Corticosteroids in Pediatric Heart Surgery: Myth or Reality

Daniel P. Fudulu\(^1,2,4\), Ben Gibbison\(^3\), Thomas Upton\(^2\), Serban C. Stoica\(^4\), Massimo Caputo\(^4\), Stafford Lightman\(^2\) and Gianni D. Angelini\(^1\)

\(^1\)Department of Cardiac Surgery, Bristol Heart Institute, Bristol, United Kingdom, \(^2\)Henry Welcome Laboratories for Integrative Neuroscience and Metabolism, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom, \(^3\)Cardiac Anesthesia and Intensive Care, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, United Kingdom, \(^4\)Department of Congenital Cardiac Surgery, Bristol Royal Hospital for Children - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, United Kingdom

Background: Corticosteroids have been administered prophylactically for more than 60 years in pediatric heart surgery, however, their use remains a matter of debate. There are three main indications for corticosteroid use in pediatric heart surgery with the use of cardiopulmonary bypass (CPB): (1) to blunt the systemic inflammatory response (SIRS) induced by the extracorporeal circuit; (2) to provide perioperative supplementation for presumed relative adrenal insufficiency; (3) for the presumed neuroprotective effect during deep hypothermic circulatory arrest operations. This review discusses the current evidence behind the use of corticosteroids in these three overlapping areas.

Materials and Methods: We conducted a structured research of the literature using PubMed and MEDLINE databases to November 2017 and additional articles were identified by cross-referencing.

Results: The evidence suggests that there is no correlation between the effect of corticosteroids on inflammation and their effect on clinical outcome. Due to the limitations of the available evidence, it remains unclear if corticosteroids have an impact on early post-operative outcomes or if there are any long-term effects. There is a limited understanding of the hypothalamic-pituitary-adrenal axis function during cardiac surgery in children. The neuroprotective effect of corticosteroids during deep hypothermic circulatory arrest surgery is controversial.

Conclusions: The utility of steroid administration for pediatric heart surgery with the use of CPB remains a matter of debate. The effect on early and late outcomes requires clarification with a large multicenter randomized trial. More research into the understanding of the adrenal response to surgery in children and the effect of corticosteroids on brain injury is warranted.

Keywords: corticosteroids, clinical outcomes, relative adrenal insufficiency, deep hypothermic circulatory arrest, pediatric heart surgery, cardiopulmonary by-pass
INTRODUCTION

The introduction of the cardiopulmonary bypass (CPB) circuit in the mid-50s made the surgical treatment of intracardiac lesions possible and led to a rapid progress in the field of cardiac surgery [1]. However, CPB is also known to provoke a systemic inflammatory response (SIRS) due to the contact of blood with the extracorporeal circuit, ischemic reperfusion injury of the heart or endotoxemia due to increased gut permeability. This systemic activation is potentially beneficial because it triggers an immune response that could prevent infection and promote healing, but can also prove detrimental and thus result in organ dysfunction and even death [2]. Therefore, since the introduction of the CPB, various strategies have been employed to modulate this SIRS with an aim to improve clinical outcomes. Such strategies include the use of glucocorticoids, aprotinin, antioxidants, and miniaturized or heparin-coated bypass circuits [3]. Furthermore, in pediatric heart surgery, the modulation of SIRS is of greater importance because it is believed that the inflammatory response is augmented by the surface of the extracorporeal circuit relative to the reduced circulating blood volume, the more frequent use of the deep hypothermic circulatory arrest (DHCA) and the more pronounced hemodilution [4] compared with procedures in adults. The use of corticosteroids in cardiac surgery began in the 1960s [5] and according to several current surveys of clinical practice, corticosteroids are still widely used in pediatric heart surgery that involves CPB [6, 7]. By contrast, in adult heart surgery, the use of prophylactic corticosteroids is no longer routine because of no clear evidence backing their administration. The DECS trial recruited 4,494 adult patients undergoing CPB surgery and found no impact of a single intraoperative dose of dexamethasone (1 mg/kg) on the composite end-point of death, myocardial infarction, stroke, renal failure and respiratory failure at 30 days. However, in the same study, dexamethasone was associated with reductions in postoperative infection, duration of mechanical ventilation and length of intensive care and hospital stays [8]. In the largest study of corticosteroids vs. placebo in adults to date, the SIRS trial, 7,507 patients were randomly assigned to methylprednisolone 250 mg at anesthetic induction and 250 mg at the initiation of CPB, or placebo [9]. Corticosteroids had no impact on the risk of death or major morbidity including infection, length of hospital, intensive care stay, respiratory, or renal failure.

The prophylactic use of corticosteroids in pediatric cardiac surgery population continues to be a matter of debate likely due to the lack of well-designed, large randomized controlled trials (RCTs) that can detect a treatment effect in the context of the current low perioperative mortality and morbidity. However, corticosteroids are also given in pediatric heart surgery to protect against the so-called relative adrenal insufficiency that can accompany the acute stress of surgery [10, 11]. Due to a lack of basic understanding of hypothalamic-pituitary-adrenal axis physiology during and after pediatric heart surgery, the evidence is limited in this area [12]. Finally, another potential use of corticosteroids in pediatric heart surgery is for their potential neuroprotective effect during DHCA procedures. In the current review, we will discuss the evidence and controversies around these three main indications of steroid use in pediatric heart surgery. We will discuss these topics separately, although their pathogenesis is interconnected.

MATERIALS AND METHODS

We conducted a structured research of literature using PubMed and MEDLINE databases. The search strategy included a combination of the terms: “steroid,” “glucocorticoid,” “corticosteroid,” “dexamethasone,” “hydrocortisone,” “methylprednisolone,” “pediatric,” “pediatric,” “heart surgery,” “cardiac surgery,” “children,” “neonates,” “deep hypothermic circulatory arrest,” “adrenal.” The last search was conducted in November 2017. Additional articles were identified by cross-referencing from author reference lists and published review papers. We have included all articles assessing the effect of corticosteroids on inflammation, clinical outcomes, adrenal function and brain injury in children undergoing heart surgery with use of CPB.

RESULTS

Corticosteroids, Inflammation, and Clinical Outcomes

Many studies have attempted to correlate markers of inflammation after glucocorticoid administration with clinical outcomes [13–26]. Firstly, it is well known that SIRS is a multifaceted, complex response that is challenging to characterize and modulate. Therefore, measuring only a few cytokines might not be accurate enough in view of the complex array of pro-inflammatory and anti-inflammatory mediators that are released during the SIRS process [27]. Secondly, while glucocorticoids can blunt inflammation, but this does not necessarily translate into improved short-term clinical outcomes [17, 25, 28]. Moreover, a study by Gessler et al. found no impact of glucocorticoid administration on markers of inflammation [18]. Graham et al. in an RCT of 68 children undergoing surgery with use of CPB found no effect single vs. 2-dose corticosteroids on inflammation [29]. Finally, there is some evidence that the host inflammatory response plays an important role and that clinicians should approach SIRS in a personalized rather than standardized manner. Huber et al. [30], in a study of 37 children undergoing heart surgery with use of CPB, demonstrated that the neutrophil phenotype signature could predict end-organ dysfunction associated with SIRS.

Several small-sized RCTs have focused on the effect of corticosteroids on clinical outcomes in the pediatric population (Table 1). Most of these trials measure inflammation parameters and the clinical data is measured either as a primary or secondary outcome. All have in common a small sample size and significant variability in the type and regimen of corticosteroid used. The first randomized controlled trial of corticosteroid (47 children) vs. placebo (48 children) was published by Toledo-Pereyra et al. in 1980. The authors reported improved survival in patients administered methylprednisolone 30 mg/kg: 1 h preoperatively,
<table>
<thead>
<tr>
<th>First authors</th>
<th>Year of publication</th>
<th>Sample size</th>
<th>Study design</th>
<th>Type of steroid</th>
<th>Dose</th>
<th>Route</th>
<th>Regimen</th>
<th>Effect steroids on inflammation</th>
<th>Effect steroids on clinical outcomes</th>
<th>Benefit/no benefit/harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toledo-Pereyra et al.</td>
<td>1980</td>
<td>95 children</td>
<td>RCT steroid vs. placebo</td>
<td>Methylprednisolone</td>
<td>30 mg/kg IV</td>
<td></td>
<td>Pre-op, pre-CPB, post-CPB, every 6 h for 24 h</td>
<td>Not assessed</td>
<td>Increased survival</td>
<td>Benefit</td>
</tr>
<tr>
<td>Bronicki et al.</td>
<td>2000</td>
<td>29 children</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg IV</td>
<td></td>
<td>1-h pre-CPB</td>
<td>Eight-fold decrease in IL-6 levels and a greater than three-fold decrease TNF-α levels after CPB</td>
<td>Less supplemental fluid during the first 48 h, lower alveolar-arterial oxygen gradients during the first 24 h, less mechanical ventilation</td>
<td>Benefit</td>
</tr>
<tr>
<td>Varan et al. [15]</td>
<td>2002</td>
<td>30 children</td>
<td>RCT high-dose steroid vs. low-dose steroid</td>
<td>Methylprednisolone 30 vs. 2 mg/kg IV</td>
<td>30 min IV infusion pre-CPB</td>
<td></td>
<td></td>
<td>No difference in serum IL-6, IL-8, CRP, and polymorphonuclear leukocyte counts</td>
<td>No effect</td>
<td>No benefit</td>
</tr>
<tr>
<td>Lindberg et al. [17]</td>
<td>2003</td>
<td>40 children</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg IV</td>
<td></td>
<td>Post anesthesia induction</td>
<td>Decrease in CRP but no change in von Willebrand factor antigen and S100B</td>
<td>No effect</td>
<td>No benefit</td>
</tr>
<tr>
<td>Schroeder et al. [16]</td>
<td>2003</td>
<td>29 children</td>
<td>RCT single dose steroid vs. double dose</td>
<td>Methylprednisolone 30 mg/kg IV</td>
<td>2 dose (4h before bypass and in bypass prime) vs. 1 dose (intraoperative)</td>
<td></td>
<td></td>
<td>2 dose regimen reduced myocardial mRNA expression for IL-6, MCP-1, and ICAM-1 both before and after bypass and had lower serum IL-6 and increased IL-10 at end-bypass vs. 1 dose</td>
<td>Combined steroid administration reduced fluid requirements, resulted in lower body temperature, and lower arteriovenous oxygen difference</td>
<td>Benefit</td>
</tr>
<tr>
<td>Checchia et al. [33]</td>
<td>2003</td>
<td>28 children</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg IV</td>
<td></td>
<td>Pre-CPB</td>
<td>Not assessed</td>
<td>No effect</td>
<td>No benefit</td>
</tr>
<tr>
<td>Ando et al. [34]</td>
<td>2005</td>
<td>20 neonates</td>
<td>RCT steroid vs. placebo</td>
<td>Hydrocortisone sodium succinate after discontinuation of CPB</td>
<td>0.18 mg/kg/h for 3 days, 0.09 mg/kg/h for 2 days and 0.045 mg/kg/h for 2 days</td>
<td>IV</td>
<td>Post-CPB</td>
<td>No effect</td>
<td>Less fluid retention, better oxygenation and shortened ventilation times</td>
<td>Benefit</td>
</tr>
<tr>
<td>Graham et al. [20]</td>
<td>2011</td>
<td>76 neonates</td>
<td>RCT single dose steroid vs. double dose steroid</td>
<td>Methylprednisolone</td>
<td>30 mg/kg IV and prime</td>
<td></td>
<td>8h pre-CPB, IV, and in prime vs. 8 h IV preoperative only</td>
<td>Preoperative interleukin-6 were reduced by two-fold in the 2-dose steroid group</td>
<td>Two-dose methylprednisolone regimen was associated with a higher serum creatinine and poorer postoperative diuresis</td>
<td>Harm</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>First authors</th>
<th>Year of publication</th>
<th>Sample size</th>
<th>Study design</th>
<th>Type of steroid</th>
<th>Dose</th>
<th>Route</th>
<th>Regimen</th>
<th>Effect steroids on inflammation</th>
<th>Effect steroids on clinical outcomes</th>
<th>Benefit/no benefit/harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heying et al. [23]</td>
<td>2012</td>
<td>20 neonates</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg</td>
<td>IV</td>
<td>4h pre-CPB</td>
<td>Decrease in myocardial expression of IL-6, IL-8, IL-1β, and TNF-α mRNA and decrease in protein synthesis of TNF-α; serum IL-6 significantly lower, IL-10 significantly higher in steroid-treated patients; lipopolysaccharide binding protein significantly higher postoperatively treated patient</td>
<td>Steroid recipients had a lower dobutamine requirement 4 h post CPB</td>
<td>Benefit</td>
</tr>
<tr>
<td>Keski-Nisula et al. [25]</td>
<td>2013</td>
<td>40 neonates</td>
<td>RCT steroid vs. placebo</td>
<td>Methylprednisolone</td>
<td>30 mg/kg</td>
<td>IV</td>
<td>After induction of anesthesia</td>
<td>Decrease in IL-6 and IL-8 and raised levels of anti-inflammatory IL-10 in steroid-treated patients</td>
<td>Blood glucose higher in the steroid-treated patients</td>
<td>No benefit</td>
</tr>
<tr>
<td>Keski-Nisula et al. [35]</td>
<td>2015</td>
<td>45 children</td>
<td>RCT IV steroid vs. in prime steroid vs. placebo</td>
<td>Methylprednisolone</td>
<td>30 mg/kg</td>
<td>IV, vs. in prime</td>
<td>Lower IL-8 levels on weaning and 6 h post-CPB vs. placebo</td>
<td>Blood glucose higher in the steroid-treated patient</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>Amanullah et al. [28]</td>
<td>2016</td>
<td>152 patients (1 month up to 18 years old)</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg (maximum dose 12 mg)</td>
<td>IV</td>
<td>At induction of anesthesia—preoperatively; at the time of initiation of cardiopulmonary bypass— intraoperatively; and 6 h after the second dose—postoperatively</td>
<td>IL-6 were lower at 6 and 24 h postoperatively and IL-10 levels were higher 6 h postoperatively in the steroid group</td>
<td>No effect</td>
<td>No benefit</td>
</tr>
</tbody>
</table>

Effects on inflammation and/or clinical outcomes. RCT, randomized controlled trial; IV, intravenous; CPB, cardiopulmonary bypass; IL-, interleukin; TNF – α, tumor necrosis factor alpha; CRP, C reactive protein, S100B, calcium-binding protein B, ICAM1, intercellular adhesion molecule 1; MCP1, monocyte chemotactic protein 1.
5 min pre-CPB and every 6 h for 24 h; however, there was no correlation with other biochemical markers [31]. Bronnicki et al. in an RCT of 29 children, found dexamethasone given 1 mg/kg, 1 h prior to CPB, was associated with lower alveolar-arterial gradients, lower fluid requirement and less mechanical ventilation [32]. In an RCT of 30 children, Van et al. compared the dose-effect of methylprednisolone 30 mg/kg to methylprednisolone 2 mg/kg both given by intravenous infusion pre-CPB. There was no difference in clinical outcomes between the two groups (ventilation time, intensive care unit stay or oxygenation) [15]. Later, Lindberg et al. in an RCT of 40 children found no effect of dexamethasone 1 mg/kg after anesthesia induction on oxygenation, fluid balance, critical care stay, or ventilation time [17]. Schroeder et al in an RCT of 29 children, compared the effect of 30 mg/kg of methylprednisolone double-regimen (pre-operatively and intraoperatively) to a single dose (30 mg/kg) intraoperatively. The double-dose steroid recipients had better oxygenation, lower body temperature and reduced fluid requirements [16]. Checchia et al. reported in an RCT of 28 children no effect dexamethasone 1 mg/kg, given 1-h pre-CPB on sternal dehiscence rates, reoperation for bleeding, or gastrointestinal bleeding [33]. Ando et al. in small RCT of 20 patients found a benefit of hydrocortisone administration in terms of reduced body edema, improved oxygenation and reduced duration of ventilation [34]. Graham et al. randomized a total of 76 patients to either single (intraoperative) or double dose methylprednisolone (8-h pre-operative and intraoperative). The two-dose steroid group had a higher serum creatinine and poorer postoperative diuresis [20]. There was no difference in the incidence of low cardiac output syndrome, inotropic requirement, duration of mechanical ventilation, ICU, or hospital stay. Heying et al. evaluated the effect of dexamethasone 1 mg/kg 4 h pre-CPB in 20 neonates undergoing arterial switch and found no effect of corticosteroids in terms of postoperative cardiac parameters (heart rate, mean arterial pressure, central venous pressure), diuresis, or oxygenation. However, there was reduced dobutamine requirement 4 h post CPB [23]. Keskin-Nisula et al. in an RCT of 40 neonates undergoing surgery with use of CPB, found no effect of 30 mg/kg of methylprednisolone given at induction of anesthesia on postoperative lactate, central venous saturation, inotropic score, duration of ventilation, or survival; however, the steroid arm had significantly increased blood glucose [25]. The same group investigated in a three-arm RCT of 45 children the effect of 30 mg/kg methylprednisolone after induction vs. 30 mg/kg methylprednisolone in prime vs. placebo. There were no differences between the three groups, in terms of lactate, inotropic score, duration of ventilation and intensive care stay but the steroid-treated arms had higher blood glucose compared to placebo [35]. Amanullah et al. in RCT of 152 children investigated the effect of dexamethasone 1 mg/kg given at three time-points (induction, pre-CPB and 6 h from the last dose) vs. placebo [28]. There was no difference between the two arms in terms of ventilation times, urine output, mean systolic and diastolic pressure, central venous pressure, inotrope score at 6 h and fluid requirement. An RCT of corticosteroid vs. placebo in 190 neonates undergoing heart surgery with use of CPB, has recently finalized recruitment and hopefully will inform us more on this matter and others [36]. Another larger RCT of 1,200 neonates is currently recruiting patients1.

Several studies have attempted to quantify the effect of glucocorticoids on markers of myocardial injury [23, 25, 33, 35, 37, 38]. However, measuring these markers around the time of cardiac surgery is both difficult to interpret and correlate with clinical outcomes (see Table 2). In the adult population, the SIRS trial demonstrated that the corticosteroid treated arm had an increase in myocardial injury as measured by elevation of the CK-MB enzyme compared with placebo [9].

In view of the limitations of the existing RCT evidence discussed above, the available meta-analyses should be interpreted with caution. The Cochrane meta-analysis by Robertson-Malt et al. concluded that corticosteroids do not significantly reduce post-operative complications as measured by length of stay in ICU, peak core temperature and duration of ventilation [39]. A more recent meta-analysis by Scrascia et al. concluded no significant effect of corticosteroids on mortality, mechanical ventilation time or ICU length of stay. Based only on 15 patients, the authors found a reduced prevalence of renal dysfunction associated with the use of steroid (13 vs. 2 patients) [40].

In addition to the number of small-sized randomized trials already discussed, several larger observational studies are worth discussing here (Table 3). The Pasquali et al. [41, 42] studies provide us with the largest sample despite their retrospective design. In a registry data-base study of 46,730 patients, of which 54% received perioperative corticosteroids, there was no difference in mortality or ventilation times, however steroid use was associated with increased length of stay, higher incidence of infection and greater use of insulin. In the analysis stratified by a congenital cardiac risk score (the RACHS-1 score), increased morbidity associated with steroid use was more evident in the lower risk categories (e.g., 1–3) [41]. Later, the same group published a multicenter database study focused on 3,180 neonates and found corticosteroids to be associated with increased infection across all regimens in the lower risk groups [42]. An observational study by Mastropietro et al. on 76 children undergoing complex heart surgery found that a greater cumulative duration of steroid administration was associated with higher risk of postoperative infection [43].

Indeed, neonates have been the focus of multiple studies because they are considered to be the most vulnerable to CPB insult. This may be due not only to the immaturity of the HPA axis [11] but neonates also appear to display a distinct inflammatory response compared to older age groups [44]. However, a recent best evidence topic review by our group could not find a clear clinical benefit of corticosteroid in neonates mainly due to the limitations in the available evidence, as discussed earlier [45].

1Steroids to REduce Systemic Inflammation After Neonatal Heart Surgery (STRESS). Available online at: https://clinicaltrials.gov/ct2/show/NCT03229538
<table>
<thead>
<tr>
<th>First authors</th>
<th>Publication Year</th>
<th>Sample size</th>
<th>Study design</th>
<th>Type of steroid</th>
<th>Dose mg/kg</th>
<th>Route</th>
<th>Regimen</th>
<th>Cardiac marker</th>
<th>Effect on myocardial injury markers</th>
<th>Effect on clinical outcomes</th>
<th>Cardioprotective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checchia et al.</td>
<td>2003</td>
<td>28 children</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg</td>
<td>IV</td>
<td>1-h pre-CPB</td>
<td>cTnI</td>
<td>cTnI reduced at 24 h postoperatively in the dexamethasone group</td>
<td>No effect</td>
<td>Yes</td>
</tr>
<tr>
<td>Malagon et al.</td>
<td>2005</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg</td>
<td>IV</td>
<td>During anesthesia induction</td>
<td>cTnI</td>
<td>Decrease in cTnT, 8 h after admission</td>
<td>No effect</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Heying et al.</td>
<td>2012</td>
<td>RCT steroid vs. placebo</td>
<td>Dexamethasone</td>
<td>1 mg/kg</td>
<td>1 mg/kg</td>
<td>4-h pre-CPB</td>
<td>cTnT</td>
<td>cTnT lower in dexamethasone-treated patients, 1 h postoperatively</td>
<td>Lower</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Keski-Nisula et al.</td>
<td>2013</td>
<td>40 neonates</td>
<td>RCT steroid vs. placebo</td>
<td>Methylprednisolone</td>
<td>80 mg/kg</td>
<td>IV</td>
<td>After anesthesia induction</td>
<td>cTnT</td>
<td>No effect</td>
<td>No effect</td>
<td>No</td>
</tr>
<tr>
<td>Keski-Nisula et al.</td>
<td>2015</td>
<td>45 children</td>
<td>RCT IV steroid vs. in prime</td>
<td>Methylprednisolone</td>
<td>80 mg/kg</td>
<td>IV vs. prime</td>
<td>After anesthesia induction vs. in prime</td>
<td>cTnT</td>
<td>cTnT lower in steroid recipients, both at induction and in prime steroid vs. placebo, 6 h post CPB wean</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pesonen et al.</td>
<td>2017</td>
<td>45 children</td>
<td>RCT of steroid IV/Methylprednisolone vs. in the prime vs. placebo</td>
<td>Methylprednisolone</td>
<td>80 mg/kg</td>
<td>IV vs. in prime</td>
<td>After induction vs. in prime</td>
<td>Plasma heart-type fatty-acid-binding protein and cTnT</td>
<td>Plasma heart-type fatty-acid-binding protein and TnT decreased 6 h post-op in both steroid regimens</td>
<td>No effect</td>
<td>Yes</td>
</tr>
</tbody>
</table>

RCT, randomized controlled trial; CPB, cardiopulmonary by-pass; IV, intravenous; cTnI, cardiac troponin I; cTnT, cardiac troponin T.
TABLE 3 | Retrospective studies of the effect of steroids on clinical outcomes.

<table>
<thead>
<tr>
<th>First authors</th>
<th>Year of publication</th>
<th>Sample size</th>
<th>Study design</th>
<th>Type of steroid</th>
<th>Dose</th>
<th>Route</th>
<th>Regimen/timing</th>
<th>Effect steroids on clinical outcomes</th>
<th>Benefit/no benefit/harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasquali et al. [41]</td>
<td>2010</td>
<td>46,730 children</td>
<td>Retrospective</td>
<td>Variable (methylprednisolone, prednisolone, dexamethasone, or hydrocortisone)</td>
<td>No data</td>
<td>No data</td>
<td>On the day before or day of surgery</td>
<td>Corticosteroids were associated with longer length of stay, greater infection, greater use of insulin, increased morbidity was most prominent in RACHS-1 categories 1 through 3 (lower risk groups)</td>
<td>Harm</td>
</tr>
<tr>
<td>Pasquali et al. [42]</td>
<td>2011</td>
<td>3,180 neonates</td>
<td>Retrospective</td>
<td>Methylprednisolone</td>
<td>No data</td>
<td>No data</td>
<td>Methylprednisolone on the day before surgery and the day of surgery, day of surgery only and the day before surgery only</td>
<td>In lower surgical risk groups, there was a significant association of methylprednisolone with infection across all regimens</td>
<td>Harm</td>
</tr>
<tr>
<td>Mastropietro et al. [43]</td>
<td>2013</td>
<td>76 children</td>
<td>Retrospective</td>
<td>Methylprednisolone, hydrocortisone, dexamethasone</td>
<td>All patients had methylprednisolone 30 mg/kg, hydrocortisone 1 mg/kg (48% patients), dexamethasone 0.5 mg/kg (86% patients)</td>
<td>IV</td>
<td>Methylprednisolone before surgical incision, hydrocortisone 6h for hemodynamic instability, periextubation dexamethasone every 6h</td>
<td>Greater cumulative duration of corticosteroid exposure was independently associated with postoperative infection</td>
<td>Harm</td>
</tr>
<tr>
<td>Dreher et al. [46]</td>
<td>2015</td>
<td>525 children</td>
<td>Retrospective (non-steroid cohort vs. steroid cohort, 6 months prior steroid discontinuation)</td>
<td>Methylprednisolone</td>
<td>30 mg/kg up to a maximum dose of 500 mg</td>
<td>In the prime</td>
<td>In the prime</td>
<td>Steroids group had more postoperative wound infection and respiratory failure requiring tracheostomy</td>
<td>Harm</td>
</tr>
<tr>
<td>Ehoff et al. [47]</td>
<td>2016</td>
<td>549 neonates</td>
<td>Retrospective</td>
<td>No data</td>
<td>No data</td>
<td>No data</td>
<td>Intraoperative</td>
<td>Improved hospital survival in the non-steroid group</td>
<td>Harm</td>
</tr>
</tbody>
</table>

IV, intravenous; RACHS-1, risk adjustment in congenital heart surgery.
children were no glucocorticoid was used. Overall, the steroid
group had more wound infection and more respiratory failure
requiring tracheostomy. There were no differences in the rest
of the clinical outcomes (early mortality, ventilation time, renal
failure etc.). In the neonate subgroup analyses, no difference in
clinical outcomes was detected. Using datasets from a clinical trial
(the Pediatric Heart Network’s Single Ventricle Reconstruction
trial), on neonates that had the Norwood procedure, Elhoff
et al. [47] compared the effect of intraoperative corticosteroid
administration in 498 recipients with 51 non-recipients and
found in the multivariate analysis no effect of corticosteroid on
lengths of stay but a trend toward better hospital survival in non-
recipients. This is one of the few studies where the authors have
also looked at the neurodevelopmental outcomes at 14 months and
found no difference. A major limitation in the current studies
of the impact of corticosteroids on the clinical outcomes of
pediatric heart surgery is the lack of long-term follow-up of
the effect of corticosteroid administration on late neurocognitive
outcomes. In other patient groups, the early administration of
corticosteroids had detrimental effects. In an RCT of 262 infants
with severe respiratory distress syndrome requiring mechanical
ventilation, dexamethasone 0.25 mg/kg given every 12 h for 1
week was associated with adverse effects on the neuromotor and
cognitive function at school age [48].

In conclusion, most studies conclude that corticosteroids
dampen the SIRS to surgery. The effect of corticosteroids on
clinical outcomes has been studied in several small-sized RCTs with conflicting evidence. Some studies show a beneficial
effect on clinical outcomes such as ventilation, oxygenation or
renal function parameters while in other studies, the use of
corticosteroids had no effect at all. Apart from being small-
sample sized, these studies used various types of steroid and
regimens, therefore, it is difficult to draw any valid conclusions.
A few large registry studies have raised concerns about the
association of corticosteroid administration with infection, however, their results remain limited by their retrospective
design.

Relative Adrenal Insufficiency

Another justification for the use of corticosteroids is the so-
called relative adrenal insufficiency or adrenal cortex exhaustion,
originally described during critical illness or sepsis. According
to this definition, the adrenal response and subsequent
concentration of plasma cortisol is not adequate to cope
with the stress of surgery [49, 50]. Therefore, it is thought
that perioperative steroid supplementation could compensate
for this potential deficit. However, defining relative adrenal
insufficiency during critical illness remains a matter of debate.
The most commonly used diagnostic criteria in the literature
for adrenal insufficiency during critical illness or surgery is the
ACTH stimulation test described by Anane et al. In this test,
synthetic ACTH (Synacthen, cosyntropin, tetracosactrin) is given
intravenously. Cortisol is measured before Synacthen injection
and after, at 30 and 60 min respectively. In 189 consecutive
adult patients with septic shock, the authors found that an
incremental cortisol response to ACTH (defined as the difference
between the basal cortisol and the highest value between cortisol
measured at 30 and 60 min) of <9 µg/dL or a high baseline
cortisol concentration (>34 µg/dL) were of good prognostic
value for identifying patients at risk of death [50]. However,
this test is based on a few time-point value measurements of
cortisol. Therefore, this could prove inaccurate in the context
of a dynamic, pulsatile cortisol secretion that was described
in both healthy volunteers or adults undergoing heart surgery
[51, 52]. The major limitation of the current literature aimed
at understanding the HPA axis function during pediatric heart
surgery is to try to correlate the findings of the ACTH test with the measures of clinical outcome. Other limitations include
the measurement of only a few, random plasma cortisol levels,
the variability in the dose used for Synacthen testing and most
importantly the concomitant use of glucocorticoids at induction
that obscures the assessment of the HPA axis [11, 12, 53–65].
Adequate assessment of the HPA axis during surgery and critical
illness requires very frequent cortisol measurements [66].

Several studies have attempted to characterize dynamic HPA
axis physiology during surgery or critical illness in children (Table 4). Kucera et al measured plasma cortisol at six time
points in 24 children of various ages (ranging from 2 months
to 15 years): the day before surgery, at the end of surface
cooling, at the lowest temperature during CPB, 10 min after
rewarming, at the end of CPB and on the 8th day, postoperatively
[67]. They found the cortisol levels to be in the range of the
normal laboratory values with a trend toward increase during
rewarming. Anand et al measured cortisol levels at seven time
points in 15 neonates: pre-operatively, pre-CPB, during DHCA,
at 6, 12, and at 24 h. The peaks in cortisol secretion were recorded
before CPB and at the end of the operation, then, the cortisol
levels fell below preoperative values at 12 h [68]. Gajarski et al.
measured cortisol at 10 time-points in 58 children: baseline—
preoperative, time of surgery and every 6 h up to 48 h. They have
stratified the cortisol profiles by various patient groups: control
(non-bypass or non-cardiac surgery procedures), CPB only (no
DHCA), DHCA (no steroid used), and DHCA with steroid
administration. The cortisol and ACTH peaked within 2 h of
surgery but without differences between the groups. In 9 patients,
not from the DHCA-steroid group, they noted an elevated
ACTH-cortisol ratio that correlated with an elevated inotropic
score postoperatively [53]. In 21 neonates undergoing heart
surgery with use of CPB, Garcia et al. assessed the HPA axis with a
low dose ACTH stimulation test (1 µg) on day 1 postoperatively.
The patients that had a significant serum cortisol increase after
ACTH test (>50 mg/dL) also had a higher mean arterial blood
pressure at 48 h postoperatively. All patients included in the
study had dexamethasone 0.5 mg/kg midnight before surgery
and at induction [54]. In 38 neonates undergoing complex heart
surgery, Mackie et al. measured serum cortisol at 3 time-points:
preoperatively, at 24 and 48 h postoperatively. They found the
higher cortisol levels to be associated with greater atrial filling
pressure and lower cardiac index. Again, all patients received
methylprednisolone (30 mg/kg) at induction [55]. Wald et al. [56]
measured Synacthen stimulated total cortisol and corticosteroind
binding globulin levels preoperatively and postoperatively in 51
children undergoing surgery with use of CPB (subjects aged <2
years received 125 µg while subjects ≥2 years received 250 µg).
Lower CBG and increased free cortisol (>6 µg/ml) correlated
with worse clinical outcomes (longer length of stay, longer
ventilation time, increased fluid requirement). The authors found that only 17.6% of the patient had a low baseline total cortisol and all had a “normal” response to Synacthen. They concluded that total cortisol is not a good measure of HPA axis function in this setting. All patient received 1 mg/kg of dexamethasone before CPB. Verweij et al. [64] in a retrospective analysis of 62 patients with low cardiac output post pediatric heart surgery, found no effect of hydrocortisone administration in patients with supposed adrenal insufficiency (defined as basal cortisol <100 nmol/l). Sasser et al. [65] in a retrospective analysis of 41 neonates found that a postoperative serum cortisol level >10 µg/dL was not associated with worse clinical outcomes (lactate measurements, inotrope score, fluid requirement, arterial saturation difference, mean blood pressure, mean CV, mean heart rate or ventilation time). Furthermore, there was no difference in steroid responsiveness compared to the cortisol >10 µg/dL group, among patients that had hemodynamic compromise and were administered hydrocortisone, postoperatively. In a prospective analysis of 119 children undergoing heart surgery Schiller et al. measured cortisol levels pre-operatively and at 18 h after surgery. All patients were given methylprednisolone (30 mg/kg) at induction [63]. The authors defined adrenal insufficiency as a measured postoperative cortisol level of <18.1 µg/dL or a delta cortisol value of <9 µg/L (e.g., postoperative cortisol - preoperative cortisol). There was no significant correlation between patients with adrenal insufficiency by this definition and the procedure complexity (low or high). Furthermore, the postoperative course (ICU stay ventilation time, lactate, urine output) of children with adrenal insufficiency was not different from the children with apparently normal adrenal function. A study by Bangalore et al. assessed postoperative serum cortisol levels at three time-points: immediately after surgery and in the first and second postoperative mornings. The cortisol fell significantly over the first 24 h. Higher postoperative cortisol measurements were associated with increased morbidity. All patients received methylprednisolone (30 mg/kg) at induction [62]. Crow et al measured serum cortisol and dexamethasone following 1 mg/kg of dexamethasone in 32 infants undergoing cardiac surgery with CPB. They noted significant variability in dexamethasone levels and grouped the patients into high dexamethasone (>15 mg/dL) or low dexamethasone (<15 mg/dL) on arrival to ICU. Although the patients that had a higher dexamethasone levels had more pronounced suppression of endogenous cortisol compared to basal levels this did not translate into any impact on clinical outcomes [61]. Teagarden et al. reviewed 24 patients that underwent surgery for congenital heart disease and found that lower pre-hydrocortisone cortisol concentrations were associated with improved hemodynamics after hydrocortisone administration [58]. Maeda et al. classified 32 neonates undergoing heart surgery into patients with adrenal insufficiency (baseline cortisol <15 µg/dL or incremental increase after testing of <9 µg/dL and baseline cortisol of 15–34 µg/dL) and a group with normal adrenal function, after ACTH test (3.5 µg/kg of tetracosactide acetate). All patients received peroperatively 1 mg/kg hydrocortisone every 6 h up to 18 h from first hydrocortisone dose. Only the patients diagnosed with adrenal insufficiency exhibited a significant increase in mean blood pressure and urine output in response to hydrocortisone administration [59]. A recent study by Crawford et al. [57] aimed to correlate relative adrenal insufficiency to clinical outcomes in 40 neonates undergoing complex heart surgery. Like the studies discussed above, all patients received preoperative methylprednisolone. The authors defined adrenal insufficiency as <9 µg/ml increase in cortisol at 30 min post ACTH test (cosyntropin 1 µg). Five percent of the patients had adrenal insufficiency post-CPB and this was significantly associated with increased serum lactate and higher inotrope requirement.

We still do not have an accepted definition of adrenal insufficiency in children undergoing heart surgery, hence it is difficult to draw conclusions about the effect of corticosteroids on adrenal function and clinical outcomes. Most of the studies so far have used very few time-point measurements, with conflicting results and were undertaken in children that received corticosteroids at induction, therefore, making an accurate assessment of the HPA axis almost impossible.

Corticosteroids and Cerebral Protection

Cardiac surgery with use of deep hypothermic circulatory arrest is known to be associated with impaired cerebral oxygen metabolism and cerebral edema [69, 70]. Corticosteroids are used to treat cerebral edema secondary to brain tumors [71] but are also used in the context of head trauma [72]. Therefore, another justification for the use of corticosteroids is the use for DHCA surgery. However, the CRASH trial showed an increase in death at 2 weeks and 6 months with the use of corticosteroids [72, 73]. The evidence of the impact of corticosteroids on brain protection during the use of DHCA has not been studied extensively and is limited to in vitro studies [74] and a few in vivo experiments on piglets [69, 75] with conflicting results.

Schmitt et al. investigated the effect of deep hypothermic circulatory arrest on an in vitro model of mouse neonatal astrocytes, neurons, and BV-2 microglia cells. The effect of methylprednisolone (100 nM) was tested in cells that were incubated according to a protocol that mimics the temperature changes during pediatric deep hypothermic circulatory arrest: deep hypothermia, slow rewarming and normothermia. The authors measured in all cell lines the cytotoxicity and the production of IL-6 as a marker for neuroprotection and regeneration. While steroid administration had no effect in the normothermic treated cells, in the deep hypothermia-treated cells methylprednisolone increased cell survival but decreased the protective IL-6 [74].

Langley et al. randomized two groups of 8 piglets to placebo and intramuscular methylprednisolone 30 mg/kg, given 8- and 2 h before induction. All piglets underwent cooling to 18°C, 60 min of circulatory arrest and 60 min of reperfusion and rewarming. The steroid-treated arm had a significantly higher recovery of cerebral blood flow and cerebral oxygen metabolism [69]. In a later study, Schubert et al. randomized two groups of seven neonatal piglets to intravenous methylprednisolone (30 mg/kg), given 24 h before surgery vs. placebo. The piglets were then cooled to 15°C for a longer period of DHCA—120 min—before rewarming for 40 min. The authors conducted quantitative histological studies in the hippocampus, cortex, cerebellum and caudate nucleus. Piglets in the steroid-treated...
<table>
<thead>
<tr>
<th>First authors</th>
<th>Year</th>
<th>Sample size</th>
<th>Study design</th>
<th>Steroids perioperatively</th>
<th>Cortisol time-point number</th>
<th>Frequency of cortisol measurement</th>
<th>ACTH test for cortisol</th>
<th>ACTH test dose</th>
<th>Definition of adrenal insufficiency used in the study</th>
<th>Correlation to clinical outcome</th>
<th>Take home message of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kucera et al.</td>
<td>1986</td>
<td>24 children</td>
<td>Observational</td>
<td>No data</td>
<td>6</td>
<td>1 time-point day before surgery, 4 time-points on the day of surgery, and 1 time-point 8th day of surgery</td>
<td>NA</td>
<td>NA</td>
<td>Cortisol levels in the normal laboratory values with a slight increase during rewarming</td>
<td>Non-survivors (n = 4) had higher concentrations of cortisol than survivors after 2 h of surgery</td>
<td>Cortisol levels in the normal laboratory values with a slight increase during rewarming</td>
</tr>
<tr>
<td>Anand et al.</td>
<td>1990</td>
<td>15 neonates</td>
<td>Observational</td>
<td>No</td>
<td>7</td>
<td>Pre-op, pre-CPB, during DHCA, end of the operation, 6, 12, and 24 h</td>
<td>No</td>
<td>NA</td>
<td>Survival rate</td>
<td>Non-survivors (n = 4) had higher concentrations of cortisol than survivors</td>
<td>Cortisol levels in the normal laboratory values with a slight increase during rewarming</td>
</tr>
<tr>
<td>Gajarski et al.</td>
<td>2010</td>
<td>58 children</td>
<td>Observational</td>
<td>10 patients in the DHCA arrest group</td>
<td>10</td>
<td>Before surgery, after surgery, 6, 12, 18, 24, 30, 36, 42, and 48 h</td>
<td>ACTH measured at same time points with cortisol</td>
<td>NA</td>
<td>ACTH/hemocortisol ratio cut-off > 15</td>
<td>Peak cortisol level did not correlate with elevated inotrope requirement in patients with adrenal insufficiency</td>
<td>Cortisol peaked within 2 h of surgery; ACTH inversely correlated with bypass time in patients with DHCA but not with circulatory arrest time</td>
</tr>
<tr>
<td>Garcia et al.</td>
<td>2010</td>
<td>21 neonates</td>
<td>Retrospective</td>
<td>All patients received dexamethasone 0.5 mg/kg the night before surgery</td>
<td>2</td>
<td>Basal cortisol post ACTH <50 mg/dL, post ACTH 0.5 µg, post ACTH 1 µg</td>
<td>Basal cortisol post ACTH <30 µg/dL</td>
<td>ACTH test, first post-op day in patients with worsening hemodynamic status</td>
<td>All neonates with hemodynamic instability had low basal cortisol levels post ACTH stimulation was significantly higher in patients with cortisol levels off <20 mg/dL</td>
<td>Cortisol level cutoff of ≤20 mg/dL may not be applicable in neonates undergoing heart surgery</td>
<td></td>
</tr>
</tbody>
</table>
| Mackie et al. | 2011 | 38 neonates | Observational | All patients had methylprednisolone, 30 mg/kg, IV at anesthetic induction | 3 | Preoperative, at 24 h after post-surgery | NA | NA | Higher cortisol levels were associated with greater adrenal reserve and a lower cardiac index | Relation between serum cortisol and infection in heart surgery further research

(Continued)
TABLE 4 | Continued

<table>
<thead>
<tr>
<th>First authors</th>
<th>Year</th>
<th>Sample size</th>
<th>Study design</th>
<th>Steroids perioperatively</th>
<th>Cortisol time-point number</th>
<th>Frequency of cortisol measurement</th>
<th>ACTH test/ measurement</th>
<th>ACTH test dose</th>
<th>Definition of adrenal insufficiency used in the study</th>
<th>Correlation to clinical outcome</th>
<th>Take home message of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald et al. [56]</td>
<td>2011</td>
<td>52 children</td>
<td>Observational</td>
<td>All patient had received 1 mg/kg dexamethasone before CPB, not to exceed a 10 mg total dose</td>
<td>2</td>
<td>Pre- and postoperative</td>
<td>No</td>
<td></td>
<td>Cosyntropin: 250 µg for children >2 years of age and 125 µg for children <2 years</td>
<td>9 patient had low total cortisol (< 3 µg/dL) baseline but normal ACTH stimulation test. Patient with free cortisol increase difference of > 6 µg/dL had a longer length of stay, higher inotrope scores, greater fluid requirement, longer ventilator times.</td>
<td>Using total cortisol to investigate AI may be inadequate. Decreased corticosteroid binding globulin levels post ACTH stimulation associated with worse clinical outcomes.</td>
</tr>
<tr>
<td>Verweij et al. [64]</td>
<td>2012</td>
<td>62 children with low cardiac output</td>
<td>Retrospective</td>
<td>All patients had dexamethasone 0.5 mg/kg before surgery</td>
<td>1</td>
<td>Basal cortisol</td>
<td>No</td>
<td></td>
<td>Baseline value of total cortisol of < 100 nmol/l</td>
<td>Similar effect of hydrocortisone in the groups with low or normal basal cortisol levels</td>
<td>Baseline value of total cortisol of < 100 nmol/l not adequate to define adrenal insufficiency.</td>
</tr>
<tr>
<td>Sasser et al. [65]</td>
<td>2012</td>
<td>41 neonates</td>
<td>Retrospective</td>
<td>All the patients received 10 mg/kg methylprednisolone 8 and 1 h before transport to the operating room and 15 with hemodynamic compromise received 100 mg/m²/d hydrocortisone</td>
<td>1</td>
<td>Postoperative (on arrival to intensive care unit)</td>
<td>No</td>
<td></td>
<td>Postoperative cortisol < 10 mg/dL</td>
<td>Postoperative cortisol < 10 mg/dL not associated with worse clinical outcomes, 6 out of 15 patients responded to steroid but there was no difference in the levels of cortisol between responders and non-responders.</td>
<td>Use of absolute cortisol threshold is not useful in identifying AI.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>First authors</th>
<th>Year</th>
<th>Sample size</th>
<th>Study design</th>
<th>Steroids perioperatively</th>
<th>Cortisol time-point number</th>
<th>Frequency of cortisol measurement</th>
<th>ACTH test/measurement</th>
<th>ACTH test dose</th>
<th>Definition of adrenal insufficiency used in the study</th>
<th>Correlation to clinical outcome</th>
<th>Take home message of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schiller et al.</td>
<td>2013</td>
<td>119 children</td>
<td>Observational</td>
<td>All patients received intravenous methylprednisolone, 30 mg/kg to a maximum dose of 300 mg/kg, at induction</td>
<td>2</td>
<td>Before and 18h after surgery</td>
<td>No</td>
<td>NA</td>
<td>Postoperative cortisol level <18.1 µg/dL or delta cortisol (postoperative cortisol - preoperative cortisol) <9 µg/dL.</td>
<td>Normal adrenal function subgroup had greater inotropic support at 12, 24, and 36h after surgery and a higher lactate level at 12 and 24h after surgery; no differences in outcomes between patients with AI and normal adrenal function in the first 36h, no correlation between AI and procedure complexity</td>
<td>AI does not translate into worse clinical outcomes</td>
</tr>
<tr>
<td>Bangalore et al.</td>
<td>2014</td>
<td>33 neonates</td>
<td>Observational</td>
<td>All patients methylprednisolone, 20 mg/kg, at induction</td>
<td>3</td>
<td>Day 0 (after intensive care until admission); day 1 (first morning of surgery); day 2 (second morning of surgery)</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
<td>Higher cortisol was associated with greater morbidity, including the need for preoperative ventilation, increased total duration of ventilation, duration of inotropic support, and hospital length of stay</td>
<td>High postoperative cortisol was associated with increased post-operative morbidity</td>
</tr>
<tr>
<td>Crow et al.</td>
<td>2014</td>
<td>32 infants</td>
<td>Observational</td>
<td>1 mg/kg of dexamethasone before cardiopulmonary bypass (CPB) initiation.</td>
<td>7</td>
<td>After anesthesia induction, after CPB, after intensive care unit (ICU) arrival, and 4, 8, 12, and 24h after surgery; dexamethasone levels on intensive care unit arrival</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>No difference in clinical outcomes between patient with high dexamethasone levels (≥15 mg/dL) and low dexamethasone levels (≤15 mg/dL); cortisol levels remained low throughout the first 24 postoperative hours even after dexamethasone levels neared zero.</td>
<td>Dexamethasone levels are highly variable despite a standardized administration protocol</td>
</tr>
</tbody>
</table>
TABLE 4 | Continued

<table>
<thead>
<tr>
<th>First authors</th>
<th>Year</th>
<th>Sample size</th>
<th>Study design</th>
<th>Steroids perioperatively</th>
<th>CORTISOL time-point number</th>
<th>CORTISOL measurement</th>
<th>ACTH test/measurement</th>
<th>ACTH test dose</th>
<th>Definition of adrenal insufficiency used in the study</th>
<th>Correlation to clinical outcome</th>
<th>Take home message of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teagarden et al. [58]</td>
<td>2016</td>
<td>24 patients (< 21 years), median age = 1.4 months (range 0.1--232 months)</td>
<td>Retrospective</td>
<td>Intra-operative dose of methylprednisolone (30 mg/kg) before surgical incision and 1 mg/kg intravenously every 6 h for patients with hemodynamic instability</td>
<td>1</td>
<td>Pre-hydrocortisone treatment serum cortisol</td>
<td>No</td>
<td>NA</td>
<td>Favorable responders were defined as patients in whom, at 24 h after hydrocortisone initiation, either (1) systolic blood pressure was increased or unchanged and vasoactive-inotrope score was decreased or (2) systolic blood pressure increased by ≥10% of baseline and vasoactive-inotrope score was unchanged</td>
<td>Serum cortisol obtained before initiation of hydrocortisone was significantly lower in patients who responded favorably to the postoperative hydrocortisone</td>
<td>Total serum cortisol helpful in identifying children recovering from cardiac surgery who may or may not hemodynamically improve with hydrocortisone</td>
</tr>
<tr>
<td>Maeda et al. [59]</td>
<td>2016</td>
<td>32 neonates</td>
<td>Retrospective</td>
<td>Hydrocortisone 1 mg/kg, was given every 6 h immediately after ACTH test</td>
<td>3</td>
<td>Baseline and at 30 and 60 min after the tetracosactide stimulation</td>
<td>Yes</td>
<td>3.5 µg/kg of tetracosactide acetate</td>
<td>baseline cortisol <15 µg/dL or incremental increase after testing of <9 µg/dL</td>
<td>One-fifth of infants developed adrenal insufficiency, steroid administration in these patients resulted in a significant increase in blood pressure and urine output</td>
<td>Steroid replacement therapy improved hemodynamics only in the subgroup with adrenal insufficiency</td>
</tr>
<tr>
<td>Crawford et al. [57]</td>
<td>2016</td>
<td>40 neonates</td>
<td>Retrospective</td>
<td>Methylprednisolone 10 mg/kg 8 h and 1 h</td>
<td>2</td>
<td>Basal and 30 min post ACTH test</td>
<td>ACTH measured at same time points with cortisol</td>
<td>1 µg cosyntropin the day prior to surgery before preoperative methylprednisolone; and the second, 1 h after separation from CPB</td>
<td>AI was defined as <9 µg/dL increase in cortisol at 30 min post ACTH test</td>
<td>32.5% had AI post CPB, AI was associated with increased median colloid resuscitation, higher serum lactate</td>
<td>AI determined by a low dose ACTH test occurs in one third of patient and is not affected by pre-operative steroid administration</td>
</tr>
</tbody>
</table>
arm had increased neuronal cell death and apoptosis in the dentate gyrus of the hippocampus.

The neuroprotective potential of corticosteroids in cases of pediatric heart surgery with use of deep hypothermic circulatory arrest has therefore been the least studied. Current evidence is contradictory and the results from the available animal studies highlight the need for robust human trials aimed at this high-risk patient subgroup.

CONCLUSIONS

We found no clear evidence that the anti-inflammatory effect of corticosteroids translates into better clinical outcomes. Most randomized studies in the literature report too few patients, different endpoints and vary widely in the steroid type, doses, and regimens. Although some registry studies examined the effect of corticosteroids on larger patient populations, they are limited by their retrospective design. The effect of corticosteroids on clinical outcomes will need to be clarified by a large, multicenter, randomized controlled trial with clear agreed methodology and aims. Our knowledge about the basic physiology of the hypothalamic-pituitary-adrenal axis during surgery remains limited and it is unclear how to define relative or absolute adrenal insufficiency in the context of pediatric heart surgery. To comprehend this will require understanding of the dynamic, pulsatile secretion of adrenal cortisol which can only be gained from studies that use frequent time-point measurements in patients not receiving exogenous corticosteroids. Finally, the neuroprotective effect of corticosteroids during deep hypothermic circulatory arrest remains even more controversial and warrants further research.

AUTHOR CONTRIBUTIONS

DF: literature review, writing, design, supervision; BG, TU, SS, MC, and SL: writing of manuscript sections, revision; GA: writing, design, supervision.

ACKNOWLEDGMENTS

This study was supported by the British Heart Foundation, the NIHR Biomedical Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health or the British Heart Foundation.

REFERENCES

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer EA and handling Editor declared their shared affiliation.

Copyright © 2018 Fudulu, Gibbison, Upton, Stoica, Caputo, Lightman and Angelini. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.