
Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1063/1.5034116

Link to publication record in Explore Bristol Research

PDF-document

This is the final published version of the article (version of record). It first appeared online via AIP at https://aip.scitation.org/doi/abs/10.1063/1.5034116. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Nonlinear trapping stiffness of mid-air single-axis acoustic levitators

T. Fushimi, T. L. Hill, A. Marzo, and B. W. Drinkwater

Citation: Appl. Phys. Lett. 113, 034102 (2018); doi: 10.1063/1.5034116
View online: https://doi.org/10.1063/1.5034116
View Table of Contents: http://aip.scitation.org/toc/apl/113/3
Published by the American Institute of Physics

Articles you may be interested in

Sharp acoustic vortex focusing by Fresnel-spiral zone plates

TinyLev: A multi-emitter single-axis acoustic levitator
Review of Scientific Instruments 88, 085105 (2017); 10.1063/1.4989995

Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate

Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects

Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves

Acoustic Lock: Position and orientation trapping of non-spherical sub-wavelength particles in mid-air using a single-axis acoustic levitator
Nonlinear trapping stiffness of mid-air single-axis acoustic levitators

T. Fushimi, T. L. Hill, A. Marzo, and B. W. Drinkwater
Department of Mechanical Engineering, University of Bristol, BS8 ITR Bristol, United Kingdom

(Received 9 April 2018; accepted 2 July 2018; published online 17 July 2018)

We describe and experimentally explore a nonlinear stiffness model of the trapping of a solid particle in a single-axis acoustic levitator. In contrast to the commonly employed linear stiffness assumption, our nonlinear model accurately predicts the response of the system. Our nonlinear model approximates the acoustic field in the vicinity of the trap as a one-dimensional sinusoid and solves the resulting dynamics using numerical continuation. In particular, we predict a softening of stiffness with amplitude as well as period-doubling bifurcations, even for small excitation amplitudes of ≈2% of the wavelength. These nonlinear dynamic features are observed experimentally in a single-axis levitator operating at 40 kHz and trapping millimetre-scale expanded polystyrene spheres. Excellent agreement between the observed and predicted behaviour is obtained suggesting that this relatively simple model captures the relevant physical phenomena. This new model enables the dynamic instabilities of trapped particles to be accurately predicted, thereby benefiting contactless transportation and manipulation applications.

https://doi.org/10.1063/1.5034116

Acoustic radiation forces are hydrodynamic forces exerted through the interaction of the acoustic field with the particles contained in it. Devices which can levitate or manipulate objects using acoustic radiation forces are typically referred to as acoustic levitators. Acoustic levitators can be categorized into four main classes: single-axis standing wave, multi-axis, near-field, and single-beam. The single-axis standing wave levitator is a classical method for contactlessly holding samples, it is commonly realized by a Langevin horn and another opposed horn or reflector as shown in Fig. 1(a). Recently, it has been shown that an array of transducers can also create pseudo-one-dimensional standing waves with the added advantage of controlling the position of the nodes along the propagation axis, as illustrated in Fig. 1(b). However, in all these cases, a pseudo-one-dimensional standing wave is generated and the particles are trapped at the nodes with sinusoidal restoring forces as shown in Fig. 1(c).

Acoustic levitators have a broad range of applications in non-contact transportation and as a processing method for pharmaceutical, biological, or chemical applications. Acoustic levitators can levitate or manipulate objects using acoustic radiation forces are typically referred to as acoustic levitators. Acoustic levitators can be categorized into four main classes: single-axis standing wave, multi-axis, near-field, and single-beam. The single-axis standing wave levitator is a classical method for contactlessly holding samples, it is commonly realized by a Langevin horn and another opposed horn or reflector as shown in Fig. 1(a). Recently, it has been shown that an array of transducers can also create pseudo-one-dimensional standing waves with the added advantage of controlling the position of the nodes along the propagation axis, as illustrated in Fig. 1(b). However, in all these cases, a pseudo-one-dimensional standing wave is generated and the particles are trapped at the nodes with sinusoidal restoring forces as shown in Fig. 1(c).

Acoustic levitators have a broad range of applications in non-contact transportation and as a processing method for pharmaceutical, biological, or chemical applications. The behaviour of the levitated objects has been of interest in all classes of acoustic levitator. The chaotic shape dynamics of bubbles and droplets inside acoustic levitators are well documented, and the translational oscillation of these deformable samples has been studied in the past, often with damping forces neglected. Pérez et al. devised an experimental approach to determine the dynamics of solid particles in a standing wave levitator and demonstrated the fit of quadratic damping terms in a dynamic model. Jia et al. analyzed the dynamic response of micro-particles in liquids to show the effects of acoustic streaming and hydrodynamic forces on particles, and Andrade et al. pointed out that the particle may exhibit nonlinear behaviours similar to a Duffing oscillator. However, the dynamics of solid particles suspended inside a standing wave levitator in mid-air have not yet been fully explored; the majority of recent research employs linear stiffness models which are applicable only in the case that the movement of the suspended particle is small. The lack of understanding of the translational dynamics of the levitated samples hinders the development of future applications with acoustic levitators where the small displacement assumption is no longer valid. This prevents accurate prediction of the particle dynamics.

Here, we present a nonlinear dynamic model for the restoring forces inside a single-axis acoustic levitator. The model accurately predicts various nonlinear dynamic phenomena such as amplitude-dependence, multiple solutions, and period-doubling (PD) bifurcations. These responses were then observed experimentally and found to be in excellent agreement with our predictions whereas previous linear stiffness models by definition fail to predict these phenomena.

The experiment discussed here consists of a solid sphere suspended against gravity at the central node of a multi-transducer standing wave acoustic levitator operating at 40 kHz, as shown in Fig. 1 (see supplementary material for supplementary material)

FIG. 1. Two types of single-axis standing wave levitators. (a) A Langevin transducer assembly with an opposed reflector, or another transducer. (b) Two transducer arrays with phase delays or geometry designed to focus the acoustic waves at the center. (c) Resultant central pseudo-one-dimensional sinusoidal acoustic radiation force from both of the acoustic levitators.
Further details on the pressure field calculation). This device is an instance of the general class of single axis standing wave levitator depicted in Fig. 1(b). The acoustic radiation force was numerically approximated using the Gor'kov potential assuming that the particle (EPS, \(\rho_p = 34.0 \text{ kg m}^{-3} \)) is small (radius, \(r = 0.71 \pm 0.03 \text{ mm} \)) in comparison to the wavelength \(\lambda = 8.6 \text{ mm} \). The particle used in the experiment was visually inspected for deformations, the roundness of the particle was measured as 0.938 (see supplementary material).

The restoring force in the vicinity of the equilibrium point for the central node in the acoustic levitator is approximated as a sinusoidal force function, assuming that acoustic radiation force only varies with the vertical displacement (\(z \))

\[
F_{rad} = \alpha \sin (\beta (z - z_p)),
\]

where \(\alpha = -3.06 \times 10^{-6} \text{ N} \), \(\beta = 1315 \text{ m}^{-1} \) are the constants, obtained from a fit to the simulated pressure field (pressure amplitude \(\approx 800 \text{ Pa at 5 V} \)) in the vicinity of the central node (see supplementary material). \(z \) is the particle position measured from an arbitrary origin on the \(z \)-axis, and \(z_p \) is the input perturbation. The input perturbation represents an excitation either by a mechanical vibration, e.g., from a shaker, or by changing the acoustic pressure field to move the nodal position. In the experiment, the latter method was used and the acoustic pressure field was varied by changing the focal point of the phased-array, thus moving the nodal positions of the standing wave. For a small value of \(z_p \), Eq. (1) is analogous to a base-excited pendulum \(^{23,35} \) and the input perturbation can be considered as a parametric excitation (see supplementary material). In comparison, the commonly employed linear model of this system is identified by finding supplementary material). In comparison, the commonly employed linear model of this system is identified by finding

\[
F_{rad} = -K_\perp (z - z_p),
\]

where \(K_\perp = 0.0397 \text{ Nm}^{-1} \).

The dynamics of the system can be explored by approaches such as the random excitation, sine-sweep, or a stepped sine-sweep. The coefficients given in Eq. (1) hold true with minimum \(R^2 = 0.998 \) for the range of \(z - z_p \) shown in this paper. The damping force was calculated as:

\[
F_{drag} = -\frac{1}{2} C_d \left(2r \right)^2 \rho_a |\dot{z}| \dot{z},
\]

where the damping coefficient is \(C_d = \frac{24}{Re} \sqrt{1 + \frac{2}{16} Re} \), and where \(Re = (2r |\dot{z}| \rho_a) / \mu \) is the Reynolds number. This is applicable for \(Re \leq 100 \) and assumes that history forces and added mass are negligible in air.

Balancing the inertial and force components gives

\[
m \ddot{z} = (F_{rad} + F_{grav}) + F_{drag},
\]

where \(F_{grav} = -mg \) is the gravitational force and \(F_{rad} \) is given by Eq. (1). For a linear stiffness model, the forces inside the bracket are replaced by Eq. (2). Equation (3) was solved using the numerical continuation software Continuation Core and Toolboxes (COCO) \(^{39} \) in MATLAB, to predict the dynamic response for both linear and nonlinear stiffness models. Numerical continuation is widely employed in the field of nonlinear dynamics \(^{40} \) and it can be used to compute periodic solutions, determine their stability, and identify bifurcations. \(^{39} \) These solutions may be considered accurate to within the tolerances of the numerical solver. One drawback in the use of numerical tools, in comparison to analytical approaches, is that they reveal less about the nature and root cause of the dynamic behaviour. However, such a study is beyond the scope of the current work.

In order to conduct an experimental verification of the proposed dynamic model, the acoustic levitator was set up as shown in Fig. 2. The vertical dynamic manipulation of the focal point is transmitted from the computer to the acoustic levitator driver board at 700 Hz via a UART serial communication line operating at 500 kbauds. The driver board is made of an FPGA board (ALTERA CoreEP4CE6) which generates 60 independent square waves with a phase resolution of \(\phi = \frac{2\pi}{128} \). These signals were amplified up to 17 V by individual MOSFET drivers (TC4427a) powered with an external DC supply (RS Pro IPS 303DD). The amplified signals were fed into the levitator transducers (Murata MA40S4S). Despite the square excitation signals, the output waves were sinusoidal due to the narrowband nature of the transducers.
The experiment was conducted in a chamber (width = 4.3 m, height = 2.4 m, length = 2.4 m) on a passive vibration isolation table (Thorlabs PFH90150-8) to minimize external air and vibration disturbances. Furthermore, the temperature, barometric pressure, and humidity were recorded at the beginning of each experiment and the numerical model was calibrated accordingly to accommodate the changes. At 21.3°C, the values of air density (ρa), viscosity (μ), and speed of sound (c0) were 1.19 kg m⁻³, 1.82 × 10⁻⁵ kg (m s)⁻¹, and 344 m s⁻¹, respectively. The movement of the particle was captured by a high-speed camera (Photron FASTCAM SA-Z Type 2100K-M-32GB) and the silhouette of the levitated particle was recorded at a sampling frequency of 1001 Hz. The camera was calibrated using a CMM-stylus (Renishaw A-5000-7806) to find the pixel-to-meter conversion (3.29 × 10⁻⁵ m pix⁻¹). The high-speed camera data were processed by the MATLAB image analysis package to determine the center of the levitated particle, and the oscillation amplitude was obtained by taking the peak-to-peak difference of the low-pass filtered signal (fpass = 100 Hz and fstop = 150 Hz).

The comparison of both numerical models (linear and nonlinear stiffness) and experimental results for Ain = 0.15 mm are shown in Fig. 3(a). The linear stiffness model predicts a symmetrical response around the resonance with a peak response amplitude of Aout = 2.58 mm. There are significant differences between this linear model and the experimental results even for a relatively small excitation amplitude of Ain = 0.15 mm (or 1.74%λ). This is also small in comparison to the width of the Gor’kov potential, which is 4.8 mm (Ain = 0.15 mm is 3.13% of the width of the local Gor’kov potential minima). On the other hand, the nonlinear stiffness model predicts the response of the system with a significantly greater accuracy of R² = 0.998 between the model and experiment. Despite the small oscillation amplitude, the peak frequency predicted by the linear and nonlinear stiffness models differs by ≈18 Hz. Moreover, the nonlinear stiffness model predicts fold bifurcations at the positions where stability changes, and experimental results in Fig. 3(a) demonstrate that multiple stable solutions exist for certain forcing frequencies—a feature that is not seen in linear systems. Experimentally measuring the complete stable portion of the branch on the downwards sweep (between 25 Hz and 34 Hz) is challenging, as the basin of attraction of the stable response typically decreases as it approaches a fold bifurcation. The red curve in Fig. 3(a) represents unstable solutions, which cannot be measured experimentally, without employing a specific control strategy.

The nonlinear stiffness model exhibits amplitude-dependent behavior. The responses for excitation amplitudes Ain = 0.10, 0.15, and 0.20 mm were solved and are shown in Fig. 3(b). Since the resonance frequency decreases with amplitude, the system is considered to be a “softening” system. The response becomes more symmetrical and approaches the linear stiffness model as the excitation amplitude decreases. This is caused by the reduction in the response amplitude of particle oscillation, which begins to meet the condition for a linear assumption. The linear stiffness model contains nonlinear damping terms, due to the drag forces, and therefore also exhibits amplitude dependence; however, the resonant frequency is independent of the excitation amplitude and hence still exhibits a characteristic symmetrical frequency response.

For large excitation amplitudes, a period-doubling (PD) bifurcation occurs near an excitation frequency of 80 Hz. For example, when the excitation amplitude is increased to Ain = 0.35 mm, an unstable region emerges between 82 and 86 Hz as shown in Fig. 4(a); note that this bifurcation may also be observable at lower excitation amplitudes. A period-doubling bifurcation marks the point at which the response of the system switches to a new behaviour with a period that is twice that of the original response. In the case of the response shown in Fig. 4(a), this leads to a loss of stability of the single-period solutions (represented by the red line) and an emergence of a new set of double-period solutions (purple line). The above experimental procedure was repeated for the same particle with an excitation amplitude of Ain = 0.35 mm. The response amplitude increases significantly from 77 Hz to 90 Hz, with Aout = 1.49 mm. Although the experimentally obtained results are offset from the predicted period-doubling branch by ≈4 Hz, they show the same qualitative behaviour, verifying the existence of the PD bifurcation and resulting behaviour. An example of the frequency-dependence of the oscillatory response of the particle is available in the supplementary material. The frequency domain response of the signal for the points denoted A and B from "Exp (Sweep Down)" on Fig. 4(a) was measured and is shown in Fig. 4(b).
As the result of the period-doubling behavior, the dominant response frequency is at half of the excitation frequency, confirming the occurrence of a period-doubling bifurcation. Furthermore, as seen in Fig. 4(a), period-doubling bifurcations may also occur at lower excitation frequencies, for example, period-doubling bifurcations occur at 37 Hz in Fig. 4(a) and around 31 Hz for $A_m = 0.20$ mm in Fig. 3(b). Due to the high amplitude of the response, the experimental confirmation of the low frequency period-doubling bifurcation has not yet been achieved. However, this indicates that more complex dynamics are possible and further investigation of the nonlinear dynamics of acoustic levitators is needed.

In conclusion, we experimentally validated a single degree-of-freedom nonlinear model of a solid particle trapped inside a mid-air single-axis levitator. We predicted and verified the occurrence of nonlinear softening behaviour, as well as period-doubling bifurcations. These behaviours were only predicted by the nonlinear stiffness model, highlighting the importance of the nonlinear model. Period-doubling bifurcation is often the beginning of chaotic behaviour in many dynamic systems, and further studies may reveal this dynamic complexity in single-axis levitators. Nonlinear responses are caused by the characteristic sinusoidal restoring force, which is a common feature in acoustic levitators available in the literature. This new model enables the dynamic instabilities of trapped particles to be accurately predicted, thereby benefiting contactless transportation and manipulation applications.

See supplementary material for the details on the array layout, the method for calculating the pressure field and acoustic radiation force, proof of similarity with a base-excited pendulum, particle properties, and the approximation of a linear stiffness. A video of the particle at a period-doubling bifurcation is also available.

T.F. was funded through the Japan Student Services Organization (JASSO) Student Exchange Support Program (Graduate Scholarship for Degree Seeking Students). This project has been funded by the UK Engineering and Physical Science Research Council (No. EP/N014197/1). The authors would like to acknowledge the Bristol Composites Institute (ACCIS) for providing the high-speed camera. We would like to thank Dr. Andrew J. Harrison for his interesting discussions. Sufficient information is available in the manuscript and supplementary material to recreate the numerical and experimental results. The data presented in this work are openly available at Zenodo, https://doi.org/10.5281/zenodo.1306584.

3L. V. King, Proc. R. Soc. A 147, 212 (1934).
7R. R. Whymark, Ultrasonics 13, 251 (1975).
15B. W. Drinkwater, Lab Chip 16, 2360 (2016).