
Peer reviewed version

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Oxbow Books at https://www.oxbowbooks.com/oxbow/re lentlessly-plain.html ISBN: 9781789250848 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Chapter 14. Tracing Pottery Use through Lipid Residue Analysis

Mélanie Roffet-Salquea, Richard P. Evershedb, and Anna Russellb

a Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom.
b Faculty of Archaeology, Leiden University, POB 9515, 2300 RA, Leiden, The Netherlands.

14.1 Introduction

It is now accepted that organic residues are widely preserved in archaeological pottery and can provide information on both the use of vessels and wider economic activities, particularly those relating to the procurement of animal products. In relation to this, pottery from Tell Sabi Abyad contributed to an extensive investigation, involving more than 2,200 vessels from 25 Neolithic sites in the Near East and Southeastern Europe, in which organic residues were used to document the early evolution of milk use by prehistoric farmers (Evershed \textit{et al.}, 2008). The investigation included nearly 300 vessels from Tell Sabi Abyad. Herein, we present the detailed results of the organic residue analyses of these same vessels. The results are interpreted in the context of the functional uses of the pottery, dietary habits and culinary practices, and, specifically, the introduction of secondary products into the Late Neolithic economy (Sherratt, 1981, 1983). The latter are compared to interpretations of animal exploitation and herd management based on faunal analyses at the site. We also begin to investigate the factors contributing to the preservation of prehistoric residues, attempting to move towards contextualizing and interpreting their socio-economic context, and making comparisons with the Neolithic in other regions, \textit{viz}. Northwestern Anatolia (Thissen \textit{et al.}, 2010; Türkekul-Bıyık, 2009; Türkekul-Bıyık and Özbal, 2008), Central Anatolia (Copley \textit{et al.}, 2006; Evershed \textit{et al.}, 2008; Pitter \textit{et al.}, 2013), western Iran (Gregg, 2010) and the southern Levant (Gregg \textit{et al.}, 2009).

To summarize our findings, the overall recovery rate of lipids in sherds is relatively low (14 % of the sherds investigated in this study yielded detectable lipids) and the mean lipid concentration for sherds containing lipids is ca. 82 μg g-1. These results are typical of sites from this period and the general region (southern Mediterranean and Near East). Our interpretations indicate the use of specific ceramic categories of vessel for “cooking” while clear evidence of the extensive heating of vessels is deduced from the presence of ketones, formed from the condensation of fatty acids, in some vessels. Strong differences in recovery rates possibly reflect differences in use between different pottery types. In particular the Dark Faced Burnished Ware (DFBW) contained the highest frequency of residues (no less than 46 % yielded detectable lipids). Degraded animal fats were detectable, as evidenced by the presence of C\textsubscript{16:0} and C\textsubscript{18:0} fatty acids (with C\textsubscript{18:0} in high abundance) and in few cases tri-, di- and monoacglycerols. The presence of abundant carcass fats is consistent with interpretations based on faunal assemblage of extensive meat exploitation. Finally, four vessels dated to 6,400 to 5,900 cal BC yielded animal fats identified as originating from milk products.1

14.2. Pottery Selection and Methods

A total of 287 sherds were investigated in this study. Almost half of the ceramic assemblage studied came from Operation II (n = 133), while the rest came from Operations I, III and IV (Table 14.1.A). Operation II is thus over-represented \textit{vis à vis} other excavated parts, but overall the samples are spatially well distributed across the site. However, while the sampling attempted to cover the various periods equally, because the stratigraphic analyses and absolute dating became available only after the sampling, this led to uneven representation of specific periods (see below). The sherds were not selected taking specific pottery forms into account or targeting specific pottery types (Thissen \textit{et al.}, 2010) and were mostly body sherds (Table 14.1), which could not generally be attributed to a specific vessel type. Only 4.5% of the assemblage samples were rim sherds. The selected sherds included jars, bowls, hole mouth pots and a few Standard Ware husking tray fragments.

1 The residue study formed part of the Leverhulme Trust project (F/00182/T) \textit{The Emergence of Early Farming Practices of the Fertile Crescent and the Balkans} led by Evershed, Sherratt and Payne. Pottery selection was undertaken Dr Jenifer Coolidge and laboratory analyses by Drs Mark Copley and Rob Berstan. NERC is thanked for mass spectrometry facilities (GR3/2951, GR3/3758 and FG6/36101). This chapter was previously published as Nieuwenhuyse \textit{et al.} 2015.
The sampling included seven distinct wares (Table *14.1.B). The majority of the samples were coarse, plant-tempered *Standard Ware* (SW, \(n = 94\)) and fine, painted *Standard Fine Ware* (SFW, \(n = 87\)). Also represented were *Dark-Faced Burnished Ware* (DFBW, \(n = 28\)), *Early Fine Ware* (EFW, \(n = 25\)), *Grey-Black Ware* (GBW, \(n = 21\)) and *Mineral Coarse Ware* (MCW, \(n = 25\)). Finally, five sherds of *Orange Fine Ware* (OFW) were included. Unfortunately, two sherds came without adequate description. All together almost the entire spectrum of wares that comprise the total ceramic assemblage during the Early Pottery Neolithic through Pre-Halaf to Transitional Period was represented.

In view of the long inhabitation sequence of Tell Sabi Abyad, two periods are well-represented: the Transitional Period (\(n = 172\)) and the Early Pottery Neolithic (\(n = 102\)). The Early Pottery Neolithic samples mainly come from the final stages of that period. Most come from Operation III, levels A2 (\(n = 21\)) or from mixed level A2/A3 contexts (\(n = 12\)). The oldest samples are thirteen sherds from Operation III, level A4, dated to 6,455-6,390 cal. BC. The Pre-Halaf period is severely underrepresented with only four samples (Table *14.1.C). Two sherds came from topsoil contexts and seven were from a mixed Early Pottery Neolithic - Pre Halaf context. To summarize, this study documents the later stages of the Early Pottery Neolithic to the Transitional Period, from ca. 6,400 to ca. 5,900 cal. BC.

![Table 14.1](image)

Table 14.1: Summary of organic residue analyses in: A. Excavation areas of the site. B. Pottery wares. C. Archaeological periods.
Lipid analyses of potsherds were performed using our established protocol (Copley et al., 2003; Dudd and Evershed 1998; Evershed et al., 2008) and presented in detail in Nieuwenhuyse et al. 2015. Briefly, ca. 2 g samples were taken and their surfaces cleaned using a modelling drill to remove any exogenous lipids (e.g. soil or finger lipids due to handling). The samples were then ground to a fine powder, and the lipids extracted with a mixture of chloroform and methanol (2:1 v/v). Aliquots of the extracts were analysed by high temperature-gas chromatography (HTGC) and gas chromatography–mass spectrometry (GC-MS). Extracts identified as animal fats were analysed by GC-combustion-isotope ratio mass spectrometry (GC-C-IRMS) to determine the carbon isotopic composition ($\delta^{13}C$ values) of palmitic (C$_{16:0}$) and stearic (C$_{18:0}$) acids. These analyses allow non-ruminant and ruminant fats, and carcass and dairy fats to be distinguished (Dudd and Evershed, 1998; Copley et al., 2003).

14.3. General assessment of the organic residues

Of the 287 sherds submitted to solvent extraction, 41 were shown by HTGC to contain detectable lipids that could be confidently interpreted to be of archaeological origin (Table *14.4). Compared to north-western Europe this recovery rate (14%) is low but considering that no targeted sampling was adopted, the figure is comparable with other Mediterranean Neolithic sites. For example, at Çatalhöyük initial investigations revealed lipids in 18% of the sherds, rising to 36% with targeted sampling of cooking vessels (Copley et al., 2006; Pitter et al., 2013). Additionally, Late Neolithic pottery sherds from Barcın Höyük in northwestern Turkey showed 24% of sherds to contain detectable lipid residues (Thissen et al., 2010: 166).

The lipid profiles from the Tell Sabi Abyad sherds showed a remarkable constancy being dominated by free fatty acids, sometimes as the sole components (Fig. *14.1.A), in other cases accompanied by low abundances of monoacylglycerols, diacylglycerols and triacylglycerols (Fig. *14.16.B-C). A third class of lipids seen in 9 sherds contains a range of mid-chain ketones eluting in the retention time range of the internal standard (Fig. *14.1.B-C). The presence of the aforementioned classes of lipid is typical of degraded animal fats particularly on account of the high abundance of the C$_{18:0}$ fatty acid (Evershed et al., 2002; Evershed, 2008). The low abundance of C$_{18:1}$ fatty acid, the main fatty acid in fresh animal fats, is consistent with the sensitivity of such compounds to oxidative loss during vessel use and burial; indeed the low abundance of unsaturated fatty acids provides an important quality control criterion in confirming the indigeneity of archaeological animal fat residues. The odd-carbon numbered ketones ranging from C$_{31}$ to C$_{35}$ are a diagnostic group of compounds forming by heating fats above ca. 300 °C (Evershed et al., 1995; Raven et al., 1997; Evershed, 2008). The presence of mid-chain ketones is a common feature of Neolithic pottery in Europe, the Near East and Eurasia and points to the importance of processed animal products in a variety of dietary and quasi-industrial roles in the Neolithic life. No biomarkers characteristic of plant material have been detected in any of the sherds. However, low concentrations of lipids in plants compared to animal products can preclude the identification of plant material when mixed with animal products.

The added internal standard allows quantification of the lipid recoveries from the pottery from Tell Sabi Abyad (Table *14.4, Fig. *14.2). The concentrations range from none detected in the vast majority of vessels to 580 μg g$^{-1}$, although the latter is exceptional for this assemblage. The average concentration of lipids in sherds containing significant concentration of lipids (> 5 μg g$^{-1}$) is 82 μg g$^{-1}$. These concentrations and rates of recovery of lipids are typical for the wider region (cf. Çatalhöyük in Central Anatolia). The lipid concentrations will be discussed in more detail in relation to different wares and pottery type in the section below.
Chapter 14. Tracing Pottery Use through Lipid Residue Analysis

Fig. *14.1* Partial gas chromatograms of TLEs from pottery typical of (A) a degraded ruminant animal fat (SAB2) and (B)/(C) well preserved animal fat (SAB252 and SAB55, respectively). Abbreviations: FFA N:i, free fatty acids with N carbon atoms and i unsaturation; br, branched; K, mid-chain ketones with 31, 33 and 35 carbon atoms; MAG, monoacylglycerols; DAG, diacylglycerols; TAG, triacylglycerols, with M, acyl carbon number; IS, internal standard (n-tetratriacontane); * plasticizer.
Chapter 14. Tracing Pottery Use through Lipid Residue Analysis

14.4. Distribution of lipid concentrations

The sherds containing detectable lipids are far from equally distributed across the site. The percentage of lipid residues is highest in Operation I (27%), followed by Operation II (19%). Operations III and IV produced significantly lower recovery rates (respectively, 5% and 4%; Table *14.1.A; Operations I/II and III/IV, one-sample χ² test, p<0.001). The nature of the depositional setting likely plays a role in the preservation of lipids. For example, the sherds from Operation I and II were recovered from layers excavated below a thick horizon of later deposition. In contrast, the sherds from Operation III and, in particular, Operation IV were recovered from depositions lying closer to the surface of the mound, probably contributing to lower lipid recovery rates. However, these Operations exposed different archaeological periods which may be more important in explaining the differences in lipid recovery rates from the sherds (Table *14.1.B). Most significant was the higher recovery rate of ca. 20% in body sherds from the Transitional period from Operations I and II, \(n = 143 \) compared to the Early Pottery Neolithic, exposed in Operations III and IV, where only 5% yielded detectable lipids (3 residues extracted from 58 sherds; one-sample χ² test, p<0.05). These differences in lipid concentrations are shown in Fig. *14.2.A.

While the age of the pottery might be the most obvious influence on lipid preservation, the major factor affecting lipid concentrations appears to be the type of pottery investigated, more specifically the ware type (Table *14.1.C, Table *14.2, Fig. *14.2.B). Around 46% of all DFBW sherds (13/28 sherds) produced significant lipid residues, with high lipid concentrations also being highest in this ware type (Fig. *14.2.B). These findings corroborate the interpretations from earlier work that this pottery type was used for cooking. This is further supported by the detection of ketones in two of the 28 DFBW sherds studied indicating that these sherds were heated above ca. 300 °C during their lifetime of use. Rim sherds and body sherds yield a higher detection rate than bases (one-sample χ² test, p<0.05; Charters et al., 1993).

Above average lipid concentrations for the assemblage were detected in a high proportion (24%, 6/25 sherds) of the sherds of the other main cooking ware, MCW (Fig. *14.2.B). These findings appear to confirm the influence of pottery use, in this case cooking, on the absorption of lipids. The recovery rate of lipids from MCW sherds is comparable to that of DFBW (one-sample χ² test, p>0.05). In contrast, the two mineral-tempered wares typical for the Early Pottery Neolithic, GBW and EFW, exhibited appreciably lower recovery rates at <10% and 4%, respectively (DFBW/MCW and GBW/EFW, one-sample χ² test, p<0.01).

Only 3% (3/94 sherds) of coarse plant-tempered SW sherds yielded detectable lipids (Fig. *14.2.B). This recovery rate is very similar to what was observed at Çatalhöyük, where lipid concentrations in organic-tempered wares were much lower than in mineral-tempered wares (Pitter et al., 2013: 198). The low recovery rate in SW sherds corroborates the hypothesis that this pottery type was occasionally used as ‘ad hoc’ cooking ware, in spite of disadvantageous performance properties (Le Mière and Picon, 1991, 1999). The only three SW sherds yielding detectable lipids all came from the
The stable carbon isotope compositions (δ\(^{13}\)C values) of the predominant fatty acids (C\(_{16:0}\) and C\(_{18:0}\)) of residues identified as animal fats and extracted from pottery vessels were determined to allow classification to commodity group (e.g. non-ruminant fat, ruminant adipose fat and ruminant dairy fat). δ\(^{13}\)C values were compared to a global modern reference animal fat database assembled from animals from Africa (Dunne et al., 2012), the UK (Copley et al., 2003; animals raised on a pure C\(_3\) diet), Kazakhstan (Outram et al., 2009), Switzerland (Spangenberg et al., 2006) and the Near East (Gregg et al., 2009). The Δ\(^{13}\)C (= δ\(^{13}\)C\(_{18:0}\) - δ\(^{13}\)C\(_{16:0}\)) value was used to suppress the influence of varying abundances of C\(_3\)/C\(_4\) plants in the animals' diets and aridity effects (Copley et al., 2003; Dunne et al., 2012). The δ\(^{13}\)C values recorded for the C\(_{16:0}\) fatty acid (-27.2 to -22.1 %) are more depleted by > 4 % than those from ruminant animal fats raised on a pure C\(_3\) diet (-31.2 to -27.8 %) pointing to a significant C\(_4\) and/or aridity influence on the diets of the animals (Fig. *14.3*).

Table *14.2* summarises the animal fat classifications based on the δ\(^{13}\)C values, revealing the dominance of ruminant animal fats, with ruminant carcass fats being for the most abundant class of lipid residue, accounting for 20 of the 41 residues detected. Four of the degraded fats were dairy fat residues with two others lying on the borderline of the carcass and dairy fat ranges, which may indicate they are mixture (Table *14.2*). Hence, ca. 10% of all the animal fat residues detected were determined to be dairy fats. Two of these dairy fats were attested in DFBW (samples SAB2 and SAB173) and one in GBW (sample SAB263) – pottery wares suitable for cooking (Le Mièvre and Nieuwenhuyse, 1996: 129; Nieuwenhuyse, 2007: 129-130). In these heavy-duty vessels dairy products were apparently processed involving heat. But the analyses also yielded one example of a SFW sherd yielding ruminant dairy lipid residue (sample SAB214) suggesting that this fragile vessel was used for storing / serving dairy products. The earliest evidence for milk in Sabi Abyad comes from a GBW bodysherd recovered from Operation IV and dating to the final stages of the Early Pottery Neolithic, ca. 6,400-6,330 BC. The DFBW sherds from the Transitional Period are dated to ca. 6,000-
5,900 BC. Presently these constitute the earliest evidence for milk use attested in Upper Mesopotamia, possibly in the Middle East as a whole.

Fig. 14.3. δ¹³C values for the C₁₆:₀ and C₁₈:₀ fatty acids prepared from animal fat residues extracted from sherds from (A) the Early Pottery Neolithic, (B) Pre-Halaf and (C) Transitional periods. The three fields correspond to the P = 0.684 confidence ellipses for animals raised on a strict C₃ diet in Britain (I). Each data points represent an individual vessel. The analytical error (± 0.3 ‰) is approximately the size of the points on the graph. (D)-(F) Δ¹³C values from the same potsherds. Ranges show the mean ± 1 s.d. for a global database comprising modern reference animal fats from United Kingdom (animals raised on a pure C₃ diet), Africa, Kazakhstan, Switzerland and the Near East (Dunne et al.,...
These findings are consistent with the work carried out by Vigne and Helmer (2007) pointing at even earlier evidence for dairying practices based upon slaughtering profiles. In fact, ovicaprids were used for a mixed milk and meat production in the Middle East already during the Late and the Early PPNB (8th millennium BC). Only few kill-off patterns for cattle are available in the Near East for the Middle and Late PPNB, but they also suggest that cattle were exploited for milk at the time. Archaeozoological studies are indeed a powerful means of unravelling herding practices and milk exploitation at archaeological sites. They allow the contextualization of the foodstuffs present as lipid residues in sherds and, as lipid residue analyses are not species-specific, a tentative identification of animal species represented in the residues.

The faunal analyses at Tell Sabi Abyad cover a timespan from ca. 6,900 to ca. 5,900 cal BC, from the Initial Pottery Neolithic into the Early Halaf period (Cavallo, 2000, Russell, 2010). The faunal investigations suggest continuous, gradual shifts in animal exploitation over the 7th and early 6th millennia. These sequential changes have been grouped into eight ‘animal exploitation phases’ (AEP), each phase characterized by a specific species composition and exploitation pattern (Russell, 2010: 239-240, 274). Sherds analysed in this study were sampled from the AEP IV to VII (Fig. *14.4), allowing investigations of the shift in the exploitation of ovicaprids (domestic sheep and goats) and the domestication of cattle.

Ovicaprids dominated the faunal assemblage throughout. Both postcranial fusion and mandibular tooth wear show rather similar mortality profiles for each animal exploitation phase, yet with subtle changes through time. AEP I to IV show a culling age of approximately two years of age with very few animals over three years of age present. By AEP V-VI in the Pre-Halaf period, the main culling age shifts by one year to around three years of age with more animals living up to four years of age and older. In AEP VII-VIII, the Transitional and Early Halaf periods, this trend continues with even more animals living over four years of age. These mortality profiles suggest that in the oldest levels ovicaprid husbandry was geared primarily towards meat production, with the majority of animals being culled at the prime meat age of two years and only a small number of breeding stock maintained. Through time this shifted to a mixed economy of both meat and secondary product production.

![Fig. *14.4](image-url)
The archaeozoological studies from Sabi Abyad then suggest a move from primarily meat to meat plus milk and fibre production during AEP V at around 6,225 BC, synchronizing well with the first lipid residues in the pottery. In the Pre-Halaf period levels (Operation III levels A1-B4, AEP V-VI), faunal analyses points to an increased emphasis on the production of milk. The lamb (or kid) would have been kept during the lactation period and some females culled because of decreased milk yield or lamb production at two to four years of age. Apart from dairy products the hair or fleeces of ovicaprids appear to have become more important as the numbers of older animals in the faunal assemblage increased as well. The emphasis on wool is also suggested by the synchronous introduction of spindle whorls in the Pre-Halaf period (Rooijakkers, 2012). In the Early Halaf period (AEP VIII) the faunal signal for intensified secondary product production becomes even more pronounced with milk and fleece production perhaps taking priority over meat production in sheep and goats.

Bos remains were found in all levels, cattle being the second most common species in the levels contemporaneous with the sherds where lipid residue analyses were carried out (AEP IV to VII). The sequence documents a long-term process of gradually-increasing control over aurochs, starting in AEP IV and eventually resulting in the complete domestication of this animal in AEP V (Russell 2010). In the Initial Pottery Neolithic and Early Pottery Neolithic (AEP I-III) the mortality profiles do not reflect that of a wild and hunted population but rather a culturally controlled or proto-domestic cattle population. Herd security and meat production seem to have been the main foci of _Bos_ husbandry. This form of animal management continued through AEP IV-V but by this time the animals can be considered fully domestic. Meat production becomes more intensive by AEP VI, so as in Transitional (AEP VII) and Early Halaf (AEP VIII) periods. Cattle at Tell Sabi Abyad, then, appear to have been kept primarily for their meat. There is no evidence of their use for traction. Thus, faunal analyses suggest that ovicaprids were the milk producers during the final stages of the Early Pottery Neolithic, during which milk fats are first attested at Tell Sabi Abyad, through the Pre-Halaf-Transitional into the Early Halaf period. The role of cattle remains less clear. In the time period concerned domestic cattle appear to have been primarily exploited for meat at Tell Sabi Abyad but the occasional use of their milk cannot be ruled out. A total disregard of this valuable resource would be contrary to what would be expected, particularly when considering the importance of this animal in Halaf iconography.

14.6. Concluding remarks

The lipid residue analyses presented herein further emphasise the importance and the feasibility of studying lipid residues extracted from pottery sherds from the Late Neolithic in Upper Mesopotamia (Evershed _et al._, 2008). The results obtained provide a valuable perspective on the practical uses of Late Neolithic ceramic containers in Upper Mesopotamia. Traditionally pottery use is modelled on the basis of the shape, size, and performance properties of the containers; the investigation of lipid residues allows us to move one important step further, scrutinizing how vessels were actually used. Thus, this study supports earlier interpretations of Mineral Coarse Ware, Early Fine Ware, Grey-Black Ware and in particular Dark-Faced Burnished Ware as ‘cooking’ wares. The DFBW especially gave an unequivocal signal that the vessels were used frequently subjected to direct heating. Together with the unique performance properties of this ceramic type this shows that DFBW was the preferred ‘cooking’ ware during the period investigated in this study.

In contrast, the recovery rates from the coarsely-made, plant-tempered Standard Ware that constituted the bulk of the ceramic assemblage were far lower (3%). Usage of this early pottery remain unresolved. Storing or serving cold liquid lipid rich foods would likely have resulted in increased recovery rates, and thus dry goods storage is a more likely function. Cooking was in this case not the primary activity in which this ware category was involved. In contrast to Çatalhöyük in Central Anatolia, no ‘clay balls’ that might have been used for indirect boiling (Copley _et al._, 2006) have so far been attested at Tell Sabi Abyad or at any other Late Neolithic site in Upper Mesopotamia. If we put this into a broader perspective, it appears that in this region cooking foodstuffs in ceramic pots did not play any significant role prior to the final stages of the Early Pottery Neolithic. A sustained shift to cooked food, then, was not synchronous with the first adoption of pottery, which in Upper
Mesopotamia took place already between ca. 7000-6700 cal. BC (Nieuwenhuyse et al., 2010). Only from ca. 6400-6300 cal. BC onwards can cooking foods and beverages in pottery vessels unequivocally be documented as part of Late Neolithic culinary practices. This was a profound cultural change that must have had far-reaching socio-economic repercussions, which so far have been barely investigated.

The lipid residues extracted from sherds from Tell Sabi Abyad are among the oldest currently known in the ancient Near East, together with those from Çatalhöyük in Central Anatolia (Copley et al., 2006, Evershed et al., 2008, Pitter et al., 2013). They predate by several centuries those from Tell el-Kerkh dated to the Early Halaf period (Shimoyama and Ichikawa, 2000) and they are considerably earlier than the ones from Late Neolithic al-Basatîn in the Wadi Ziqlab in northern Jordan (Gregg et al., 2009). This was a profound cultural change that must have had far-reaching socio-economic repercussions, which so far have been barely investigated.

The study has thus brought forward evidence for the consumption of milk in the centuries immediately preceding the Halaf period and during the Early Halaf period. This is evidenced some 80 years after Max Mallowan introduced the term ‘cream bowl’ for the characteristic carinated collared bowls from the Halaf period based on ethnographic examples when observing his workmen drinking milk from carinated metal plates (Mallowan and Rose, 1935). Complementary studies of age-at-death of animals at the site and construction of kill-off patterns demonstrate that the exploitation of ovicaprids for meat during the Early Pottery period shifted towards a mixed exploitation for meat and milk from the Pre-Halaf period. Cattle however seem to have been kept primarily for meat.

Evidently, while the residue evidence by itself is rather consistent with archaeozoological studies performed on the Tell Sabi Abyad assemblages, the overall signal of early dairy production in the Upper Mesopotamian Late Neolithic remains rather weak. In this study only four sherds gave unequivocal evidence of ruminant dairy lipids. Although the number of sherds containing dairy fat residues is low they do point to early secondary product exploitation. However, the small size of the current assemblage means caution should be exercised in its contextualization and interpretation. Further samples from a broader range of time periods are required to strengthen, confirm or refute the patterns that begin to emerge. Notwithstanding this, if the different strands of evidence are brought together - pottery use, material culture, village layout, animal exploitation and dairy residues - they suggest far-reaching social and economic changes transforming Upper Mesopotamian societies at the end of the seventh millennium.

Chapter 14 References (to be integrated with the general bibliography of the book)

Chapter 14. Tracing Pottery Use through Lipid Residue Analysis

