
Peer reviewed version

Link to published version (if available):
10.1136/archdischild-2017-314504

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ at http://dx.doi.org/10.1136/archdischild-2017-314504. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Stutchfield C, Davies A, Young A

Chris Stutchfield, Paediatric Intensive Care Registrar, Bristol Royal Hospital for Children, Bristol, UK

Anna Davies, Senior Research Associate, Centre for Academic Child Health, University of Bristol, UK

Corresponding author: Dr. Amber Young, Consultant Paediatric Anaesthetist, and Lead Children’s Burns Centre, University Hospitals Bristol NHS Foundation Trust; Senior Research Fellow, School of Social and Community Medicine, University of Bristol, UK

Address: Anaesthetic Department, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK, BS2 8BJ

Email: amber.young1@nhs.net

Word count (max 2500) = 2499
Background: Optimal fluid resuscitation in children with major burns is crucial to prevent or minimise burn shock and prevent complications of over-resuscitation. Objectives: To identify studies using endpoints to guide fluid resuscitation in children with burns, review the range of reported endpoint targets and assess whether there is evidence that targeted endpoints impact on outcome. Design: Systematic review. Methods: Medline, Embase, Cinahl and the Cochrane Register of Controlled Trials databases were searched with no restrictions on study design or date. Search terms combined burns, fluid resuscitation, endpoints, goal-directed therapy and related synonyms. Studies reporting primary data regarding children with burns (<16 years) and targeting fluid resuscitation endpoints were included. Data were extracted using a proforma and the results were narratively reviewed. Results: Following screening of 777 unique references, 7 studies fulfilled the inclusion criteria. Four studies were exclusively paediatric. Six studies used urine output (UO) as the primary endpoint. Of these, one set a minimum UO threshold, whilst the remainder targeted a range from 0.5-1.0ml/kg/hr to 2-3ml/kg/hr. No studies compared different UO targets. Heterogeneous study protocols and outcomes precluded comparison between UO targets. One study targeted invasive haemodynamic variables but this did not significantly affect patient outcome. Conclusions: Few studies have researched resuscitation endpoints for children with burns. Those that have done so have investigated heterogeneous endpoints and endpoint targets. There is a need for future randomised controlled trials to identify optimal endpoints with which to target fluid resuscitation in children with burns. Keywords: Burn, fluid resuscitation, endpoint, goal-directed therapy

INTRODUCTION
Optimal fluid resuscitation in children with severe burns is a key determinant of survival. It can minimise or prevent the hypovolaemic and distributive shock that develops from thermal injury, and limit complications related to over-resuscitation. Accurate quantification of burn depth and affected total body surface area (TBSA) can be difficult. Furthermore, accurate estimation of fluid requirements in burns patients is challenging, partly because they are a heterogeneous patient group with varying burn size, depth and aetiology. Traumatic and inhalational injuries also affect fluid requirements, as does burn mechanism. Children have a greater surface area to weight ratio than adults and have greater relative insensible and burn-related fluid losses. The smaller circulating volume in children compared with adults requires a greater degree of accuracy when replacing fluids.

The challenge of resuscitating children with burns is compounded by the affected anatomical site and the extent of burn injury as this may impair monitoring methods. Furthermore, the majority of paediatric burns occur in low and middle-income countries where provision of healthcare can be limited.

Under-resuscitation of patients with burns leads to organ hypoperfusion, which can lead to organ failure and increased burn depth and ultimately increased scar formation. Over-resuscitation also confers additional morbidity and mortality through complications including pulmonary and cerebral oedema, compartment syndrome and increased burn depth and scarring, but for reasons of oedema rather than poor perfusion. Such excess fluid administration and associated complications have been shown to be increasingly common and they are exacerbated by the tendency for medical staff to over-prescribe fluids, described by Pruitt as ‘fluid creep’. Increased opiate doses in patients with burns (‘opioid creep’) has been postulated to be partly responsible for ‘fluid creep’. The reasons for this are thought to
relate to increased fluid administration to treat hypotension seen a side effect of opiate use.13,14

Fluid requirements are estimated by the use of established formulae incorporating burn size and patient weight. The Parkland formula remains the most widely used guide to initial fluid requirements and is recommended by the Emergency Management of the Severe Burn (EMSB) guidelines, although various modifications and alternative formulae exist.15,16 While the goal of resuscitation is to ensure adequate end organ perfusion and oxygenation, identifying when this has been achieved in burns patients is difficult. Urine output (UO), vital signs (heart rate, blood pressure) and clinical examination are used to titrate fluid resuscitation. However, tachycardia secondary to a burn-induced hypermetabolic state and stress-related antidiuretic hormone (ADH) release affecting UO, impact on this assessment.16,17 As burn injury and secondary fluid shifts are dynamic in nature, fluid resuscitation must be titrated to clinical response. There is no consensus about which endpoints and targets should be used to guide fluid titration. Dries and Waxman found poor correlation between UO, vital signs and invasive haemodynamic parameters, including cardiac index (CI), pulmonary artery occlusion pressure and calculated oxygen transport variables, obtained by pulmonary artery catheter (PAC).18 Finally, while oliguria may suggest impaired renal perfusion, it may also represent a physiologically normal ADH response to injury. ‘Adequate’ UO also does not exclude impaired end organ perfusion.

Various resuscitation endpoints in adults with burns have been investigated, including intrathoracic blood volume, base excess, lactate, tissue oxygenation, cardiac contractility and filling on echocardiography and gastric tonometry.19 Recent systematic and non-systematic reviews investigated the evidence for endpoint monitoring to guide fluid resuscitation in
predominantly adult burn patients.19,20 A review of the evidence for resuscitation endpoints in paediatric burn patients has not been reported to date.

The objectives of this systematic review were to: 1. Describe the methods of endpoint monitoring for fluid resuscitation in children younger than 16 years of age with burns 2. Review the range of reported endpoint targets. 3. Assess whether there is evidence that targeted endpoints in children with burns impact on outcome.

METHODS

Search Strategy

The review protocol is registered on the Prospero database (reference: PROSPERO 2017:CRD42017045739).

Study eligibility criteria were predefined to identify relevant studies. Studies were eligible if they were: i) a full text article reporting a study in which treatment for burn injury was investigated, ii) published in a peer reviewed journal, iii) included children aged <16 years, and iv) reported that fluid resuscitation endpoints were used to guide fluid titration. No restrictions were placed on publication date or study design. Studies not published in the English language were excluded. Endpoints were defined as indices that define a measured outcome of treatment or a specific physiological goal.21 We refer to the desired numerical endpoint value/range as the endpoint target (at which the physiological variable should be maintained). We included studies that investigated endpoints as their primary aim, and those that investigated potential endpoints while routine care was provided, if this also included targeted endpoints.
Four electronic bibliographic databases were searched in January 2017 to identify relevant citations: Medline, Embase, Cinahl, and the Cochrane Register of Controlled Trials. Search terms were developed to identify synonyms of burns, fluid resuscitation, and endpoint/goal monitoring. Terms within each group were combined using OR, and groups of terms were combined using the AND function. Search terms were applied to titles, abstracts and keywords to increase search sensitivity. Search strategies are detailed in Appendix 1.

Screening of studies

Duplicate studies were removed and studies were screened using inclusion and exclusion criteria (Table 1) applied in a hierarchical manner. One author applied the inclusion and exclusion criteria to all titles and abstracts. The full-text article was reviewed for those that were retained and the same criteria applied. A second author reviewed 20% of citations at both stages. Disagreements were resolved through discussion. Inter-rater reliability for applying the screening criteria was found to be acceptable at each stage (titles and abstracts (n=154): 72.6% for inclusion; full text (n=24): 75% for inclusion and 100% for reason for exclusion). Where studies included both paediatric (< 16 years of age) and adult participants, the study was included if at least one third of participants were paediatric. Where it was not clear if children were included, we contacted the authors for clarification. Studies were excluded if no response was received.
Data extraction

A standardised data extraction form was developed, piloted and used to extract data. Data extracted were: 1. Demographics: paediatric/mixed sample, sample size, mean age, age range, gender, burn characteristics (size (TBSA), depth, burn cause), 2. Aims, study design and intervention/s tested, 3. Fluid regimen used, 4. Endpoints monitored, 5. Numerical endpoint targets, 5. Techniques/devices for endpoint monitoring, 5. Outcomes relating to fluid resuscitation. Data were extracted by one researcher and all extracted data verified by a second. Disagreements were resolved through discussion. Risk of bias was not assessed since this review aimed to describe and document methods rather than to assess the effectiveness of endpoints in achieving accurate fluid resuscitation.

Analysis and synthesis

Due to the heterogeneity of study designs, methods used and endpoints monitored across included studies, a narrative synthesis of the studies was performed. Study characteristics and results are shown in Tables 2 and 3.

RESULTS

The combined database searches identified 1,246 relevant articles, of which 469 were duplicates. Of the 777 titles and abstracts reviewed, 108 full text articles were retained for further screening. Seven studies met the inclusion criteria (Figure 1; n=359).
Study characteristics and patient demographics

The seven studies that met the inclusion criteria were published between 1982 and 2016 (Table 2). Four studies were undertaken in the USA, with other studies carried out in Japan (n=1), Brazil (n=1), and China (n=1). One randomised controlled trial (RCT), one cohort study, one prospective randomised study, two prospective observational studies, and two retrospective observational studies were identified.

Four studies were exclusively paediatric. Three studies included both adult and paediatric participants. Of this latter group, only one study carried out a sub-analysis of the paediatric data.

Three of the four paediatric studies had small sample sizes (n=40-49). Two studies aimed to examine the effect of a specific resuscitation endpoint and compared this with a control endpoint.

Table 2

Endpoints

The majority of studies (n=6; 86%) utilised UO as the primary endpoint for fluid resuscitation (Table 3). One of these studies also compared targeting high versus low serum albumin. One study used invasive haemodynamic monitoring to guide fluid resuscitation (transpulmonary thermodilution (TTD) parameters including intra-thoracic blood volume,
cardiac index and extravascular lung water) and compared this with conventional therapy (targeting UO).²⁴

Table 3

Targets

There was variability in the endpoint targets between studies targeting UO (Table 3). One study only set a minimum UO target (>1ml/kg/hr).²⁸ In studies targeting a UO range, the target range varied from 0.5-1.0ml/kg/hr to 2-3ml/kg/hr.²²,²³,²⁵-²⁷ Three studies reported a protocolised response to UO outside the target range.²²,²⁵,²⁶ No studies compared different UO targets. One study reported target mean arterial blood pressure (<2SD below age-specific normal) and heart rate (<2SD above age-specific normal).²⁵

Only one study targeted invasively derived haemodynamic variables.²⁴ TTD and targeted normal physiological ranges were used to guide fluid and inotrope therapy.²⁴ Endpoints and ‘conventional monitoring’ for the historical control group were not reported.²⁴

Outcomes of targeting endpoints

The heterogeneity of study type, endpoint targets and small sample sizes precluded meta-analysis. Of the three studies including adults and children,²²,²³,²⁵ sub-analysis of paediatric data was reported in one study.²⁵ In the remaining two studies participants up to 18 years of age were included but it was not clear how many children (<16 years) were included.²²,²³
Three targeted endpoints were identified: UO (with vital signs), albumin and invasive haemodynamic variables. For studies targeting UO, heterogenous study protocols and measured outcomes precluded outcome comparison between UO targets. Greenhalgh et al, 1995 did not find evidence to suggest that targeting a high albumin level affected outcome. Muller-Dittrich et al (2016) found that administering albumin early, alongside targeted UO, reduced fluid requirements, subsequent oedema and duration of hospital stay. Finally, the targeting of invasive haemodynamic variables by Kraft et al, 2013 in comparison to their usual practice showed that significantly less fluid was administered in this group compared with controls. There was a trend towards reduced mortality in the invasively monitored and targeted group but this was not statistically significant.

Discussion

Achieving optimal fluid resuscitation in children with major burns presents a complex challenge to clinicians. We aimed to identify and describe the evidence for resuscitation endpoints to guide such therapy.

Only four exclusively paediatric studies were identified. Two studies with predominant paediatric populations also studied young adults up to 18 years old but the results were not disaggregated. One study investigated a mixed adult and paediatric population where paediatric and adult data were sub-analysed. We identified three endpoints that have been targeted to guide fluid resuscitation in paediatric burn care research: 1. UO with vital signs (comprising HR and blood pressure); 2. Invasive haemodynamic parameters. 3. Albumin
levels. In the adult literature additional endpoints investigated include echocardiography and gastric tonometry.19,20

Urine output was the endpoint most frequently used to guide fluid resuscitation, but there was variation in UO targets between studies. This is likely to result from the lack of evidence to suggest the optimal UO for children with significant burns. The evidence for targeting invasive haemodynamic parameters is also limited given that only one study was identified using this method for guiding fluid resuscitation in paediatric burns compared with standard care.24

Biochemical parameters including lactate and base excess have been observed in predominantly adult studies as potential endpoints.29,30 The authors found observational evidence that early trends in lactate and base excess are predictors for morbidity and mortality. There is some evidence to suggest that these endpoints are more representative of burn size than sub-optimal resuscitation and may therefore have limitations if considered in isolation.31 Targeting such parameters as resuscitation endpoints has not been studied in paediatric patients.

Studies targeting UO did not compare different targets, and comparison of outcomes between studies with different UO targets is not appropriate given differing study protocols and patient heterogeneity. Maintaining a high UO, achieved with fluid administration, has been shown to contribute to fluid creep.32,33 Down-titration of the fluid infusion rate should occur when the upper UO range has been reached. Clinician response to UO outside the target range should be protocolised to minimise variation in practice and allow for outcome comparison between studies. There is some evidence to suggest that early albumin administration in addition to targeting UO is beneficial, but further research is needed.26
With regard to invasive haemodynamic monitoring, PACs are no longer commonly used in paediatric intensive care due to the risk-benefit ratio. TTD methods can provide haemodynamic variables which are less invasive and TTD has been found to be feasible in children with burns. There are conflicting findings as to whether use of invasive haemodynamic monitoring to target physiologically ‘normal’ parameters results in more or less fluid being administered. Whilst the study identified in this review found that less fluid was administered when invasive monitoring is used compared with controls, a mixed adult and paediatric study comparing invasive goal directed monitoring guided fluid therapy with standard care, found significantly more fluid was given in the invasive group. Neither study found that targeting invasive haemodynamic variables significantly affected outcome when compared with standard care wherein UO was targeted.

When invasive haemodynamic variables are targeted there is conflicting evidence in the adult literature as to whether targeting hyperdynamic or (permissive) hypovolaemic values is optimal. Whilst one study found that targeting hypovolaemic parameters resulted in the administration of less fluid without an increase in the complication rate, another targeted hyperdynamic parameters, with administration of more fluid and reported reduced end-organ failure and improved survival.

A variety of potential resuscitation endpoints exist that reflect global, regional or organ-specific perfusion, but are impacted upon by physiological response to burn injury. This systematic review did not identify evidence to suggest that one endpoint or target is superior to another. The outcome data was not robust enough to draw conclusions on the clinical effectiveness of targeted endpoints, and the heterogeneous nature of the studies identified precluded a meta-analysis.
This systematic review is the first to consider the current state of research in relation to endpoint monitoring in paediatric burns patients. Whilst similar methods of endpoint monitoring to that used in adults may be useful, a number of modalities present challenges in children, particularly TTD as its use is not currently widespread in paediatric intensive care. Furthermore, it cannot be assumed that endpoint targets in adults are appropriate for children.

The studies identified have limitations which preclude quantitative conclusions being drawn. There were only seven studies identified and relatively small sample sizes (four exclusively paediatric studies, n=287) may have prevented detection of intervention effects. Data analysis was not disaggregated in studies which included young adult and paediatric participants. To have omitted such studies would have resulted in loss of paediatric data, but their inclusion limits extrapolation of study findings to an <16 year old paediatric population.

Conclusion

The evidence for endpoint monitoring to guide fluid resuscitation in children with burns is limited. Of the three endpoints (UO with vital signs, albumin and invasive haemodynamics) that have been targeted in this population, there is considerable heterogeneity between studies with regards to endpoint targets. While it remains clear that fluid resuscitation must be tailored to the clinical situation, there is not sufficient evidence to identify which endpoints and targets optimise outcome. Focussing on a single endpoint in isolation is unlikely to be helpful, as each has limitations. A composite ‘endpoint bundle’ is likely to be more efficacious. There is a need for randomised multi-centre paediatric studies with pre-determined
endpoints and protocolised fluid administration strategies comparing clinically significant standardised outcome measures.

Table 1: Inclusion and exclusion criteria

Figure 1: PRISMA Flow Diagram

Table 2: Characteristics of included studies

Table 3: Monitoring methods, resuscitation endpoints and results of included studies

Appendix 1: Database search strategies

What is already known on this topic (max 25 words per statement)

Optimal fluid resuscitation in children with burns is challenging

Whilst initial fluid therapy in burns is often estimated, ongoing fluid resuscitation must be titrated according to response

A variety of resuscitation endpoints in adults with burns have been studied

What this study adds (max 25 words per statement)

There is a paucity of evidence for goal-directed fluid resuscitation in children with burns

Endpoint targets for fluid resuscitation in children with burns show considerable heterogeneity

Further research is required to identify which endpoints and target ranges improve patient outcome
Contributorship: Formulation of research question and search strategy (CS, AD, AY), database searches (AD), screening of studies (CS and AD), data extraction and analysis (CS and AD), paper editing (CS, AD, AY).

Competing interests: None

Funding: The Children’s Burns Research Centre, part of the Burns Collective, a Scar Free Foundation initiative with additional funding from the Vocational Training Charitable Trust (VTCT) and the Welsh Government Health and Care Research Wales. The views expressed are those of the authors, and not necessarily those of the Scar Free Foundation or other funding bodies.
References

6 Sharma RK & Parashar A. Special considerations in paediatric burn patients. *Indian J Plast Surg* 2010;43:S43-S50.

Table 1: Inclusion and exclusion criteria

<table>
<thead>
<tr>
<th></th>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>RCTs</td>
<td>Studies not written in English</td>
</tr>
<tr>
<td></td>
<td>Controlled trials</td>
<td>Abstract only</td>
</tr>
<tr>
<td></td>
<td>Cohort studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Observational studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case series</td>
<td></td>
</tr>
<tr>
<td>Participants</td>
<td><16 years</td>
<td>Studies not specifically about burns</td>
</tr>
<tr>
<td></td>
<td>Adult studies including <16 yr olds</td>
<td>Not about human participants</td>
</tr>
<tr>
<td></td>
<td>Burns ≥10% TBSA</td>
<td>Studies without any paediatric (<16y) participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adult and paediatric studies with less than one third paediatric participants</td>
</tr>
<tr>
<td>Intervention</td>
<td>Fluid resuscitation guided by monitored endpoints</td>
<td>Studies not providing primary data investigating fluid resuscitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studies not conducted in the clinical setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studies not about fluid resuscitation endpoints</td>
</tr>
<tr>
<td>Comparison</td>
<td>All comparators considered</td>
<td></td>
</tr>
</tbody>
</table>

RCT: Randomised controlled trial; TBSA: Total body surface area. Exclusion refers to the hierarchy of exclusion criteria for documenting the primary reason each paper was excluded.
Table 2: Characteristics of included studies
Aims reported verbatim. * Where aim not directly stated apparent aim described. Mixed: refers to a mixed adult and paediatric study population; NR: Not reported; TTD: Transpulmonary thermodilution; Ages reported as available from published data. TMMU: Third Military Medical University

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Aims</th>
<th>Design</th>
<th>Population, n, mean age+/–SD, (age range)</th>
<th>%TBSA mean+/–SD (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraklas et al. (2011)²²</td>
<td>USA</td>
<td>To assess if adding colloid (human albumin solution) to resuscitation fluids in a paediatric population, who are showing signs of complications or reduced urine output during resuscitation, results in a reduction of the I/O ratio.</td>
<td>Retrospective observational</td>
<td>Mixed (≤18y), n=53 (29 crystalloid only, 24 also received HAS), NR, (range 0.9-17)</td>
<td>Crystalloid group: 19.5 (15-62) HAS group: 28.5 (15-81)</td>
</tr>
<tr>
<td>Greenhalgh, et al. (1995)²¹</td>
<td>USA</td>
<td>To determine whether maintaining serum albumin levels in burned paediatric patients had any effect on morbidity and mortality</td>
<td>Prospective randomised trial</td>
<td>Mixed (<19y), n=70 (36 low albumin group, 34 high albumin group), 6.3+/–0.6</td>
<td>45.9+/–2.2 (21-91)</td>
</tr>
<tr>
<td>Kraft et al. (2013)²⁴</td>
<td>USA</td>
<td>To determine that the use of the PICCO system and consecutively adjusted fluid management has positive impact on the hospital course, morbidity, and mortality in severely burned children</td>
<td>Cohort (historical control)</td>
<td>'Paediatric' - but not defined, TTD group n=76: 9.1+/–0.6; control group n=76: 7.7+/–0.6</td>
<td>Control: 62.2+/–2.5 TTD: 64.0+/–2.3</td>
</tr>
<tr>
<td>Luo et al (2009)²⁵</td>
<td>China</td>
<td>To examine the effectiveness of the TMMU protocol for modern fluid resuscitation in burn patients</td>
<td>Prospective observational</td>
<td>Mixed, n=71 (25 children), 2.73+/–2.05; (range 0.75-8) of paediatric group</td>
<td>38.73+/–8.46 (of paediatric group)</td>
</tr>
<tr>
<td>Müller Dittrich et al. (2016)²⁶</td>
<td>Brazil</td>
<td>To compare early versus delayed albumin resuscitation in children with burns in terms of clinical outcome and response</td>
<td>RCT</td>
<td>Paediatric, n=46, early albumin (n=23): 37m (IQR 22-53); delayed albumin (n=23): 31m (IQR 12-64)</td>
<td>Early albumin: 16 (IQR 15-18) Delayed albumin: 17 (IQR 15-22)</td>
</tr>
<tr>
<td>Okabayashi et al. (2001)²²</td>
<td>Japan</td>
<td>To identify if using burn depth in addition to burn size and body weight when calculating fluid requirements promotes more accurate estimation of fluid resuscitation requirements *</td>
<td>Retrospective observational</td>
<td>Paediatric, n=49, Lung injury: Nil (4.9+/–3.9), mild-mod (3.9+/–3.5), severe (4.8+/–3.9)</td>
<td>Lung injury: Nil (41.4+/–18.7), mild-mod (73.4+/–17.1), severe (67.2+/–16.6)</td>
</tr>
<tr>
<td>O'Neill (1982)²⁸</td>
<td>USA</td>
<td>To assess the fluid resuscitation requirements of children with burns</td>
<td>Prospective observational</td>
<td>Paediatric, n=40, 5.8 (range 0.5-12)</td>
<td>45.4 (range 15-95)</td>
</tr>
<tr>
<td>Study</td>
<td>Fluid regimen</td>
<td>Endpoints</td>
<td>Target parameters</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Faraklas et al. (2011)</td>
<td>Parkland</td>
<td>UO</td>
<td>1-2ml/kg/hr</td>
<td>Fluid intake to urine output ratio significantly greater in HAS group but fell after colloid administration to similar levels as the crystalloid group.</td>
<td></td>
</tr>
<tr>
<td>Greenhalgh, et al. (1995)</td>
<td>Parkland</td>
<td>UO</td>
<td>0.5-1.0ml/kg/hr</td>
<td>Similar fluid resuscitation requirements (4.84 Vs 4.91ml/kg/%TBSA) for low Vs high alb groups; high albumin target group received 20 times more HAS than low alb group. No difference in complication rates or mortality between groups.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High albumin</td>
<td>2.5-3.5g/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low albumin</td>
<td>>1.5g/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraft et al. (2013)</td>
<td>Galveston</td>
<td>Control group TTD (PiCCO) measurements: CI EVLWI ITBVI</td>
<td>NR 3-5ml/m2/min 3-7ml/kg 850-1000ml/m2</td>
<td>Significantly higher fluid intake in control group (‘conventional resuscitation’) Vs PiCCO group at similar UO. Cardiac and renal organ scores significantly lower in PiCCO group. No significant difference regarding clinical outcome.</td>
<td></td>
</tr>
<tr>
<td>Luo et al (2009)</td>
<td>TMMU</td>
<td>UO</td>
<td>0.5-1.0ml/kg/hr</td>
<td>Average fluid intake within the first 24 hours was equal to that predicted by the TMMU formula but between 24-48 hours, approximately 25% more fluid than predicted was required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR</td>
<td><2SD above age-specific norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BP</td>
<td><2SD below age-specific norm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Müller Dittrich et al. (2016)</td>
<td>Modified Parkland</td>
<td>UO</td>
<td>1-2ml/kg/hr</td>
<td>Early albumin group received approximately 32% less fluid on day 1 and 45% overall by day 3 compared with delayed albumin infusion. They also had a shorter hospital stay and experienced fewer complications of fluid overload.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early Vs delayed albumin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okabayashi et al. (2001)</td>
<td>5-7ml/kg/%TBSA</td>
<td>UO</td>
<td>2-3ml/kg/hr</td>
<td>Fluid requirements in ‘massively burned children’ might better be estimated by taking burn depth into account as well as total burn size (%TBSA).</td>
<td></td>
</tr>
</tbody>
</table>

UO, Urine output; BP, Blood pressure; NR, Not reported; HAS, Human Albumin Solution; TBSA, Total body surface area; ITBV, Intrathoracic blood volume; CI, Cardiac index; TTD, Transpulmonary thermodilution; PiCCO, Pulse Contour Cardiac Output; EVLWI, Extravascular lung water index; ITBVI, Intrathoracic blood volume index; TMMU, Third Military Medical University; SD, Standard deviation.