
Peer reviewed version

Link to published version (if available):
10.1111/mve.12328

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at https://onlinelibrary.wiley.com/doi/full/10.1111/mve.12328 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
The toad fly *Lucilia bufonivora*: its evolutionary status and molecular identification

- **Journal:** *Medical and Veterinary Entomology*
- **Manuscript ID:** MVE-18-1759.R1
- **Wiley - Manuscript type:** Original Article
- **Date Submitted by the Author:** n/a
- **Complete List of Authors:**
 - Arias-Robledo, Gerardo; University of Bristol, Biological Sciences
 - Stark, Tariq; Reptile, Amphibian and Fish Conservation the Netherlands (RAVON)
 - Wall, Richard; University of Bristol, Biological Sciences
 - Stevens, Jamie; University of Exeter, Biosciences
- **Category:** Veterinary

Abstract:

The blowfly genus *Lucilia* is composed largely of saprophages and facultative myasis agents, including the economically important species *Lucilia cuprina* and *Lucilia sericata*. Only one species is generally recognised as an obligate agent of myiasis, *Lucilia bufonivora* Moniez, and this is an obligate parasite of toads. *Lucilia silvarum* (Meigen), a sister species, behaves mainly as a carrion breeder, however, it has also been reported as a facultative parasite of amphibians. Morphologically, these species are almost identical and historically this has led to misidentification, taxonomic ambiguity and a paucity of studies of *L. bufonivora*. In this study, dipterous larvae were analysed from toad myiasis cases from the UK, The Netherlands and Switzerland, together with adult specimens of fly species implicated in amphibian parasitism: *L. bufonivora*, *L. silvarum* and *Lucilia elongata*. Partial sequences of two genes, COX1 and EF1α, were amplified. Seven additional blowfly species were analysed as outgroups. Bayesian inference trees of COX1, EF1α and a combined-gene dataset were constructed. All larvae isolated from toads were identified as *L. bufonivora* and no specimens of *L. silvarum* were implicated in amphibian myiasis. This study confirms *L. silvarum* and *L. bufonivora* as distinct sister species and provides unambiguous molecular identification of *L. bufonivora*.
The toad fly *Lucilia bufonivora*: its evolutionary status and molecular identification

G. ARIAS-ROBLEDO¹,², T. STARK³, R. L. WALL¹ and J. R. STEVENS²*

¹School of Biological Sciences, University of Bristol, Bristol, UK
²School of Biosciences, University of Exeter, Exeter, UK
³Reptile, Amphibian and Fish Conservation the Netherlands (RAVON), Nijmegen, The Netherlands

*Correspondence: J. R. Stevens, Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK. Tel.: +44 1392 723775; Email: j.r.stevens@exeter.ac.uk, ORCID ID: 0000-0002-1317-6721
Abstract. The blowfly genus *Lucilia* is composed largely of saprophages and facultative myasis agents, including the economically important species *Lucilia cuprina* and *Lucilia sericata*. Only one species is generally recognised as an obligate agent of myiasis, *Lucilia bufonivora* Moniez, and this is an obligate parasite of toads. *Lucilia silvarum* (Meigen), a sister species, behaves mainly as a carrion breeder, however, it has also been reported as a facultative parasite of amphibians. Morphologically, these species are almost identical and historically this has led to misidentification, taxonomic ambiguity and a paucity of studies of *L. bufonivora*. In this study, dipterous larvae were analysed from toad myiasis cases from the UK, The Netherlands and Switzerland, together with adult specimens of fly species implicated in amphibian parasitism: *L. bufonivora*, *L. silvarum* and *Lucilia elongata*. Partial sequences of two genes, *COX1* and *EF1α*, were amplified. Seven additional blowfly species were analysed as outgroups. Bayesian inference trees of *COX1*, *EF1α* and a combined-gene dataset were constructed. All larvae isolated from toads were identified as *L. bufonivora* and no specimens of *L. silvarum* were implicated in amphibian myiasis. This study confirms *L. silvarum* and *L. bufonivora* as distinct sister species and provides unambiguous molecular identification of *L. bufonivora*.

Key words. Myiasis, obligate parasitism, Calliphoridae, *Bufo bufo*, cytochrome *c* oxidase subunit 1, Elongation factor 1 alpha
Introduction

The cosmopolitan genus of calliphorid blowflies, *Lucilia*, is composed largely of saprophages and facultative agents of myiasis, the latter showing species-specific differences in their propensity to infest living hosts. Of most economic importance within the genus are *Lucilia cuprina* (Wiedemann) and *Lucilia sericata* (Meigen), which are primary agents of sheep myiasis in many areas of the world. Only one species is believed to be an obligate agent of myiasis, *Lucilia bufonivora* Moniez, which has a high host-specificity for anurans. Eggs are laid on the living host and, after hatching, the first stage larvae migrate to the nasal cavities where larval development takes place (Fig. 1), usually resulting in the death of the amphibian host (Zumpt, 1965).

L. bufonivora has been reported as the cause of myiasis in a range of amphibian hosts, however, most reports relate to infestations of the common toad, *Bufo bufo* (Weddeling & Kordges, 2008; Diepenbeek & Huijbregts, 2011; Martín et al., 2012). This blowfly is widely distributed in Europe (Rognes, 1991; Verves & Khrokalo, 2010) and Asia (Fan et al., 1997), and recently adult specimens of *L. bufonivora* have been reported in North America and Canada (Tantawi & Whitworth, 2014).

Lucilia silvarum (Meigen) is another widely distributed blowfly species in the Palearctic (Schumann, 1986) and the Nearctic (Hall, 1965). It lives mainly as a carrion breeder in the Palearctic (Zumpt, 1956), however, there are several reports of *L. silvarum* being involved in amphibian myiasis in North America (Hall, 1948; Bolek & Coggins, 2002; Bolek & Janovy, 2004; Eaton et al., 2008) and therefore it is usually considered a facultative rather than an obligate parasite (Nuorteva, 1963); there is no reliable evidence of the involvement of this species in amphibian myiasis in Europe.

While most cases of toad myiasis by *L. bufonivora* have been reported to occur in the nasal cavities of their host (Diepenbeek & Huijbregts, 2011; Martín et al., 2012), toad myiases due to *L. silvarum* have been reported to occur in the back, neck, legs and parotid glands of the host; there are no reports of *L. silvarum* developing in the nasal cavities (Bolek & Coggins, 2002; Bolek & Janovy, 2004). Despite this apparent behavioural difference, the adults of these two closely related
blowfly species are almost identical morphologically, making identification difficult since reliable identification requires examination of the male genitalia or the female ovipositor. Morphological identification and differentiation of the larval stages is even more problematic and Zumpt (1965) argued that in Europe most records of toad myiasis, thought to have been caused by *L. silvarum*, should probably be attributed to *L. bufonivora*.

Due to their morphological similarity, the taxonomic status of *L. bufonivora* and *L. silvarum* has been unclear for many decades; indeed, Townsend (1919) proposed a new genus, *Bufolucilia*, which included *L. bufonivora* as the type species, along with *L. silvarum*. Hall (1948) also included *Lucilia elongata* Shannon in this genus, which has also been reported as a facultative amphibian parasite in North America (James & Maslin, 1947; Bolek & Janovy, 2004). The genus *Bufolucilia* was dismissed as a synonym of *Lucilia* by Rognes (1991), although it is still used as a subgenus by some authors (Verves & Khrokalo, 2010; Draber-Mońko, 2013). However, while several studies provide strong support for the grouping of *L. bufonivora* and *L. silvarum* as closely related sister species (e.g. Stevens & Wall, 1996a; McDonagh & Stevens, 2011), recognition of subgenus *Bufolucilia* would leave other *Lucilia* species in a heterogeneous and paraphyletic group, as observed with some other proposed (but poorly supported) genera, for example, *Phaenicia* (Stevens & Wall, 1996a). Thus, the evolutionary relationships between *L. bufonivora* and *L. silvarum* remain unclear.

Here, we utilise sequence data from the mitochondrial protein-coding gene cytochrome c oxidase subunit I (*COX1*) and the nuclear gene elongation factor 1 alpha (*EF1α*) to facilitate unambiguous identification of *L. bufonivora* larvae infesting live toads and we identify the causal agent of obligate amphibian myiasis. Additionally, we confirm the hypothesis that *L. bufonivora* and *L. silvarum* are distinct sister species, and we discuss the evolutionary relationships between the closely related taxa associated with amphibian myiasis.
Materials and methods

Adult and larval specimens

Larval specimens putatively identified as *L. bufonivora* were sampled from 16 separate toad myiasis cases from six different locations in Britain (8 cases), four locations in The Netherlands (7 cases) and one site in Switzerland (1 case) (Table 1, Fig. S1). Four adult specimens of *L. bufonivora* were also analysed, two from southern Germany and two collected with the aid of baited traps in The Netherlands (Table 2, Fig. S1). Five adult specimens of *L. silvarum* were analysed, including three from the UK, one from the USA and one from The Netherlands. A specimen of *L. elongata* from Alberta, Canada was also added to facilitate further exploration of the evolutionary relationships across the broader group of fly species reported as amphibian parasites.

For comparative purposes, adult specimens of seven other *Lucilia* species were also analysed (Table 2, Fig. S1). Specimens were collected in the UK and The Netherlands using liver-baited traps and identified using keys by van Emden (1954). Additionally, two new specimens of adult *Lucilia mexicana* from Chapingo, Mexico were analysed (Table 2). Sequence data for specimens of *L. silvarum*, *L. sericata*, *L. cuprina* and *L. illustris* and *Lucilia ampullacea* were obtained from EMBL/GenBank and also included in the analysis. Three adult samples of *Calliphora vicina* collected in the UK and Switzerland were included as outgroup taxa. All specimens were stored in 100% ethanol at 4°C prior to analysis.

DNA extractions and PCR procedures

Thoracic muscle of adult specimens was used for DNA extraction to avoid contamination with ingested protein, eggs or parasites. To avoid potential contamination from larval gut contents, the anterior and posterior ends of larvae were used for DNA extraction from LII and LIII life stages, while whole specimens were used if samples were LI; live larvae were maintained on damp filter paper for 3–6 hours prior to storage in ethanol to allow them to evacuate their gut contents. DNA
extractions were carried out using a QIAGEN DNeasy® Blood and Tissue Kit (Qiagen GmbH, Germany) according to manufacturer’s instructions.

DNA was extracted as total nucleic acid and subjected to PCR to amplify the cytochrome oxidase I (COX1) region of the mitochondrial protein-coding gene and the EF1-EF4 region of the nuclear protein-coding gene elongation factor 1 alpha (EF1α). Universal insect primers previously published (Table 3) were used. The PCR protocol published by Folmer et al. (1994) was modified to amplify COX1 and EF1-EF4 with the following cycling conditions: 94°C for 5 min, followed by 35 cycles of 95°C for 30 s, 50°C (COX1) or 48°C (EF1-EF4) for 30 s, 72°C for 1 min, and a final step of 72°C for 1 min. A negative control (no template DNA) was included in each set of PCR amplifications. PCR products were separated by gel electrophoresis and bands were visualized by ethidium bromide staining. Targeted bands of COX1 were cut out and purified using a QIAquick® Gel Extraction Kit (Qiagen GmbH, Germany). Successful EF1-EF4 products were purified using 0.5µL of Exonuclease I and 0.5 µL of Antarctic phosphatase per 20 µL of PCR product. A total of 658 bp of the COX1 region were amplified in a single fragment with primers HCO2198 and LCO1490. A fragment of 638 bp of the EF1α region was amplified with primers EF1 and EF4. Purified PCR products were sequenced using commercial sequencing facilities, EUROFINS® (EF1α) and GENEWIZ® (COX1).

Sequence alignment

The quality of the sequences was checked and edited manually for both forward and reverse fragments; sequences were then assembled into a single consensus sequence using BioEdit software. Each consensus sequence was checked against previously published sequences in EMBL/GenBank using BLAST. Multiple sequence alignment was carried out using BioEdit implementing the CLUSTALW algorithm.
Phylogenetic analysis

The best-fitting nucleotide substitution model for each dataset was selected using jModelTest (Posada, 2008) (TreNef + I was selected for the EF1-EF4 dataset; TIM3 + I +G was selected for COX1). Prior to Bayesian inference analyses the best-fitting model selected for each gene was implemented by changing the default settings (nst, rates, ngammacat, statefreqpr, revmat, shapepr and pinvarpr) in the software MrBayes v3.2.6 (Huelsenbeck & Ronquist, 2001) phylogenetic analysis was then carried out implementing MCMC starting from two independent analyses simultaneously, each with three heated chains and one cold chain, they were run for 10,000 generations sampling every 10 generations. Analyses were stopped when the critical value for the topological convergence diagnostic fell below the default threshold (0.01). A fraction (0.25) of the sampled values were discarded (burninfrac = 0.25) when the convergence diagnostics were calculated. Substitution model parameters (sump) and branch lengths (sumt) were summarized; tree topology was then calculated with the remaining data by constructing a majority-rule consensus tree. A combined-gene analysis was also carried out with a partitioned dataset; model parameters for each gene were implemented separately (unlinked), allowing each gene to evolve under different rates. An incongruence length difference test (ILD) was run in PAUP*4.0a152 to test phylogenetic congruence and to quantify the differences in topology between the single-gene trees. Analysis was conducted on a partitioned dataset with the combined dataset (EF1α and COX1).

Results

Molecular identification of Lucilia bufonivora

All 20 larval specimens from the 16 infestations studied (Table 1) gave nuclear and mitochondrial sequence data consistent with BLAST searches for Lucilia bufonivora. Additionally, molecular data reaffirmed the identity of adult fly samples identified as L. bufonivora on the basis of morphology. All L. bufonivora samples were grouped together in a single unstructured clade in all phylogenies (Fig. 2, Fig. 3).
Single-gene phylogenies: EF1α

Bayesian inference analysis of the EF1-EF4 region of the nuclear gene EF1α identified the amphibian parasite species group as monophyletic (Fig. 2a). Within this group all *L. bufonivora* specimens analysed grouped together in a single clade with strong support (Fig. 2a), and with minimal intra-specific variation (only one English specimen, Lbufo17, showed minor variation). However, the analysis did not show clear distinction of the North American species *L. elongata* from *L. silvarum* (Fig. 2a), although within this group, both USA samples of *L. silvarum* (Sacramento and San Francisco) were placed together with strong support and higher intra-specific variation.

Both specimens of *L. ampullacea* were grouped together in a single clade as a sister taxon of the amphibian parasite species group. This analysis also gave strong support to the clear relationships of *L. sericata* and *L. richardi* (Fig. 2a), placing together both US and UK samples of *L. sericata* as a sister clade to the *L. richardi* clade. *L. caesar* and *L. illustris* were also placed together in a monophyletic group. Both specimens of *Lucilia cuprina* (NZ and AUS) were grouped in a single clade separated from the species mentioned above; a similar pattern of separation was observed with the two sequences of *L. mexicana* (Fig. 2a).

Subfamily relationships were clearly distinguished: all members of the Luciliinae were well separated from those of the Calliphorinae lineage with strong support. All sequences of *Calliphora vicina* analysed grouped together in the same outgroup clade.

Single-gene phylogenies: COX1

The Bayesian inference tree based on COX1 gene sequence data (Fig. 2b) placed all *L. bufonivora* in a single clade with no intra-specific variation between them. *Lucilia elongata* was grouped as a sister clade to *L. bufonivora* with strong support (Fig. 2b). *Lucilia silvarum* showed some intra-specific variation: *L. silvarum* from the UK formed a distinct sister clade, separate to a
Dutch specimen; together these samples formed a monophyletic European *L. silvarum* clade (Fig. 2b). Sequences of *L. richardsi* – a European blowfly species – were placed as a sister clade to the European *L. silvarum* group; however, both North American *L. silvarum* samples were placed apart from this group (*L. richardsi* + European *L. silvarum*), further emphasising the relatively high intraspecific variation in *L. silvarum*.

The Bayesian analysis recovered the sheep myiasis agents *L. sericata* and *L. cuprina* as sister species with strong support (0.99). The *L. caesar* group was also recovered, placing *L. ampullacea* as a sister taxon to the *L. illustris* + *L. caesar* clade. The North American species *L. mexicana* was well separated from the *L. caesar* group. Subfamily Luciliinae was recovered in this tree with high support (Fig. 2b) and all samples of *C. vicina* used in this study were placed in the same clade as an outgroup.

Combined-gene phylogeny

The ILD test detected incongruence between the two genes used in this study (*P* = 0.01); nonetheless, Bayesian inference analysis of a combined partitioned dataset produced a phylogeny with generally strong posterior probabilities (Fig. 3). All *L. bufonivora* samples were grouped in a single clade as a sister species to *L. elongata*. As observed in the COX1 tree, a monophyletic European *L. silvarum* group (GBR + NDL) was recovered, with *L. richardsi* grouped as its sister taxon (Fig. 3); again, both American specimens of *L. silvarum* were placed outside of this group as sister taxa with high support values. Both sheep blowfly species, *L. sericata* and *L. cuprina*, were recovered as a monophyletic group with strong support. The closely related species *L. illustris* and *L. caesar* were recovered as sister species, however, this combined-gene analysis placed *L. mexicana* more closely related to the *L. caesar* group than the *L. ampullacea* clade. Subfamily relationships of Luciliinae were recovered with strong posterior probability (1), grouping all *C. vicina* samples as an outgroup and differentiating subfamily Calliphorinae from Luciliinae with strong support (Fig. 3).
Discussion

Using mitochondrial data (COX1) McDonagh & Stevens (2011) differentiated *L. bufonivora* from *L. silvarum* and placed them as separate sister species. However, in the same study both species were placed in the same clade using *EF1α* and 28S rRNA as phylogenetic markers, the latter failing to classify them as distinct species. In this study, the *EF1-EF4* region of the protein-coding nuclear gene *EF1α* showed just a single nucleotide difference between the sequence data of *L. silvarum* and *L. bufonivora*; however, Bayesian inference analysis showed clear groupings, identifying them as distinct sister species. Addition of data from the North American amphibian parasite *L. elongata*, another putatively closely related taxon, allowed an even clearer understanding of the evolutionary relationships between *L. silvarum* and *L. bufonivora*, resulting in the differentiation of them as distinct sister species. The *EF1α* tree supported the suggestion that *L. bufonivora* has diverged relatively recently from its sister taxon *L. silvarum* (Stevens & Wall, 1996a). The COX1-based phylogeny showed clear relationships and distinction between *L. bufonivora* and *L. silvarum*, a finding reiterated in the combined-gene tree. It is probable that in the combined-gene tree a stronger signal in the mtDNA data (COX1) is driving the clear distinction and is dominating the weaker phylogenetic signal of the nuclear data (*EF1-EF4*). The low signal present in the *EF1α* sequence data accords with the lower rate of evolution reported previously in this nuclear gene (McDonagh & Stevens, 2011) compared with that reported in the majority of insect mitochondrial genes (McDonagh et al., 2016). Indeed, COX1 has been widely used in blowfly systematics (Otranto & Stevens, 2002; Stevens et al., 2002; Wells et al., 2002) and due to generally higher rates of sequence change in mtDNA it is expected to reach reciprocal monophyly before nuclear genes (Funk & Omland, 2003; Dowton, 2004; Lin & Danforth, 2004). As such, mitochondrial sequence data (e.g. COX1) are useful for inferring the relationships of recently diverged species (Stevens & Wall, 1997; Shao & Barker, 2006), and our results appear to reaffirm this, suggesting that *L. bufonivora* is clearly a separate sister species to *L. silvarum*.

10
Molecular analysis of different populations of *L. bufonivora* from across Europe, detected no intra-specific differences in mitochondrial sequence data, while the nuclear gene EF1α also exhibited only minimal intra-specific sequence variation (Fig. 2a). However, in *L. silvarum* marked intra-specific variation in both nuclear and mitochondrial sequence data was observed between European and North American populations of this fly; recent phylogenetic analysis of populations of this species from the USA and Germany also showed a high degree of intra-specific difference (Williams *et al.*, 2016). In the current study, intra-specific variation was also observed between European samples, with UK *L. silvarum* differing from a Dutch specimen of the same species. In contrast, a lack of significant variation in both nuclear and mitochondrial genes in the different European populations of *L. bufonivora* analysed suggests that it may be a recently diverged species that has accumulated less molecular variation. Further studies would be of value, particularly to explore the differences between European and North American populations of *L. bufonivora* (e.g. Tantawi & Whitworth, 2014).

Even when both species have been reported as amphibian parasites (Baumgartner, 1988), *L.(bufonivora)* has never been observed breeding in carrion. In contrast, its sister species *L. silvarum* is reported mainly as a common carrion-breeding species in Europe (Rognes, 1991), with no confirmed records of parasitism in amphibians due to it in this region (Diepenbeek & Huijbregts, 2011; Fremdt *et al.*, 2012). In North America, however, there have been several reports of amphibian myiasis cases apparently involving *L. silvarum* (Bolek & Coggins 2002; Bolek & Janovy 2004; Eaton *et al.*, 2008). The phylogeny constructed from the combined dataset characterised *L. silvarum* from the USA as more closely related to *L. bufonivora* than to *L. silvarum* from Europe. This finding is congruent with the reported amphibian parasitic behaviour of North American *L. silvarum*, and reiterates the significance of the relatively high intra-specific variation present between European and North American populations of *L. silvarum*, which in turn reflects the fact that very different larval feeding strategies can be exhibited even between closely related blowfly taxa (Stevens, 2003; Stevens & Wallman, 2006).
Using the nuclear marker EF1α, amphibian parasitism in *Lucilia* appears as a monophyletic trait with the inclusion of *L. bufonivora*, *L. silvarum* and *L. elongata*. However, in the combined-gene and COX1 trees this group becomes paraphyletic due to the inclusion of the European species *L. richardsi*. It is important to mention that the biology of *L. elongata* has been poorly studied, and this species has never been reported as carrion-breeder (James & Maslin, 1947; Briggs, 1975; Bolek & Janovy, 2004), possibly behaving only as an obligate parasite of anurans in North America. Thus, *L. elongata* and *L. bufonivora* may be the only two species that exhibit this obligate parasitism behaviour among the genus *Lucilia*. Interestingly, they are placed together as monophyletic sister taxa in both the COX1 and combined-gene trees.

L. bufonivora is considered a rare species in England and there are few reports of confirmed toad myiasis cases where it is involved (McDonagh & Stevens, 2011) and adult flies of this species are rarely caught using carrion-baited traps (Arias-Robledo, unpublished data). This may illustrate the highly specific nature of the cues emanating from a living amphibian host that are required to attract *L. bufonivora*, or simply may reflect its restricted distribution and low abundance in the field. In this study, the molecular identification of larval samples extracted from toad myiasis cases as *L. bufonivora* reaffirmed the presence of this obligate parasite in Britain (Fig. 3). A study in Germany suggests that this species is highly variable in its local abundance (Weddeling & Kordges, 2008).

Based on mitochondrial data, European specimens of *L. silvarum* were found to be more closely related to *L. richardsi* than to *L. bufonivora*. However, the EF1α-based phylogeny placed *L. richardsi* as a sister species of *L. sericata* outside of the amphibian parasite group of flies, as observed in previous phylogenetic analyses (McDonagh & Stevens, 2011). Although *L. sericata* and *L. silvarum* have been reported as facultative parasites of sheep and amphibians, respectively (McLeod, 1937; Hall, 1948), there are no records of *L. richardsi* being involved in cases of sheep or toad myiasis. However, Nuorteva (1959) reported that three males of *L. richardsi* were reared from a single case of wound myiasis in a bird (a nightjar). The high similarity of *L. richardsi* with
L. sericata based on nuclear DNA and with L. silvarum based on mitochondrial DNA, might be attributed to introgressive hybridization, however, more detailed studies are required to confirm this. The occurrence of hybridisation has important implications for speciation, and this phenomenon has been reported several times occurring within the genus Lucilia, as it is the case of the hybridization between the closely related species L. sericata and L. cuprina (Stevens & Wall, 1996b; Williams & Villet, 2013). Similarly, Lucilia illusiris and Lucilia caesar present very low genetic distances, and they could not be reliably identified using mitochondrial markers, which might result from hybridisation or incomplete lineage sorting (Sonet et al., 2012).

It has been suggested that the myiasis habit may have arisen in multiple independent evolutionary events within the subfamily Luciliinae (Stevens, 2003). The results presented here support this and suggest that the obligate parasitic habit in the genus Lucilia possibly diverged from L. silvarum. Further studies that include more specimens of L. elongata from different geographical regions are required to explore its molecular identity and to resolve its evolutionary relationships within the broader amphibian parasite group of blowfly species.

Acknowledgements

We thank the many colleagues who have provided specimens of L. bufonivora for this study: G. Guex (University of Zurich, Switzerland), S. Henderson (Holkam, UK), L. Griffiths (Nottingham Trent University, UK), A. Breed (Animal and Plant Health Agency, Defra, UK), K. Seilern-Moy (ZSL, London, UK), J. Groen (Bureau FaunaX, The Netherlands), C. Laurijssen (Van Hall Larenstein University of Applied Sciences, The Netherlands) and R. Koelman (Leeuwarden, The Netherlands), J. Mostert (Rotterdam, The Netherlands), D. Mebs (University of Frankfurt, Germany); also to A. Spitzen and A. Buitenhek (The Netherlands) for providing access to trapping sites; F. Arias (Universidad Autónoma Chapingo, Mexico) for providing specimens of L. mexicana; A. Telfer (University of Guelph, Canada) for providing the L. elongata specimen, and to R. A. King and T. Jenkins (University of Exeter, UK) for help with molecular analysis and S. Abdullah.
(University of Bristol, UK) for help with the manuscript. The award of a PhD studentship to GA-R from the CONACYT (Mexico) is gratefully acknowledged.
References

Royal Entomological Society of London.

Figure Legends

Figure 1. Common toad (*Bufo bufo*) with nasal myiasis due to *Lucilia bufonivora*, Bridgnorth, Shropshire, UK; posterior ends of live 3rd instar larvae are visible within the enlarged wounds at the site of each nostril (photograph courtesy of Dr A. Breed, Animal and Plant Health Agency, Defra, UK).

Figure 2. Bayesian inference trees constructed from (a) the *EF1-EF4* region of the nuclear gene *EF1α* and (b) the mitochondrial gene *COX1*. Posterior probability values are labelled on each node.

AUS = Australia, CAN = Canada, CHE = Switzerland, DEU = Germany, GBR or UK = United Kingdom, NLD = The Netherlands, NZL = New Zealand, Suff = Suffolk (UK), USA = United States, WN = Winssen (The Netherlands), Olst = Olst (The Netherlands). * = sequence data from EMBL/GenBank. *Lbufo* = *L. bufonivora*, *Lsilv* = *L. silvarum*, *Lrich* = *L. richardsi*, *Lillus* = *L. illustris*, *Lcae* = *L. caesar*, *Lamp* = *L. ampullacea*, *Lmex* = *L. mexicana*, *Cvic* = *Calliphora vicina*, *Lbufo17* = *L. bufonivora* (Shrewsbury-1).

Figure 3. Bayesian inference tree constructed from a partitioned dataset of the combined genes *EF1α* and *COX1*. Posterior probability values are labelled on each node. AUS = Australia, CAN = Canada, CHE = Switzerland, DEU = Germany, GBR or UK = United Kingdom, NLD = The Netherlands, NZL = New Zealand, Suff = Suffolk (UK), USA = United States, WN = Winssen (The Netherlands), Olst = Olst (The Netherlands). * = sequence data from EMBL/GenBank. *Lbufo* = *L. bufonivora*, *Lsilv* = *L. silvarum*, *Lrich* = *L. richardsi*, *Lillus* = *L. illustris*, *Lcae* = *L. caesar*, *Lamp* = *L. ampullacea*, *Lmex* = *L. mexicana*, *Cvic* = *Calliphora vicina*, *Lbufo17* = *L. bufonivora* (Shrewsbury-1).
Table 1. Larval *Lucilia* specimens studied, including the location of collection, name of sample used for phylogenetic analysis and accession numbers for EMBL/GenBank DNA sequences for both COX1 and EF1α.

<table>
<thead>
<tr>
<th>Infestation ID</th>
<th>Larvae analysed</th>
<th>Country/Region of origin</th>
<th>Code</th>
<th>COX1</th>
<th>EF1α</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB016-2</td>
<td>1</td>
<td>Haaksbergen, The Netherlands</td>
<td>L. bufo (NLD1)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>BB016-3</td>
<td>1</td>
<td>Haaksbergen, The Netherlands</td>
<td>L. bufo (NLD2)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>BB016-1</td>
<td>1</td>
<td>Zelhem, The Netherlands</td>
<td>L. bufo (NLD3)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>BB016-4</td>
<td>1</td>
<td>Haaksbergen, The Netherlands</td>
<td>L. bufo (NLD4)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>BBSP1</td>
<td>1</td>
<td>Haaksbergen, The Netherlands</td>
<td>L. bufo (NLD5)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Friesl-1</td>
<td>1</td>
<td>Friesland, The Netherlands</td>
<td>L. bufo (NLD6)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Rott-1</td>
<td>1</td>
<td>Rotterdam, The Netherlands</td>
<td>L. bufo (NLD7)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Oss-Ch-1</td>
<td>1</td>
<td>Ossingen, Switzerland</td>
<td>L. bufo (CHE)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>WV15 6QR-1</td>
<td>1</td>
<td>Bridgnorth, Shropshire, UK</td>
<td>L. bufo (GBR1)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>WV15 6QR-2</td>
<td>1</td>
<td>Bridgnorth, Shropshire, UK</td>
<td>L. bufo (GBR2)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>XT767-16</td>
<td>1</td>
<td>Loughborough, UK</td>
<td>L. bufo (GBR3)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>XT931-16</td>
<td>1</td>
<td>Bridgnorth, Shropshire, UK</td>
<td>L. bufo (GBR4)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Holk-1</td>
<td>2</td>
<td>Holkam, UK</td>
<td>L. bufo (GBR5 + 6)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Shrew-446</td>
<td>2</td>
<td>Shrewsbury, UK</td>
<td>L. bufo 17</td>
<td>FR719161</td>
<td>+LT900481</td>
</tr>
<tr>
<td>Nott-1</td>
<td>2</td>
<td>Nottingham, UK</td>
<td>L. bufo (GBR8)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>Suff-1</td>
<td>2</td>
<td>Suffolk, UK</td>
<td>L. bufo (Suff1 + 2)*</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
</tbody>
</table>

+ = new sequence; * see McDonagh & Stevens (2011)
Table 2. Larval *Lucilia* specimens studied, including the location of collection, name of sample used for phylogenetic reconstruction, and accession numbers for GenBank DNA sequences for both COX1 and EF1α.

<table>
<thead>
<tr>
<th>Species</th>
<th>ID</th>
<th>Country/Region of origin</th>
<th>Code</th>
<th>COX1</th>
<th>EF1α</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. bufonivora</td>
<td>DM</td>
<td>Baden-Württemberg, Germany</td>
<td>L. bufo (DEU1)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>L. bufonivora</td>
<td>DM</td>
<td>Baden-Württemberg, Germany</td>
<td>L. bufo (DEU2)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>L. bufonivora</td>
<td>GAR</td>
<td>Olst, The Netherlands</td>
<td>L. bufo (Olst)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>L. bufonivora</td>
<td>GAR</td>
<td>Winssen, The Netherlands</td>
<td>L. bufo (WN)</td>
<td>FR719161</td>
<td>FR719238</td>
</tr>
<tr>
<td>L. elongata</td>
<td>AT</td>
<td>Canada</td>
<td>L. elongata(CAN)</td>
<td>KM858341*</td>
<td>LT965032</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. silv (GBR1)</td>
<td>KJ394947</td>
<td>FR719260</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. silv (GBR2)</td>
<td>KJ394947</td>
<td>FR719260</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. silv (GBR4)</td>
<td>KJ394947</td>
<td>FR719260</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>RLW</td>
<td>San Francisco, USA</td>
<td>L. silv (USA)</td>
<td>FR719259*</td>
<td>FR719259*</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>RLW</td>
<td>Sacramento, USA</td>
<td>L. silv (USA)</td>
<td>+LT963484</td>
<td>+LT965034</td>
</tr>
<tr>
<td>L. silvarum</td>
<td>GAR</td>
<td>Olst, The Netherlands</td>
<td>L. silv (NLD-1)</td>
<td>+LT963483</td>
<td>FR719253</td>
</tr>
<tr>
<td>L. richardi</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. rich (1)</td>
<td>FR872384</td>
<td>FR719253</td>
</tr>
<tr>
<td>L. richardi</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. rich (2)</td>
<td>KJ394940</td>
<td>FR719253</td>
</tr>
<tr>
<td>L. sericata</td>
<td>JRS</td>
<td>Los Angeles, USA</td>
<td>L. sericata(USA)</td>
<td>AJ417714</td>
<td>+LT965035</td>
</tr>
<tr>
<td>L. sericata</td>
<td>JRS</td>
<td>Los Angeles, USA</td>
<td>L. sericata(USA)</td>
<td>AJ417715*</td>
<td>FR719257*</td>
</tr>
<tr>
<td>L. cuprina</td>
<td>RLW</td>
<td>Perth, Australia</td>
<td>L. cuprina(AUS)</td>
<td>AJ417707*</td>
<td>FR719245*</td>
</tr>
<tr>
<td>L. cuprina</td>
<td>AH</td>
<td>Dorie, South Island, New Zealand</td>
<td>L. cuprina NZ</td>
<td>AJ417706*</td>
<td>FR719244*</td>
</tr>
<tr>
<td>L. caesar</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. cae (Bristol-1)</td>
<td>+LT900367</td>
<td>+LT900482</td>
</tr>
<tr>
<td>L. illustris</td>
<td>RLW</td>
<td>Somerset, UK</td>
<td>L. illus</td>
<td>FR872384*</td>
<td>FR719253*</td>
</tr>
<tr>
<td>L. ampullacea</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>L. amp (Bristol-2)</td>
<td>+LT963485</td>
<td>+LT965033</td>
</tr>
<tr>
<td>L. ampullacea</td>
<td>RLW</td>
<td>Somerset, UK</td>
<td>L. amp (MEX2)</td>
<td>+LT900368</td>
<td>+LT900483</td>
</tr>
<tr>
<td>L. mexicana</td>
<td>FAV</td>
<td>Chapingo, Mexico</td>
<td>L. mex (MEX1)</td>
<td>+LT900368</td>
<td>+LT900483</td>
</tr>
<tr>
<td>C. vicina</td>
<td>GAR</td>
<td>Switzerland (laboratory reared)</td>
<td>C. vic (CHE)</td>
<td>KJ635728#</td>
<td>FR719219</td>
</tr>
<tr>
<td>C. vicina</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>C. vic (1)</td>
<td>KJ635728</td>
<td>FR719219</td>
</tr>
<tr>
<td>C. vicina</td>
<td>GAR</td>
<td>Bristol, UK</td>
<td>C. vic (2)</td>
<td>KJ635728</td>
<td>FR719219</td>
</tr>
</tbody>
</table>

Adult specimen identification: GAR = Gerardo Arias-Robledo (Bristol, UK), JRS = Jamie Stevens (Exeter, UK), RLW = Richard Wall (Bristol, UK), FAV = Francisco Arias-Velazquez (Chapingo, Mexico), DM = Dietrich Mebs (Frankfurt, Germany), AH = Allen Heath (AgResearch, New Zealand), DMB = Dallas Bishop (AgResearch, New Zealand); AT = Angela Telfer (Guelph, Canada).

+ = new sequence; * = sequence data from EMBL/GenBank; ^ = unidentified specimens provided by G. Guex (Zurich) and identified at University of Exeter by GAR; # identity based on 540 bp of sequence data.
Table 3. Amplification and internal sequencing primers used to amplify the two genes studied, including the source of published primers.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Sequence</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF1α</td>
<td>EF1</td>
<td>ACAGCGACGGTTTGTCATGTC</td>
<td>McDonagh et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>EF4</td>
<td>CCTGGTTCAAGGGATGGA</td>
<td>McDonagh et al. (2009)</td>
</tr>
<tr>
<td>COX1</td>
<td>LCO1490</td>
<td>GGTCAACAAATCATAAAGATTTGG</td>
<td>Folmer et al. (1994)</td>
</tr>
<tr>
<td></td>
<td>HCO2198</td>
<td>TAAACTTCAGGGTGACCAAAAATCA</td>
<td>Folmer et al. (1994)</td>
</tr>
</tbody>
</table>
Figure 1

283x198mm (72 x 72 DPI)