
Peer reviewed version

Link to published version (if available): 10.1073/pnas.1800826115

Link to publication record in Explore Bristol Research

PDF-document

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:

http://www.bristol.ac.uk/pure/about/ebr-terms
Author's copy of paper in *Proceedings of the National Academy of Sciences USA* (accepted 14/05/18)

Title: Distance-dependent defensive coloration in the poison frog *Dendrobates tinctorius*, Dendrobatidae.

Short title: Distance-dependent color in *Dendrobates tinctorius*

James B. Barnett\(^a\,1\), Constantine Michalis\(^a\), Nicholas E. Scott-Samuel\(^b\), Innes C. Cuthill\(^a\,2\)

\(^a\)School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom.

\(^b\)School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, United Kingdom.

Keywords:

acuity | aposematism | camouflage | Dendrobatidae | distance

1\(^1\)Present address: Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC, H3A 0CA, Canada.

2\(^2\)To whom correspondence should be addressed. Email: i.cuthill@bristol.ac.uk.
Abstract

Poison dart frogs provide classic examples of warning signals: potent toxins signaled by distinctive, conspicuous coloration. We show that, counterintuitively, the bright yellow and blue-black color of *Dendrobates tinctorius* (Dendrobatidae) also provides camouflage. Through computational modeling of predator vision, and a screen-based detection experiment presenting frogs at different spatial resolutions, we demonstrate that at close range the frog is highly detectable, but from a distance the colors blend together, forming effective camouflage. This result was corroborated with an *in situ* experiment, which found survival to be background dependent: a feature more associated with camouflage than aposematism. Our results suggest that in *D. tinctorius* the distribution of pattern elements, and the particular colors expressed, act as a highly salient close range aposematic signal, while simultaneously minimizing detectability to distant observers.

Significance

Poison dart frogs are well known for their deadly toxins and bright colors: they are a classic example of warning coloration. But conspicuousness is not the only consideration: defensive coloration must be effective against a diverse predator community with a variety of different visual systems, and variable knowledge of prey defenses and motivation to attack. We found that the bright colors of *Dendrobates tinctorius* are highly salient at close-range but blend together to match the background when viewed from a distance. *Dendrobates tinctorius* combines aposematism and camouflage without necessarily compromising the efficacy of either strategy, producing bright colors while reducing encounters with predators. These data highlight the importance of incorporating viewing distance and pattern distribution into studies of signal design.
Poison dart frogs (Dendrobatidae) are well known for their striking aposematic (warning) signals: distinctive, conspicuous coloration signaling potent toxins (1, 2). Predators learn the association between prey coloration and toxic defense, and bright and highly contrasting color patterns have been demonstrated to increase the speed, accuracy, and longevity of predator avoidance learning (3-5).

Aposematic species are not, however, immune to predation (6-10). Naïve and specialized predators will ignore warning coloration, and even susceptible predators will actively manage their intake of defended prey in accordance with their nutritional requirements and toxin burden (6-10). For example, birds and snakes have been observed predating toxic dendrobatid (Dendrobates, Phyllobates, and Oophaga spp.) frogs (11-13). Consequently, maximizing detectability is not necessarily the optimal strategy for preventing predation, and defended species may benefit from incorporating aspects of camouflage into their coloration (14-20).

Indeed, rather than being alternative and mutually exclusive forms of defensive coloration, camouflage and aposematism are now frequently considered along a continuum from inconspicuous to highly salient (21). Defended prey trade off the benefits of conspicuous warning signals against a low predator encounter rate, frequently resulting in weaker defenses being associated with smaller and less saturated aposematic components (20, 22, 23). An alternative, which can maintain color saturation and signal size, is aposematic signals which may also act as context-dependent disruptive camouflage (24) or distance-dependent background matching (14, 21).

Disruptive coloration breaks up the outline of a target into unrecognizable patches which blend into different background components (25). As both aposematic and disruptive patterns benefit from highly contrasting colors (3, 5, 26, 27), and disruption does not necessarily require that colors match the background (28), there is potential for cooption of similar pattern components despite the opposing processes (21). However, whereas consistent symmetrical patterns are more easily learned and
remembered (29), asymmetric and variable patterns are more effective at concealing prey (26, 30, 31). It has been demonstrated that conspicuous warning signals can appear cryptic in particular microhabitats (24), but it is unknown how widespread this mechanism is in nature.

Distance-dependent patterns, on the other hand, take advantage of limitations in observer visual acuity to appear highly salient at close range, but camouflaged when viewed from a distance (15, 16, 18, 19, 32, 33). This effect can be achieved by either combining patterns of different spatial frequency (size) (18) or by the color components blending together to form a cryptic average color (pattern blending) (19, 32, 33).

Previous work using artificial prey suggests that pattern blending can have greater survival than either camouflage or aposematism alone (18, 19). However, although these model systems take inspiration from ecologically relevant patterning, little work has been done into naturally occurring color patterns (15, 16, 32).

Dendrobates tinctorius (Dendrobatidae) is a brightly colored frog found across the Guiana Shield. At the Nouragues Natural Reserve, French Guiana, the frogs are blue-black with a bright yellow ring, which may be broken or joined to form a figure eight (Fig. 1A) (34). However, the presence of asymmetry and variation between individuals does not conform to standard aposematic theory (34, 35), and is reminiscent of cryptic patterning (29). To examine the optical processes involved in the coloration of *D. tinctorius*, we ran computational models of predator vision, an *in situ* survival experiment with the frogs’ wild avian predators, and a computer-based detection experiment with human surrogate predators, where we manipulated coloration, patterning, and viewing distance.

Results

Visual modeling. We photographed adult *D. tinctorius* (*n* = 84) *in situ* near the Saut Pararé camp in the Nouragues Natural Reserve, French Guiana (Fig. 1A). Detectability at different viewing distances was assessed using models of tetrachromatic bird (both violet (VS) and UV sensitive), trichromatic snake, dichromatic mammal, and trichromatic human visual perception. The avian, snake, and mammalian
models are representative of potential visual predators of dendrobatid frogs (11-13, 36), and we included human vision to allow intuitive interpretation of the results.

Support Vector Machines (SVM) (37) were used as a classifier, and discrimination accuracy (frog vs leaf litter background) was assessed using the Area Under the Curve (AUC) of Receiver Operated Characteristic (ROC) curves (38). An AUC of 1.0 represents perfect classification whereas an AUC of 0.5 indicates random chance. We followed a commonly used grading system interpreting AUC results as: 1.0-0.9 = excellent, 0.9-0.8 = good, 0.8-0.7 = fair, 0.7-0.6 = poor, 0.6-0.5 = fail (39). Data available in the University of Bristol Research Data Repository (40).

With all spatiochromatic information, representing close-range viewing, all visual systems were excellent at discriminating frog from background (Table 1; Fig. S1). Classification accuracy did, however, change at different spatial resolutions, and the frogs’ color and visual texture converged with that of the background at greater viewing distances (Fig. 1B-D). For all visual systems, color discrimination accuracy decreased from good at the highest resolution (Very High), to fair at low resolution (Low), and poor for the mean color, with the dichromatic mammalian model having the largest decline in accuracy as resolution decreased (Table 1; Fig. S2). Similarly, the accuracy of visual texture discrimination declined at lower resolutions, where all visual systems were good at the highest resolution but failed to classify effectively at the low resolution (Table 1; Fig. S3).

Survival. Camouflage is largely background dependent, with even small deviations away from background color and texture leading to significant decreases in survival (41), whereas conspicuous aposematism is more resilient to variation in background coloration (42).

To assess how dependent the survival of *D. tinctorius* was on the visual characteristics of the natural background, we used plasticine model frogs to record avian predation, and manipulated both frog color pattern and background. Three different frog colors were designed to represent i) the natural phenotype (N: yellow-and-black), ii) aposematism (Y: plain yellow), and iii) camouflage (C: brown-and-black).
These frogs were presented on four backgrounds: the natural leaf litter (NL), two manipulated backgrounds which differed in color and visual texture from the natural background (plain soil (NS) and a homogeneously colored paper square (PA)), and a paper square printed with leaf litter (PL) which acted as a control for the use of paper backgrounds (Fig. S4).

We found a significant interaction between frog color pattern and background type ($\chi^2 = 50.67$, d.f. = 11, $P < 0.001$), so each frog color was analyzed separately. There was a significant effect of background on the survival of the brown-and-black frogs ($\chi^2 = 29.35$, d.f. = 3, $P < 0.001$). There was no significant difference in survival between the natural background (NL) and the printed leaf litter (PL) background (CNL-CPL: $z = 1.45$, $P = 0.150$), but the brown-and-black frogs had significantly higher survival on leaf litter than on both the modified backgrounds (CNL-CNS: $z = 3.10$, $P = 0.002$; CNL-CPA: $z = 4.40$, $P < 0.001$; Fig. 2 left). Conversely, there was no significant effect of background on the survival of plain yellow frogs ($\chi^2 = 0.51$, d.f. = 3, $P = 0.918$; all pairwise tests: $z < 0.62$, $p > 0.540$; Fig. 2 middle). These results are consistent with the brown-and-black frog being camouflaged on the leaf litter and the plain yellow being equally detectable on all backgrounds. This conclusion is further supported by visual modeling of the stimuli photographed in situ (Fig. S5).

We found a significant effect of background on the yellow-and-black frogs which mimicked the natural phenotype ($\chi^2 = 12.10$, d.f. = 3, $P = 0.007$). There was no significant difference between leaf litter backgrounds (NNL-NPL: $z = 0.72$, $P = 0.470$), but survival was significantly higher on the natural background than on modified backgrounds (NNL-NNS: $z = 2.44$, $P = 0.015$; NNL-NPA: $z = 2.90$, $P = 0.004$; Fig. 2 right). The survival of the yellow-and-black phenotype, therefore, appears to be dependent on the visual characteristics of the background in a similar manner to the brown-and-black frog, but counter to the plain yellow frog.

Detection. To investigate further how viewing distance affects the detectability of *D. tinctorius*, we performed a screen-based detection experiment with human participants ($n = 18$). We manipulated frog
coloration (Fig. S6), and presented the stimuli on their natural leaf litter background under conditions representing three viewing distances: Near, Medium, and Far. The human participants were required to click on the frogs, and we recorded both reaction time (Table 2; Fig. 3) and detection accuracy.

Reaction time. We found a significant interaction between frog coloration and distance ($\chi^2 = 1670.40$, d.f. = 22, $p < 0.001$), and so treatment effects were analysed separately for each distance. At close-range (Near) we found that the natural yellow and blue-black pattern (A) was detected significantly more slowly than plain yellow (C<A) and reverse color pattern (D<A) frogs, both of which increased the proportion of yellow, but the natural pattern was detected significantly faster than plain blue-black (A<B). At long distances (Far), however, it took participants significantly longer to detect the natural pattern compared to the plain yellow (C<A), reversed pattern (D<A), and the plain blue-black (B<A).

The magnitude of these effects shows that at close-range the natural pattern grouped more readily with the conspicuous high yellow patterns (C and D) than the more cryptic plain blue-black (B). However, when viewed from a greater distance, the time taken to detect the natural pattern greatly increased, and the natural pattern grouped more readily with cryptic patterns. At the furthest distance the natural pattern provides more effective camouflage than the plain blue-black (B<A; Table 2; Fig. 3).

The arrangement of the natural pattern also appears well suited for both short-range detectability and long-range camouflage. At close-range, rearranging the pattern, while maintaining the ratio of color components, could increase but not decrease reaction time (A=E and A<F), whereas at long-range we found the opposite (E<A and A=F). We therefore conclude that the pattern is arranged to be highly salient at close range but cryptic when viewed from a distance.

Moreover, we found no evidence of disruptive camouflage, which would predict that high contrast patterning would increase reaction time when compared to plain colors (26, 30). In contrast, when comparing frogs with brown rather than yellow patterning to plain brown or black frogs, we found that the presence of patterning decreased reaction time at close-range (G<B and H<J) and had no effect at
greater distances (G=B and H=J). These data suggest that at close range the pattern itself acts as a salient signal even in the absence of conspicuous coloring.

Furthermore, our data suggest that, when viewed from a distance, the yellow and blue-black components are spatially averaged to produce a mean color which provides effective camouflage. As distance increases, the time taken to detect the natural pattern (A) converges with that of its mean color (I), and at greater viewing distances the mean color is just as effective as the average color of the background (J) and random-sample background matching (K) at preventing detection.

Detection accuracy. A similar trend was observed in the detection accuracy data. There was a significant interaction between treatment and distance ($\chi^2 = 297.64$, d.f. = 22, $P < 0.001$), and so each distance was analyzed separately. We found a significant effect of treatment at the Near ($\chi^2 = 249.26$, d.f. = 11, $P < 0.001$) and Medium ($\chi^2 = 675.05$, d.f. = 11, $P < 0.001$) distances, but detection accuracy was too high for reliable pairwise tests.

At the furthest distance (Far) there was a significant effect of treatment ($\chi^2 = 2769.10$, d.f. = 11, $P < 0.001$) and pairwise tests were possible. Increasing the amount of yellow in the pattern (C and D) increased detection accuracy over the natural pattern (A<C: $z = -8.49$, $P < 0.001$; A<D: $z = -15.64$, $P < 0.001$), as did rearranging the pattern into a signal yellow circle (A<E: $z = -15.40$, $P < 0.001$). Whereas there was only a marginal effect of moving the yellow pixels to highlight the edge of the frog (E<A: $z = -2.66$, $P = 0.076$). Furthermore, the natural pattern was detected more accurately than the mean color of the frog (I<A: $z = -8.57$, $P < 0.001$) and the unmanipulated frog (L<A: $z = -6.93$, $P < 0.001$). No further pairwise tests were significant ($z < 2.15$, $P > 0.265$).

Discussion

Aposematic signals are made up of both color and visual texture information. However, whereas color saturation has been studied in detail, patterning has received comparatively little attention. Most research
into pattern has focused on close-range signaling properties and suggests that high contrast patterns can
increase the saliency, memorability, and consistency of a signal (3-5). Alternatively, however, it has been
suggested that high contrast patterning may reduce detectability, through either disruptive camouflage
(24) or distance-dependent signaling (14-20).

Taken together, our data suggest that *D. tinctorius* displays a specific ratio and distribution of color
components which combines highly salient aposematic signaling with effective and targeted background
matching camouflage. At close-range the pattern is easily detectable, utilizing bright colors not found in
the background to increase color contrast. At greater viewing distances, these highly contrasting colors
merge together to form an average which closely matches that of the background, such that the time taken
to detect the average color of the frog cannot be distinguished from that of background matching
camouflage.

Moreover, at close-range the pattern of *D. tinctorius* is distinct from the textural component of the
background and appears to act as a salient signal even in the absence of conspicuous coloring. At long-
range, in a similar manner to color-blending, textural information converges to match that of background.
We therefore found no evidence to support disruptive camouflage but, rather, these data are consistent
with distance-dependent pattern blending (19, 32, 33). This result is consistent for avian, snake, mammal,
and human visual perception, and translates into a decrease in avian predation on the frog’s natural
background.

The bright colors of *D. tinctorius* have previously been associated with aposematism (43, 44) and sexual
signaling (34). Brighter and more conspicuous signals have been demonstrated to improve the efficacy of
aposematism (45, 46) and to be favored during mate selection in dendrobatid frogs (47, 48). Under natural
conditions, however, variation in predator motivation towards aposematic prey means that incorporating
aspects of camouflage may increase survival (6-10, 20). Indeed, even in the absence of aposematic
defense, distance-dependent patterning may facilitate the greater color saturation favored for mate
attraction without necessarily increasing predation risk, especially where conspecifics and predators operate on different spatial scales.

It has further been suggested that the colors of *D. tinctorius* may disrupt a predator’s ability to track a moving frog (motion dazzle) (49, 50) and that phenotypic variation may trade-off the benefits of salient signaling versus camouflage (35). We propose pattern-blending as an additional (albeit not mutually exclusive) optical mechanism which combines the benefits of both salient signaling and camouflage; reducing predator encounter rates while retaining effective aposematism (18).

Evidence for distance-dependent signaling from natural phenotypes is currently scarce, with most research focusing on predominantly cryptic patterns with small aposematic components (15, 16). In contrast, the yellow and blue-black of *D. tinctorius* does not appear to share features usually indicative of camouflage, and our data highlight how patterning and background characteristics may influence saliency and detectability.

The particular balance between aposematism and camouflage, may be affected by differences in toxin susceptibility between different predators, or temporal shifts in the predators’ motivation to attack. Predator motivation may vary considerably due to seasonal differences in community composition, competition, energetic requirements, and the availability of alternate prey (6, 51), whereas predation risk may also fluctuate as dietary derived toxicity and the frog’s level of activity may shift with changing environmental conditions (52-54).

Indeed, different components within the coloration of *D. tinctorius* may fulfil different roles and be individually selected (55). More research is needed to understand how multiple functions interact under different viewing conditions (e.g. lighting conditions (35) / viewing distance and angle), in different contexts (e.g. microhabitats (35) / posture and motion (49, 50)), and to different observers (predators and conspecifics), as well as how color is affected by temporal changes in behavior, toxicity, and the visual environment. Furthermore, intraspecific variation both within (seemingly continuous) (35, 49) and
between (largely discrete) (43, 44, 55, 56) populations suggests this balance in selection pressures may vary both geographically and between individuals. Although it is currently unknown whether these differences are the result of natural or sexual section, or neutral drift within a broad definition of the aposematic signal defined by potential predators. Aposematic patterning, therefore, appears to be a highly complex adaptation, combining different processes at different spatial scales and in different contexts. Future research is needed to understand how these multiple selection pressures interact across wider temporal and spatial dimensions.

Methods

Study site and image collection. Experiments took place in the rainforest surrounding the Saut Pararé camp of La Station de Recherche en Écologie des Nouragues, French Guiana, between December 2014 and January 2015. We photographed adult *D. tinctorius* on their natural leaf litter background at a height of 70 cm (*n* = 84), as well as the leaf litter without frogs at 100 cm (*n* = 265) and 150 cm (*n* = 265). *In situ* photographs were taken with a Nikon D3200 DSLR and AF-S DX NIKKOR 35 mm lens (Nikon Corporation, Tokyo, Japan) and contained a ColorChecker Passport (X-Rite Inc. 2009. MI, USA). *Ex situ* UV photographs were taken of captive *D. tinctorius* and the plasticine models, using a Nikon D70 DSLR (Nikon Corporation, Tokyo, Japan) and UV-VIS 105 mm CoastalOpt® SLR lens (Jenoptik AG, Jena, Germany) with human-visible and IR blocking filters, and each image contained a 15% reflectance Spectralon® grey standard (Labsphere, Inc. North Sutton, NH, USA).

Visual modeling. Photographs of the frogs on their natural background (*n* = 84) were calibrated and scaled using the ColorChecker Passport (57), and 1000 pixels from the frog and 1000 pixels from the background were randomly selected for analysis. We used five different visual models: tetrachromatic avian, both VS (*Pavo cristatus* (58)) and UV (*Sturnus vulgaris* (59)) sensitive, trichromatic snake (*Masticopis flagellum* (60)), dichromatic mammal (*Mustela putorius* (61)), and trichromatic human (62). As opponent processing is central to human color perception (63), and evidence suggests a similar
mechanism for avian color perception (64-66), each visual model used relative cone capture rates to
generate a three-dimensional color space made up of Luminance (L) and the opponent channels red-green
(rg), and yellow-blue (yb) (19, 20, 67). All visual modeling was performed in MATLAB 2015a (The
MathWorks Inc. Natick, MA, USA).

To represent increasing viewing distance, we used a log-Gabor filter bank with four spatial scales
(wavelength relative to the smallest frog: Very high = ⅛, High = ¼, Medium = ½, and Low = 1) and six
orientations (0º - 150º in 30º increments) (41, 68, 69). To assess discriminability between frog and
background at each spatial scale we used Support Vector Machines (SVMs: R package e1071 (37)) in R
3.1.3 (The R Foundation for Statistical Computing, Vienna, Austria). SVMs act as a non-linear classifier,
projecting the data into a multi-dimensional space in which a hyperplane can be fitted between groups
(39). Data were cross-validated by training the model on one half of the data and testing on the other (39).
Classification accuracy was assessed using the Area Under the Curve (AUC) of Receiver Operated
Characteristic (ROC) curves (R package pROC (38)) in R 3.1.3. See Supporting Methods and (19, 20, 41,
67).

Survival. We used plasticine model frogs to record avian predation in situ. Plasticine frogs were designed
to represent the natural pattern (N – yellow-and-black), aposematism (Y – plain yellow), and camouflage
(C – brown-and-black). Model frogs were presented on four backgrounds: the natural leaf litter (NL), a
paper square printed with leaf litter (PL), and two manipulated backgrounds which differed from the
natural substrate, natural soil (NS) and a homogeneously colored paper square (PA). This created 12
treatments (frog-background pairs).

A randomized block design was used. Twelve blocks containing seven of each treatment (n = 1008: 84
per treatment) were placed along non-linear transects through the rainforest. Stimuli were inspected for
signs of avian predation at 24, 48, 72, and 96 hours. Predation risk was analyzed with a mixed-effects Cox
model (R package coxme (70)) in R 3.1.3. Avian predation was included as a full event, whereas non-
avian predation, missing or washed out stimuli, and those surviving to 96 h were included as censored values, and block was included as a random factor. See Supporting Methods.

Detection. Photographs of 30 different *D. tinctorius* were randomly selected and the colors of each frog were manipulated to create 12 different treatments (n = 360). To allow for pattern manipulation the colors of each frog were standardized using k-means clustering. The RGB color space was grouped into four clusters, with the centroid with the highest ratio of R+G to B designated yellow, and that with the lowest luminance designated black. These manipulations created 12 treatments: A - natural pattern using standardized colors, B - plain blue-black, C - plain yellow, D - reversed color natural pattern, E - all yellow pixels of A grouped into one approximately circular patch, F - all yellow pixels from A moved to the frog’s edge, G - natural pattern with yellow replaced with the mean color of the background, H - inverse of pattern G, I - mean color of the frog, J: mean color of the background, K - background matching camouflage (random sample of leaf litter background), and L: unmanipulated natural frog pattern (Fig. S6).

Three different viewing distances were created using calibrated photographs of leaf litter taken at different distances (100 cm = 265, 150 cm = 265). Each frog was appropriately scaled and randomly placed onto the leaf litter (as the number of frogs (360) outnumbered the number of backgrounds (265), 95 background images were randomly selected and rotated by 90º). The 100 cm images created the Near condition and the 150 cm images created the Medium distance. The Far condition was generated by reassigning the frogs to the 150 cm images and applying a 16º Gaussian filter to remove high spatial frequency information.

Human participants (n = 18) searched for frogs on a computer screen. The stimuli were presented to each participant in three sessions (each distance as a separate session), each of which contained all 360 stimuli, split into 10 blocks of 36 images, in an individually randomized sequence (n = 540 per frog-distance
We recorded reaction time and detection probability in *Psychtoolbox* (71) in MATLAB 2015a. All participants gave their informed consent in line with the Declaration of Helsinki.

Detection probability was analyzed with a binomial generalized mixed effects model and log-transformed reaction time analyzed with a general linear mixed effects model (R package *lme4* (72)) in R 3.1.3. Both models included treatment and distance as fixed effects, and participant number as a random factor.

Pairwise comparisons of a priori interest were calculated (R package *multcomp* (73)) to test three hypotheses: whether the natural pattern is organized to act as i) maximal conspicuousness, ii) disruptive camouflage, and iii) distance-dependent pattern blending. See *Supporting Methods*.
Acknowledgments. We thank all CNRS staff for their help in and out of the field, and Bibiana Rojas (University of Jyväskylä) for sharing her knowledge of the opportunities at Nouragues and for discussion. We thank Bristol Zoo Gardens (Bristol Zoological Society), The Living Rainforest (The Trust for Sustainable Living), and Dartfrog (www.dartfrog.co.uk) for access to ex situ tropical environments and frogs. We also thank three anonymous reviewers for their very helpful comments. This work was supported by the Centre National de la Recherche Scientifique, France (ANR-10-LABX-25-01 to all authors) and the Biotechnology & Biological Sciences Research Council, UK: (BB/N007239/1 to ICC). J.B.B. was supported by a University of Bristol Postgraduate Scholarship. I.C.C. thanks the Wissenschaftskolleg zu Berlin for support during part of the study.

Author contributions: J.B.B., N.E.S-S., and I.C.C. conceived the study. J.B.B. and C.M. collected the images and performed the survival experiment in the field, J.B.B. collected ex situ photographic data and ran the visual search experiment, and I.C.C. wrote the programs for the latter and image analysis. All authors contributed to the design and interpretation of experiments. J.B.B. wrote the first draft of the manuscript, with subsequent modifications by all authors.

The authors declare no conflict of interest.
References

Barnett JB, Michalis C, Scott-Samuel NE, Cuthill IC (2017) Data from “Distance-dependent defensive coloration in the poison frog *Dendrobates tinctorius*, Dendrobatidae”. University of Bristol Research Data Repository. doi to be added.

Fig. 1. Avian (VS) visual modeling of *D. tinctorius* and the leaf litter background (*n* = 84), the trends are consistent with the other four visual models (see Supplementary Figures). At close-range *D. tinctorius* and its background are easily discriminated, but at greater viewing distances classification accuracy declines. A: *D. tinctorius* photographed *in situ*. B: leaf litter colors in avian visual space. C: *D. tinctorius* coloration in avian visual space - the frog contains high luminance yellows and low luminance blue-blacks which are not found in the background. D: the mean colors of each frog and each background sample are intermixed. E: color discrimination (ROC curves) at different spatial resolutions - as resolution decreases (increasing distance), accuracy decreases. F: texture discrimination (ROC curves) at different spatial scales - as resolution decreases, accuracy decreases.
Fig. 2. Relative survival of plasticine frogs in comparison to the natural leaf litter background (NL). Odds ratios with 95% confidence intervals from the model (n = 84 per frog-background combination). Left (cryptic brown-and-black frogs (C)): there was no significant difference between the natural background (NL) and the printed leaf litter (PL), but there was a significantly lower survival for the modified (NS and PA) backgrounds. Middle (plain yellow frogs (Y)): there was no significant effect of changing background. Right (yellow-and-black frogs (N)): there was no significant difference between NL and PL, but NL had a significantly higher survival than both NS and PA. The survival of the natural yellow-and-black pattern was dependent on the visual characteristics of the background, suggesting a camouflage component.
Fig. 3. Time taken by human observers to detect frogs at the Near and Far distances. Means with 95% confidence intervals from the model (n = 540 per frog-distance combination): grey lines indicate 95% CI for treatment A (posterized natural pattern). At close-range (Near - black) the natural phenotype (A) groups readily with conspicuous (high yellow) patterns (C, D, and E), which are detected more quickly than cryptic patterns (B, F, G, H, I, J, and K). At the greatest distance (Far – orange) the natural phenotype is detected significantly more slowly than conspicuous patterns, and groups more readily with cryptic patterns.
Supporting Methods

Study site. Image collection and the survival experiment took place at the Saut Pararé camp of La Station de Recherche en Écologie des Nouragues (The Nouragues Ecological Research Station), Nouragues Natural Reserve, French Guiana (4°02’N 52°41’W). The site is an uninhabited area of primary tropical rainforest with the year split into wet (December-July) and dry (August-November) seasons (1). Field experiments were conducted between December 2014 and January 2015 at the beginning of the wet season.

Image collection. Captive *Dendrobates tinctorius* (n = 3) were photographed with a UV-sensitive Nikon D70 Digital SLR camera (Nikon Corporation, Tokyo, Japan) and UV-VIS 105 mm CoastalOpt® SLR lens (Jenoptik AG, Jena, Germany) plus human-visible and IR blocking filters. Frogs were illuminated by a 13W Exo Terra Full Spectrum Daylight bulb (PT2190, Exo Terra (Hagen Inc.), Montréal, Canada) and the images contained a 15% reflectance Spectralon® grey standard (Labsphere, Inc. North Sutton, NH, USA) to allow standardization of reflectance values between VIS and UV photographs. This was repeated for the frog-like stimuli used in the survival experiment. This revealed minimal UV reflectance from both the real frogs and frog-like stimuli.

Wild adult *D. tinctorius* were searched for along approximately linear transects through the rainforest surrounding the Saut Pararé camp. Once detected, frogs (n = 84) were photographed with a Nikon D3200 Digital SLR camera and AF-S DX NIKKOR 35 mm prime lens (Nikon Corporation, Tokyo, Japan). Frogs were photographed against their natural leaf litter background from directly above at a height of 70 cm. All images contained a ColorChecker Passport (X-Rite Inc. 2009. MI, USA) which allowed color calibration and appropriate scaling. Additional photographs of the leaf litter, without frogs, were taken from directly above at heights of 100 cm (n = 265) and 150 cm (n = 265).

This was repeated for the survival experiment: the plasticine frog-like stimuli were photographed on their experimental backgrounds from a height of 100 cm (n = 58: 5 of each of the 12 frog-background
combinations – two images, one CNL and one NPL were excluded from the analysis due to dirt on the ColorChecker. Frogs were separated from their backgrounds in MATLAB 2015a (The MathWorks Inc. Natick, MA, USA) and the colors of each were plotted in the color space generated from the VS avian visual model (C = 14, Y = 15, N = 14, NL = 19, PL = 19, NS = 20, and PA = 20). This revealed that the brown-and-black frog closely matched the natural background (NL), but not the modified background (PA), whereas the yellow component of the plain yellow (Y) and natural pattern (N) frogs was distinct from all backgrounds (Fig. S5).

Visual modelling. Five visual systems were used: human LMS, violet-sensitive (VS) avian LMS, UV-sensitive (UV) avian LMS, snake LMS, and carnivorous mammal LS. Human vision was included to allow intuitive interpretation of results. In humans, opponent processing is key to our understanding of color perception (2), and central to the international standard color space L*a*b*. L*a*b* color space was derived from psychophysical testing and splits color into a measure of luminance (L*) and the opponent channels, red-green (a*) and yellow-blue (b*) (CIELAB, 1976). However, as an equivalent color space is not available for nonhuman species, and there is evidence of opponent processing in birds (3-5), we used the opponent channel logic of L*a*b* to generate visual models from relative cone capture rates (6-8).

Human LMS was produced from the trichromatic human visual pigments with peak absorption (\(\lambda_{\text{max}} \)) at 564 nm (L), 534 nm (M), and 420 nm (S) (9). Carnivorous mammal LS followed the dichromatic vision of the domestic ferret (Mustela putorius Mustelidae) with \(\lambda_{\text{max}} \) at 558 nm (L) and 430 nm (S) (10), and snake LMS followed the trichromatic UV-sensitive vision of the whip snake (Masticophis flagellum Colubridae) with \(\lambda_{\text{max}} \) at 561 nm (L), 458 nm (M), and 362 nm (UV) (11).

The violet-sensitive (VS) avian LMS model followed the tetrachromatic vision of the Indian peafowl (Pavo cristatus Galliformes) with \(\lambda_{\text{max}} \) at 605 nm (L), 537 nm (M), 477 nm (S), 432 nm (VS), and luminance measuring double cones at 567 nm (D) (12). The UV-sensitive avian LMS model used the
European starling (*Sturnus vulgaris* Passeriformes) with λ_{max} of 563 nm (L), 504 nm (M), 449 nm (S), 362 nm (UV), and 563 nm (D) (13). Dendrobatid frogs (*Dendrobates, Phyllobates*, and *Oophaga* spp.) and clay models representing dendrobatid species, have been observed falling prey to birds (both UV (14, 15) and VS (16) sensitive (17, 18)) and snakes (19). Although the visual models do not correspond directly to sympatric predatory species of *D. tinctorius*, visual perception is largely conserved among carnivorous mammals (20) and although birds fall into two categories (UV or VS sensitive) variation within each category is minimal (17). Our models are, therefore, representative of many predatory mammals and birds. Snake vision, on the other hand, is highly variable (21). However, as no data exist for the most ecologically relevant species, we follow previous studies on how snakes may perceive dendrobatid frog coloration (22, 23).

To assess how well the camera (Nikon D3200, Nikon Corporation, Tokyo, Japan) could recreate the wavelength sensitivity of the visual models, we compared the response of each receptor pigment to the nearest camera sensor (UV, VS, and S cones to the blue (B) sensor, the M cone to the green (G) sensor, and the L and D cones to the red (R) sensor), when viewing 18900 spectral measurements of temperate vegetative scenes. This revealed a high correlation between the camera and all visual pigments ($R^2 > 0.95$, except for avian and snake UV cones to the B sensor where $R^2 = 0.69$).

Human LMS was modelled in 3-dimensional color space. Luminance was the mean of the combined L and M cone responses (24), the red-green opponent channel (rg) was the relative photon catch between the L and M cones (ratio of L-M to L+M), and the yellow-blue opponent channel (yb) was the ratio of the combined L and M channels to the S cone (ratio of (M+L-2*S) to (M+L+S)). The dichromatic mammal lacks an M channel and so luminance was measured from the L cone (24), and yb from the ratio of L to S cones (ratio of (L-S) to (L+S)).

As there was minimal UV reflectance from the frog, a high correlation between both the VS and S cones to the B sensor, and UV light is largely filtered out beneath the canopy of tropical rainforest (25), both
avian LMS models were calculated in the same way as human LMS (luminance, rg, and yb channels) but with luminance measured from the response of the D cone (24). However, due to uncertainties regarding UV reflectance, including potential differences between captive and wild populations, we focus on the VS avian model (Fig. 1). For snake LMS luminance was measured from the L cone, rg from the relative stimulation of L to M cones (ratio of (L-M) to (L+M)) and yb from the relative stimulation of the combined L and M cones to the UV cone (ratio of (M+L-2*UV) to (M+L+UV)). See (6) and (8) for further discussion.

All visual systems were used for *D. tinctorius* (*n* = 84), whereas as UV reflectance was minimal, and as we only recorded avian predation, we only used the VS avian model in the survival experiment. All visual modeling was performed in MATLAB 2015a.

Image analysis. From each calibrated image of *D. tinctorius* (*n* = 84) 1000 pixels from the leaf litter and 1000 pixels from the frog were randomly selected, without replacement, for analysis using MATLAB’s random number generator for a discrete uniform distribution. Missing values due to saturation (*n* = 11 pixels) were replaced using k-nearest-neighbors data imputation (R package *DMwR* (26)) in R 3.1.3 (The R Foundation for Statistical Computing, Vienna, Austria).

A log-Gabor filter bank with four spatial scales (wavelengths expressed relative to the smallest frog: Very high = $\frac{3}{4}$, High = $\frac{1}{4}$, Medium = $\frac{1}{2}$, and Low = 1), and six orientations (0° - 150° in 30° increments) was used to assess visual texture (27-29). We do not specify a particular distance as visual acuity and contrast sensitivity depend on light intensity, which will change continuously in the field. These filters, instead, ensure that we can simulate how the pattern would be perceived at distances above and below the resolution limit of the pattern without obscuring the whole frog.

Support Vector Machines (SVMs) were used to assess how easily frogs and backgrounds could be discriminated at different spatial scales (R package *e1071* (30)). SVMs were used because the yellow and blue colors of the frog fall on either side of the background color distributions and so a classifier with a
single decision boundary (e.g. logistic regression) would not be effective. To avoid overfitting, cross-validation was implemented by randomly splitting the data in two, training the model on one half and testing the model on the other (31). Classification accuracy was assessed using the area under the curve (AUC) of receiver operating characteristic (ROC) curves (R package \textit{pROC} (32)). Plotting the proportion of correct frog classifications (sensitivity) against the proportion of correct background classifications (specificity), with the x-axis reversed, presents increasing accuracy towards the top-left of the panel. An AUC of 1.0 equates to perfect classification whereas 0.5 equals random chance, and the AUC was interpreted as: 1.0-0.9 = excellent, 0.9-0.8 = good, 0.8-0.7 = fair, 0.7-0.6 = poor, 0.6-0.5 = fail (31).

\textbf{Survival experiment.} In order to assess whether the survival of \textit{D. tinctorius} is background dependent (a feature of camouflage rather than aposematism (29, 33)) we used plasticine model frogs, manipulated both the frog’s color and the background, and recorded the rate of avian predation \textit{in situ}.

Frog-like stimuli consisted of a reusable plastic base (legs) and a soft plasticine top (head and body) in which predation marks could be identified. To form the base, commercially available plastic models of \textit{D. tinctorius} (\(n = 200\); Blip LLC. Plymouth, MN, USA) were cut along the frontal plane. To form the head and body of the frog white non-toxic plasticine (NewplastTM, Newclay Products Ltd. Newton Abbott, UK) was cut into \(\sim 5\) g blocks and molded by hand. Our stimuli were \(\sim 45\) mm in length, which fell within the 37-53 mm length range previously recorded for this population of \textit{D. tinctorius} (34).

All plastic bases were painted black (Carbon Black Liquitex Professional, ColArt Interactive Inc. Piscataway, NJ, USA), and the plasticine tops were painted either yellow (\(n = 800\); Cadmium Yellow Deep Hue 5 Liquitex Professional, ColArt Interactive Inc. Piscataway, NJ, USA) or brown (\(n = 400\); Raw Umber Liquitex Professional, ColArt Interactive Inc. Piscataway, NJ, USA). A roughly circular black pattern was then stenciled by hand onto half of the yellow (\(n = 400\)) and all of the brown (\(n = 400\)) frogs. This created 400 of each treatment: plain yellow (\(Y\)), brown-and-black (\(C\)), and yellow-and-black (\(N\)).
The model frogs were then placed onto one of four experimental backgrounds with different visual characteristics (Figs. S4 and S5). Two backgrounds were created in situ: NL – the natural leaf litter covering the rainforest floor on which frogs are predominantly active, and NS – the plain soil found beneath the leaf litter. The other two backgrounds were generated ex situ from photographs of rainforest-like leaf litter found in the tropical house exhibits of Bristol Zoo Gardens (Bristol Zoological Society, Bristol, UK) and The Living Rainforest (The Trust for Sustainable Living, Berkshire, UK). PL was a leaf litter photograph and PA was the mean RGB color and luminance of the leaf litter photograph calculated in ImageJ (National Institutes of Health, MD, USA). Both PL and PA were calibrated to produce a 1:1 scale and appropriate colors and were then printed at 120 dpi (Canon imageRunner Advance C5235i, Canon Inc. Tokyo, Japan) on to 100 mm2 sheets of waterproof paper (Rite-in-the-Rain White All-Weather Copier Paper 8512-M, JL Darling LLC. Tacoma, WA, USA).

A randomized block design was used. Twelve blocks of plasticine frogs (n = 1008: seven replicates of each of the 12 treatments per block) were independently placed along non-linear transects through the rainforest, the route and length of each transect varied following local terrain. For each block, the frog-background pairs were placed onto the leaf litter in a random sequence (decided by coin toss in situ) and were positioned in order to be unobstructed by vegetation and to be independent (out of sight) from one another, such that it would be unlikely for any one predator to encounter more than one model at a time.

The occurrence of avian predation was recorded at 24, 48, 72, and 96 h after the block was set up. Avian predation was identified by clear beak marks in the plasticine, whereas other forms of predation were identified by visible tooth marks (mammals and reptiles) or small pits (ants). The rate of predation was analyzed using a mixed-effects Cox model (R package coxme (35)) in R 3.1.3. Avian predation was included as a full event, whereas non-avian predation, missing or washed out stimuli, and those surviving to 96 h were included as censored values, and block was included as a random factor.
Detection experiment. Experimental stimuli were based on photographs of *D. tinctorius* and its natural leaf litter background (see above). Photographs of 30 different *D. tinctorius* were randomly selected and, after color calibration and scaling, each was cropped from the image and saved separately. Each frog photograph was then manipulated into 12 different color treatments in MATLAB 2015a (Fig. S6).

To allow manipulation of color patterning we generated standardized colors using k-means clustering of each *D. tinctorius*. The colors of each frog were grouped into four clusters, and we designated the ‘yellowest’ centroid (highest ratio of R+G to B) as yellow, and the lowest luminance centroid as blue-black. Each frog generated slightly different colors, and these standardized colors were used to generate treatments A, B, C, D, E, and F.

Treatment A recreated the natural pattern (predominantly blue-black with a yellow pattern) with standardized yellow and blue-black colors. Treatment B was homogeneous blue-black and treatment C was homogeneous yellow. For treatment D, we reversed the yellow and blue-black regions of treatment A (creating a predominantly yellow frog with blue-black patterning). For treatment E, all yellow pixels found in treatment A were grouped together to form an approximately circular patch of yellow on an otherwise blue-black frog, and in treatment F, all yellow pixels found in treatment A were layered around the frog’s edge.

To create treatment G all yellow pixels of treatment A were replaced with the average color of the background, creating a predominantly black frog with a brown pattern, and these regions were reversed for treatment H (predominantly brown with a black pattern). Treatment I and treatment J were homogeneous brown: the average colors of the frog and of the background respectively. Treatment K represented background matching camouflage and was a randomly selected frog shaped patch of leaf litter cropped from an appropriately scaled and calibrated photograph of French Guianan leaf litter. Finally, treatment L was the unmanipulated frog.
These manipulations were performed on each replicate *D. tinctorius* separately to create 30 replicates of 12 different treatments (n = 360).

Three different backgrounds were generated, to represent three different viewing distances, from photographs of leaf litter taken in French Guiana. Each image (100 cm = 265; 150 cm = 265) was converted to an 8-bit Tiff file, calibrated, appropriately scaled, and then cropped into a 768 x 768 pixel square.

Each frog was then appropriately scaled and placed randomly onto a leaf litter background. As the number of frogs (n = 360) exceed the number of backgrounds (n = 265), 95 leaf litter images of each distance were randomly selected and rotated by 90°. The 100 cm images created a Near (N) condition representing close-range viewing conditions, and the 150 cm images generated a Medium (M) viewing condition. To represent even greater viewing distances frogs were randomly reassigned to the 150 cm images and a 16° Gaussian filter was applied to remove high spatial frequency information.

Eighteen human participants (nine male and nine female, with normal or corrected to normal vision) detected and clicked on frogs on a computer screen (one participant left the study before completing the Far condition). All participants gave their informed consent in line with the Declaration of Helsinki. If a frog could not be detected after 30 s the trial would time out and move to the next image. The speed and accuracy of detection was recorded in *Psychtoolbox* (36) in MATLAB 2015a.

Each distance was run as a separate session with participants completing the sessions in a random order separated by a minimum of one hour. Each session contained all 360 stimuli split into 10 blocks of 36 images, with participants allowed a short break between each. Stimuli were presented in a separately randomized sequence for each participant.

To analyze detection probability data were split into ‘correct’ and ‘incorrect’ based on whether the mouse click was within the frog’s outline, with a lenience of 10% of the frog’s dimensions. Reaction time was log-transformed to normalized distributions. Detection probability was analyzed with a binomial
generalized linear mixed effects model and reaction time was analyzed with a general linear mixed effects model (R package \textit{lme4} (37)). Both models included treatment and distance as fixed effects, and participant number as a random factor. Pairwise comparisons of \textit{a priori} interest were calculated in package \textit{multcomp} (38), in R 3.1.3.

Pairwise tests were performed to investigate particular hypotheses: i) how the ratio and distribution of color components affects detectability, ii) whether the pattern acts as disruptive camouflage, and iii) whether the natural pattern may act as distance-dependent pattern blending. As the number of pairwise comparisons (11) was equal to the number of degrees of freedom (11), p values did not need to be adjusted.

As all manipulated color patterns were generated from standardized colors and effectively posterized, all pairwise comparisons were made to treatment A. To control for the posterization of the pattern during color manipulation treatments A and L were compared.

Treatment A was compared to treatments B, C, and D to investigate the role of the ratio of yellow to black. These comparisons investigate how increasing or decreasing the amount of salient yellow pigment could affect the detectability of the frog, i.e. would the frog be able to increase or decrease its detectability by changing the ratio of these two pattern components.

As there may be metabolic costs or constraints associated with changing the ratio of pattern components, i.e. the availability of the carotenoid pigments. Treatments E and F represent hypothetical high conspicuous pattern arrangements which maintain the ratio of color components. Treatment E is the largest patch of conspicuous yellow, and F uses the yellow to highlight the edge, and therefore extenuate the recognizable outline of the frog. By comparing A to E and F we investigate whether the natural arrangement of the pattern is optimized for high detectability.

High contrast patterning has been linked to breaking up the outline of a target: disruptive camouflage. We tested potential disruptive camouflage effects by comparing treatment G to B (the effect of adding brown
patterning to the plain blue-black), and treatment H to J (the effect of adding blue-black patterning to the
plain brown). Disruption would suggest that the contrasting patterns (G and H) should be harder to detect
than plain patterns (B and J).

To investigate distance-dependent pattern blending, we tested whether the frog’s average color (I) was
camouflaged. Firstly, we compared treatments A and I, to see whether the detectability of the frog
converged with its mean color as distance increased. We also compared treatment I to the mean color of
the background (J) and to background matching camouflage (K). If the frog’s average color provides
effective camouflage we would expect there to be little difference in reaction time between I, J, and K.
Although homogenous colors have been repeatedly demonstrated to provide poor camouflage at close
range when compared to textured patterns like K, the mean color of the frog only needs to be effective at
greater distances.
References

Fig. S1. Discrimination (frog vs background: n = 84) accuracy (Area Under the Curve (AUC) of Receiver Operated Characteristic (ROC) curves from Support Vector Machine (SVM) classification) using all spatiochromatic information (equivalent of close range viewing). All visual systems (VS bird – *Pavo cristatus*, UV bird - *Sturnus vulgaris*, snake - *Masticophis flagellum*, mammal - *Mustela putorius*, and human) were excellent at discriminating frogs from backgrounds with near perfect classification. At close range, therefore, the frogs’ color and patterning are highly salient and easily
distinguished from the background. AUC of 1.0 equals perfect classification and 0.5 indicates random chance: 1.0-0.9 = excellent, 0.9-0.8 = good, 0.8-0.7 = fair, 0.7-0.6 = poor, 0.6-0.5 = fail (see Table 1).

Fig. S2. Color discrimination (frog vs background: n = 84) accuracy (Area Under the Curve (AUC) of Receiver Operated Characteristic (ROC) curves from Support Vector Machine (SVM) classification) at four different spatial resolutions (Very High = close range, Low = long distance) and for the mean color (long distance). Each visual model (A = UV bird: Sturnus vulgaris, B = snake: Masticophis flagellum, C = mammal: Mustela putorius, and D = human) is good at discriminating frogs from their backgrounds at close range (Very High), but accuracy declines to poor at the furthest distance (Mean). At close range the frog is easily detected, but as distance increases the frogs’ colors blend together to more closely match the background and it is harder to distinguish the frog from the

114
background. AUC of 1.0 equals perfect classification and 0.5 indicates random chance: 1.0-0.9 = excellent, 0.9-0.8 = good, 0.8-0.7 = fair, 0.7-0.6 = poor, 0.6-0.5 = fail (Table 1).
Fig. S3. Visual texture discrimination (frog vs background: n = 84) accuracy (Area Under the Curve (AUC) of Receiver Operated Characteristic (ROC) curves from Support Vector Machine (SVM) classification) at four different spatial resolutions (Very High = close range, Low = long distance). For each visual model (A = UV bird: *Sturnus vulgaris*, B = snake: *Masticophis flagellum*, C = mammal: *Mustela putorius*, and D = human), discrimination accuracy declines from good at close range (Very High) to fail at the furthest distance (Low). At close range the patterning of the frog, independent of coloring, is easily distinguished from the visual texture distribution of the background, but as distance increases the frog becomes harder to classify. AUC of 1.0 equals perfect classification and 0.5 indicates random chance: 1.0-0.9 = excellent, 0.9-0.8 = good, 0.8-0.7 = fair, 0.7-0.6 = poor, 0.6-0.5 = fail (Table 1).
Fig. S4. Examples of the stimuli used in the survival experiment. Three different frog colors were presented to four different backgrounds. Frogs colors: C: brown-and-black (camouflage), Y: plain yellow (aposematism), and N: the natural yellow-and-black pattern. Backgrounds: NL: natural leaf litter, NS: natural soil (leaf litter removed), PL: paper printed with photograph of leaf litter, and PA: paper printed with homogeneous color (mean of PL).
Fig. S5. Avian (VS - *Pavo cristatus*) visual modeling of each plasticine frog (top) and each background (bottom) used in the survival experiment (see Fig. S4 for photographs). C – brown and black frog (camouflage: n = 14), Y – yellow frog (aposematism: n = 15), N – yellow and black frog (natural pattern: n = 14), NL - natural leaf litter background (n = 19), PL – printed leaf litter background (n = 19), NS - natural soil background (n = 20), and PA – printed average background (n = 20). The yellow component of the plain yellow (Y) and natural patterned (N) frogs is an obvious outlier from all backgrounds (NL, PL, NS, and PA), whereas the brown-and-black frog (C) is a closer match to the natural background (NL) than to the modified background (PA).
Fig. S6. Examples of the stimuli used in the detection experiment. Each set of 12 treatments was based on a different frog \((n = 30) \). Standardized frog colors (A, B, C, D, E, F, G, H, \& I) were created using \(k \)-means clustering the RGB color space into four clusters (yellow = centroid with the highest ratio of R+G to B; blue-black = centroid with lowest luminance). A: posterized natural pattern using standardized colors, B: plain blue-black, C: plain yellow, D: reversed color natural pattern, E: all yellow pixels of A grouped into one approximately circular patch, F: all yellow pixels from A moved to the frog’s edge, G: natural pattern with yellow replaced with the mean color of the background, H: inverse of pattern G, I: mean color of the frog, J: mean color of the background, K: background matching camouflage (random sample of leaf litter background), and L: unmanipulated natural frog pattern.