
Peer reviewed version

Link to published version (if available): 10.1073/pnas.1812816115

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via NAS at http://www.pnas.org/content/115/41/E9512. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Accurate timetrees do indeed require accurate calibrations. Response to comment by Hedges et al.

Jennifer L. Morris, Mark N. Puttick, James Clark, Dianne Edwards, Paul Kenrick, Silvia Pressel, Charles H. Wellman, Ziheng Yang, Harald Schneider, Philip C. J. Donoghue

1School of Earth Sciences, University of Bristol, Life Science Building, Tyndall Avenue, Bristol, BS8 1TQ.
2Departments of Earth and Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD.
3School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10
4Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN.
5Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
6Xishuangbanna Tropical Botanical Garden, Centre for Integrative Conservation, Chinese Academy of Sciences, China

*authors for correspondence

We (1) attempted to establish an evolutionary timescale for land plant evolution utilizing available genome scale data and a new set of calibrations constraining the age of clades based on critical analysis of palaeontologic, phylogenetic (2), and geologic evidence. We explored many factors, such as the inclusion or exclusion of a calibration on the crown-embryophyte node and concluded that the living clade of land plants emerged in a middle Cambrian – Early Ordovician interval.

Hedges and colleagues (3) argue that the results of our study are not robust to dating strategies since removal of maximum constraints (maxima) results in significantly older clade age estimates. They conducted experiments by removing Paleozoic maxima and all clade age constraints bar for spermatophytes. Their justifications for such experiments are that (i) examples abound of taxa missing as fossils for most of their history, and (ii) clade history may be geographically restricted or not accessible in today’s sedimentary record. The crux of their argument is the veracity of maxima on clade ages. Hedges and colleagues imply that maxima are applied either arbitrarily (4) or through a literal reading of the fossil record. This is not the approach we employed; our maxima were based on fossil occurrence and absence, as well as the structure of the stratigraphic record (5).

As one example, the maximum constraint on the age of crown-embryophytes is reliable according to Hedges et al.’s definition. Terrestrial Silurian land plant spores are also known to occur alongside marine algal cysts which are similarly composed of sporopollenin, an inert, effectively indestructible biological polymer. Thus, marine algal cysts, which are sampled worldwide deep into the Proterozoic, serve as a taphonomic control on land plant spores in marine sequences: presence of algal cysts in the absence of land plant spores indicates an environment compatible with the preservation of land plant spores, hence, our 515.5 Ma maximum for crown-embryophytes.
The results Hedges et al. present are unsurprising: as times and rates are confounded in clock dating analysis, fossil calibrations (and in particular maximum age constraints) are of utmost importance, and if we remove the maxima, the age estimates are likely to increase (6). However, Hedges and colleagues do not consider the evidence we presented for the choice of maxima, simply presuming that the constraints are inherently unreliable. Further, their results differ from ours principally in their decreased precision. Even after removing four constraints, all but one of their clade age estimates overlap with ours; when they remove all maxima, their clade age estimates overlap in 12/20 highlighted cases.

Morris et al. (1) present a timescale for the evolutionary emergence of land plants that goes significantly beyond common practice in exploring parameter space and integrating uncertainty, built on calibrations that follow best practice (7). We see no evidence that would result in a deep Proterozoic origin of land plants envisaged by analyses based on out-moded strict clock methods (e.g. 8, 9).