transitory volatility. For horizons greater than one month, persistent volatility offers the most significant improvement in forecast performance. For investor sentiment, transitory volatility offers a more significant reduction in RMSE than persistent volatility at all horizons, and in many cases, it also leads to a more significant reduction in RMSE than total volatility. These results thus broadly support our main findings in an out-of-sample setting: volatility contains useful information about future macroeconomic fundamentals and investment sentiment. Persistent volatility is more useful for forecasting output growth and inflation while transitory volatility is more useful for forecasting investor sentiment.

17 There is no consensus on the size of the rolling window used for estimating the VAR models. Some studies use a 7-year rolling window (see, for example, Fawcett, et al., 2015) while others use a 10-year rolling window (see, for example, Stock and Watson, 2008). But our results remain robust when we use a 10-year rolling window estimation.

18 To preserve space, the RMSE statistics are presented in Table A5 in the online Appendix.
In Panel B, we report the results of a similar exercise for volatility. In particular, we estimate an autoregressive model for each of the three measures of volatility – total, persistent and transitory – and then augment these separately with each of the macroeconomic fundamentals and investor sentiment. We report the modified Diebold-Mariano statistics to test whether the use of each of the macroeconomic variables significantly improves the forecasts of each of the measures of volatility. The statistics in bold again mean that the forecasts of the augmented model are significantly better than those of the benchmark model. The results again broadly support our main findings. Output growth, inflation and, to a lesser extent, investor sentiment significantly improve forecasts of persistent volatility, while the Federal funds rate does not. Output growth and investor sentiment significantly improve forecasts of transitory volatility. The Federal funds rate improves forecasts transitory volatility at the one-month horizon. In contrast with the results for the persistent and transitory components of volatility, there is much less evidence that macroeconomic fundamentals help to improve forecasts of total volatility, a result consistent with the literature (see, for example, Paye, 2012). Indeed, except at the one-month horizon, where the Federal fund rate leads to a significant reduction in RMSE, only investor sentiment appears to contain information that is useful for forecasting total volatility.

[Table 3]

7. Conclusion

The link between financial market volatility and the real economy has been well studied in the literature from both a theoretical and empirical perspective. In this paper, we add to this literature by examining the dynamic relationships between the real economy, investor sentiment and stock and bond market volatility. Noting that volatility is characterised by a two-factor process and that changes in the real economy should be associated with the slowly-varying factor of volatility, we employ the cyclical volatility model of Harris et al. (2011) to decompose total volatility into a long run persistent component and short run cyclical component and use these to explore the relationship between volatility and the real economy.
We show that adverse shocks to the long run persistent component of volatility have a measurable and economically significant impact on the real economy and that the impact is stronger for stock market volatility than for bond market volatility. We also show that the link between volatility and the real economy is, as expected, stronger for the long run persistent component of volatility than it is for total volatility. In contrast, the short run cyclical component of volatility has a much weaker relationship with the real economy, but is instead more closely associated with investor sentiment. This is consistent with the idea that volatility reflects both the market’s expectations of future cash flows and discount rates, but also short term, behavioural effects that are not directly linked to the economic activity.

Our paper has direct policy implications. First, policy makers and practitioners may wish to choose a measure of volatility most suitable for their needs. For example, if they are more concerned with how volatility interacts with the macroeconomy, our results suggest that they should consider persistent volatility because it is less noisy and more closely linked to macroeconomic fundamentals. Conversely, if they are more interested in studying the relationships between sentiment and volatility, they may wish to focus on transitory volatility. Second, our results carry the potential to improve the forecasting performance of the two-factor volatility model. Our out-of-sample forecasting exercise shows that persistent volatility is useful for forecasting output growth and inflation, while transitory volatility is more useful for forecasting investor sentiment. Macroeconomic variables also improve the forecasting performance of volatility, especially persistent volatility.

References

Table 1

The contemporaneous sign restrictions imposed on the SVAR model (8) for structural shocks identification

<table>
<thead>
<tr>
<th>Variables</th>
<th>Volatility</th>
<th>Investor Sentiment</th>
<th>Industrial Production</th>
<th>Inflation</th>
<th>Short-term interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility shock</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Sentiment Shock</td>
<td>?</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Aggregate Demand</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aggregate Supply</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Monetary policy</td>
<td>?</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: This table displays the imposed sign restrictions which are used to identify structural shocks (listed row-wise) in the SVAR model (8). ‘+’ refers to a contemporaneous increase in a variable when a structural shock hits, whereas ‘-’ refers to a contemporaneous decrease and ‘0’ means that the certain variable is unchanged. ‘?’ means that the researcher is agnostic about the response of the variables. Note that the five structural shocks are orthogonal to each other by construction. See main text for details.
Table 2

Alternative *contemporaneous* sign restrictions imposed on the SVAR model (8) for structural shocks identification

<table>
<thead>
<tr>
<th>Variables</th>
<th>Volatility</th>
<th>Investor Sentiment</th>
<th>Industrial Production</th>
<th>Inflation</th>
<th>Short-term interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatility shock</td>
<td>+</td>
<td>0</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Sentiment</td>
<td>?</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Note: This table displays the imposed sign restrictions, alternative to those of Table 1, which are used to identify structural shocks (listed row-wise) in the SVAR model (8). ‘+’ refers to a contemporaneous increase in a variable when a structural shock hits, whereas ‘−’ refers to a contemporaneous decrease and ‘0’ means that the certain variable is unchanged. ‘?’ means that the researcher is agnostic about the response of the variables. Note that the five structural shocks are orthogonal to each other by construction. See main text for details.

<table>
<thead>
<tr>
<th>Shock</th>
<th>0</th>
<th>0</th>
<th>−</th>
<th>−</th>
<th>−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Demand shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggregate Supply Shock</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Monetary policy shock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Table 3: The modified Diebold-Mariano test statistics

Panel A

Macroeconomic variables

<table>
<thead>
<tr>
<th>Horizon (months ahead)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td></td>
</tr>
<tr>
<td>VAR with</td>
<td></td>
</tr>
<tr>
<td>Persistent volatility</td>
<td>4.2</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.4</td>
<td>4.4</td>
<td>4.4</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>21</td>
<td>30</td>
<td>72</td>
<td>76</td>
<td>23</td>
<td>48</td>
<td>38</td>
<td>75</td>
<td>01</td>
<td>45</td>
<td>72</td>
</tr>
<tr>
<td>Total volatility</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.1</td>
<td>4.2</td>
<td>4.2</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>52</td>
<td>38</td>
<td>73</td>
<td>97</td>
<td>31</td>
<td>54</td>
<td>07</td>
<td>14</td>
<td>62</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>Transitory volatility</td>
<td>1.9</td>
<td>1.6</td>
<td>1.8</td>
<td>2.1</td>
<td>2.0</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>92</td>
<td>84</td>
<td>47</td>
<td>83</td>
<td>40</td>
<td>42</td>
<td>34</td>
<td>08</td>
<td>20</td>
<td>62</td>
<td>47</td>
</tr>
<tr>
<td>CPI</td>
<td></td>
</tr>
<tr>
<td>Persistent volatility</td>
<td>4.4</td>
<td>4.8</td>
<td>4.8</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
<td>4.9</td>
<td>4.9</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>32</td>
<td>11</td>
<td>36</td>
<td>04</td>
<td>89</td>
<td>60</td>
<td>38</td>
<td>03</td>
<td>88</td>
<td>97</td>
<td>38</td>
</tr>
<tr>
<td>Total volatility</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>44</td>
<td>77</td>
<td>04</td>
<td>42</td>
<td>53</td>
<td>86</td>
<td>13</td>
<td>47</td>
<td>57</td>
<td>02</td>
<td>29</td>
</tr>
<tr>
<td>Transitory volatility</td>
<td>4.7</td>
<td>5.5</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>79</td>
<td>13</td>
<td>29</td>
<td>51</td>
<td>80</td>
<td>28</td>
<td>52</td>
<td>77</td>
<td>98</td>
<td>18</td>
<td>66</td>
</tr>
<tr>
<td>FFR</td>
<td></td>
</tr>
<tr>
<td>Persistent volatility</td>
<td>2.4</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.8</td>
<td>5.8</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>97</td>
<td>11</td>
<td>50</td>
<td>68</td>
<td>17</td>
<td>17</td>
<td>89</td>
<td>01</td>
<td>41</td>
<td>59</td>
<td>79</td>
</tr>
<tr>
<td>Total volatility</td>
<td>2.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.5</td>
<td>5.6</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.7</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>48</td>
<td>48</td>
<td>67</td>
<td>33</td>
<td>58</td>
<td>57</td>
<td>96</td>
<td>19</td>
<td>80</td>
<td>97</td>
<td>54</td>
</tr>
</tbody>
</table>
Notes: The table shows the modified Diebold-Mariano statistics testing the hypothesis that a macroeconomic variable estimated with a specific component of volatility (i.e. a bivariate VAR model) performs *significantly different* from the benchmark univariate AR(1) model on the macroeconomic variable itself. The modified Diebold-Mariano test statistics are distributed as a t-distribution with 210 degrees of freedom (see Harvey, Leybourne and Newbold, 1997). All models are estimated using OLS with a 7-year rolling window (see Fawcett et al., 2015). With the estimated parameters, we construct 12-month ahead out-of-sample forecasts for each model. The *numbers in bold* imply that the bivariate VAR model employing a specific component of volatility perform better than the benchmark AR(1) model in forecasting the macroeconomic variable under investigation, whereas the *numbers in italics* imply that the benchmark univariate AR(1) performs better. ‘IP’ denotes industrial production growth, ‘CPI’ denotes consumer prices inflation growth, ‘FFR’ denotes the federal funds rate, and ‘Sentiment’ denotes investor sentiment.

Table 3: The modified Diebold-Mariano test statistics (continued)

<table>
<thead>
<tr>
<th>Panel B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatilities</td>
</tr>
<tr>
<td>Horizon (months ahead)</td>
</tr>
<tr>
<td>Bivariate</td>
</tr>
<tr>
<td>Transitory volatility</td>
</tr>
<tr>
<td>Persistent volatility</td>
</tr>
<tr>
<td>Sentiment volatility</td>
</tr>
<tr>
<td>Transitory volatility</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Persistency</td>
</tr>
<tr>
<td>CPI</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volatility</td>
</tr>
<tr>
<td>FFR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SENT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>CPI</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Volatility</td>
</tr>
<tr>
<td>FFR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SENT</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Transitory</td>
</tr>
<tr>
<td>CPI</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes: The table shows the modified Diebold-Mariano statistics testing the hypothesis that a specific component of volatility estimated with a macroeconomic variable (i.e. a bivariate VAR model) performs significantly different from the benchmark univariate AR(1) model on the volatility itself. The modified Diebold-Mariano test statistics are distributed as a t-distribution with 210 degrees of freedom (see Harvey, Leybourne and Newbold, 1997). All models are estimated using OLS with a 7-year rolling window (see Fawcett et al., 2015). With the estimated parameters, we construct 12-month ahead out-of-sample forecasts for each model. The **numbers in bold** imply that the bivariate VAR model employing a macroeconomic variable perform better than the benchmark AR(1) model in forecasting the specific component of volatility under investigation, whereas the *numbers in italics* imply that the benchmark univariate AR(1) performs better. ‘IP’ denotes industrial production growth, ‘CPI’ denotes consumer prices inflation growth, ‘FFR’ denotes the federal funds rate, and ‘Sentiment’ denotes investor sentiment.
Panel A: Total Volatility (black) and Persistent component of Volatility (blue)

Panel B: The Transitory Component of Volatility
Figure 1: The Persistent and Transitory Components of Realized Volatility

Note: Panel A shows the standard deviation of log returns for the US stock market estimated using equation (5) and the long run trend estimated using the Hodrick-Prescott filter with a smoothing parameter of 5,760,000. Panel B shows the cyclical component of volatility defined as the difference between the original series and the trend (equation (6)). The sample period is 02/01/1990 to 30/6/2015.

Figure 2. Impulse responses for adverse Aggregate Demand shock

Note: Impulse responses for adverse Aggregate Demand shock computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas blue lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.
Figure 3. Impulse responses for adverse Aggregate Supply shock

Note: Impulse responses for adverse Aggregate Supply shock computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas blue lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.
Figure 4. Impulse responses for contractionary monetary policy shock
Note: Impulse responses for contractionary monetary policy shock computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas blue lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.

Figure 5. Impulse responses for adverse investor sentiment shock
Note: Impulse responses for adverse investor sentiment shock computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas blue lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.
Figure 6. Impulse responses for persistent and total volatility shocks

Note: Impulse responses for adverse volatility shocks computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas blue lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.
Figure 7. Responses for transitory volatility conditional on the four adverse shocks

Note: Impulse responses for volatility conditional on (i) adverse sentiment shocks; (ii) adverse Aggregate demand (AD) shocks; (iii) adverse Aggregate supply (AS) shocks; (iv) contractionary monetary policy shocks as computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the transitory component volatility. Responses corresponding to the system using the persistent component volatility (the blue lines) are also reproduced for comparison. Sample period: 2001M7-2015M6. See the main text for details.
Figure 8. Impulse responses for *transitory* volatility shocks

Note: Impulse responses for adverse volatility shocks computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the transitory component of volatility. Responses corresponding to the system using the persistent component volatility (the blue lines) are also reproduced for comparison. Sample period: 2001M7-2015M6. See the main text for details.
Figure 9. Responses of volatility conditional on the four adverse shocks (U.S. bonds)

Note: Impulse responses of volatility conditional on (i) adverse sentiment shocks; (ii) adverse Aggregate demand (AD) shocks; (iii) adverse Aggregate supply (AS) shocks; (iv) contractionary monetary policy shocks as computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US bond volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.
Figure 10. Impulse responses for adverse volatility shocks (U.S. bonds)
Note: Impulse responses for adverse volatility shocks computed by the SVAR model (8) and by the structural shock identification scheme described in Table 1 using US bond volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the persistent component of volatility. Sample period: 2001M7-2015M6. See the main text for details.

Figure 11. Responses for volatilities conditional on the four adverse shocks under the alternative identification shock scheme
Note: Impulse responses for volatility conditional on (i) adverse sentiment shocks; (ii) adverse Aggregate demand (AD) shocks; (iii) adverse Aggregate supply (AS) shocks; (iv) contractionary monetary policy shocks as computed by the SVAR model (8) and by the alternative structural shock identification scheme described in Table 2 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the transitory component of volatility. Responses corresponding to the system using the persistent component volatility (the blue lines) are also reproduced for comparison. Sample period: 2001M7-2015M6. See the main text for details.
Figure 12. Impulse responses for volatility shocks under the alternative identification shock scheme.

Note: Impulse responses for adverse volatility shocks computed by the SVAR model (8) and by alternative the structural shock identification scheme described in Table 2 using US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Black lines correspond to the system using total volatility, whereas green lines correspond to the system using the transitory component of volatility. Responses corresponding to the system using the persistent component volatility (the blue lines) are also reproduced for comparison. Sample period: 2001M7-2015M6. See the main text for details.
Figure 13. Impulse Responses for changes in investment sentiment

Note: Impulse Responses for benign shocks to changes in investment sentiment (Panel A) and to negative volatility shocks using (i) a three-variable SVAR system described in section 5 (ii) the recursiveness assumption and (iii) the data on US stock volatility. Error bands are constructed at the 68 percent interval following Sims and Zha (1999). Sample period: 2001M7-2015M6. See the main text for details.