
Peer reviewed version

Link to published version (if available):
10.1136/vr.105087

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via BMJ at https://veterinaryrecord.bmj.com/content/183/23/716. Please refer to any applicable terms of use of the publisher.
Hepatozoon canis in three imported dogs: a new tickborne disease reaching the United Kingdom

Charalampos Attipa, DVM MVetMed DipACVP MRCVS†a,b,c*, David Maguire, MVB BSc(Hons) MVetMed FRCPath DipACVP MRCVS†b,d, Laia Solano-Gallego, DVM MSc PhD DipECVCP MRCVSb,c, Balazs Szladovits, DVM FHEA DipACVP MRCVSb, Emily N. Barker, BSc(Hons) BVSc(Hons) PhD DipECVIM-CA MRCVSa, Alison Farr, BVetMed FRCPath DipACVP MRCVSd, Gad Baneth, DVM PhD DipECVCPf, Séverine Tasker, BSc BVSc(Hons) PhD DSAM DipECVIM-CA FHEA MRCVSa

† Contributed equally
a Diagnostic Laboratories, Langford Vets, Bristol Veterinary School, University of Bristol, Langford, UK
b Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, UK
c Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, UK
d IDEXX Laboratories, Wetherby, UK
e Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Spain
f Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel

*Corresponding author
Email: attipacy@gmail.com
ABSTRACT

An increasing number of non-endemic vectorborne pathogens have been described in dogs imported to the UK in the past two decades. Recently, an outbreak of canine babesiosis in south-east England has raised veterinary awareness with regard to the impact of such diseases on the UK canine population. Canine hepatozoonosis, caused by *Hepatozoon canis* and transmitted by the ingestion of *Rhipicephalus sanguineus* ticks, is widespread in the Mediterranean basin. Herein we describe the first three molecularly confirmed clinical cases of canine hepatozoonosis in dogs imported into the UK. Veterinarians in the UK should be aware of *H. canis* as a potential infection in imported dogs, especially in the face of the expanding distribution of *R. sanguineus* ticks in Europe.

Keywords: hepatozoonosis, *Hepatozoon canis*, dog, canine tick-borne pathogens, imported disease, UK
Introduction

Hepatozoon canis (Apicomplexa, Adeleorina, Hepatozooidae) is a tick-borne pathogen that belongs to a diverse group of parasites which includes approximately 340 species that infect a wide range of vertebrates, such as mammals, birds, and reptiles (1). Canine hepatozoonosis was first described in India by a British medical officer in 1905 (2) and since then has been identified worldwide, with *H. canis* and *Hepatozoon americanum*, being of clinical importance for dogs (3). These two species differ in geographical distribution, pathogenicity and definitive invertebrate host (4). *Hepatozoon americanum*, is found in the Southern USA and causes severe, and often fatal, disease whereas *H. canis* is present in tropical and subtropical areas globally (5).

The life cycle for *H. canis* begins with the ingestion of infected ticks, containing sporulated oocysts, by the canine host. Sporozoites are released in the gut, penetrate the intestinal epithelium, and disseminate via lymphatics or blood vessels to the haemolymphatic tissues (including bone marrow, spleen, and lymph nodes) where they undergo merogony. Merozoites are subsequently released and invade leukocytes (neutrophils and monocytes) forming gamonts. Gamonts are ingested by ticks during blood feeding, undergo a sexual stage, and form oocysts (4, 5). While *Rhipicephalus sanguineus* (brown dog tick) is considered to be the main vector of *H. canis*, other tick species have been confirmed as definitive vectors for this parasite including *Amblyomma ovale* and *Rhipicephalus turanicus* (6, 7). Transplacental infections of *H. canis* have also been reported (8), and a recent case-control study, using structural equation modelling, found that younger dogs are more likely to be infected with *H. canis* compared to adult dogs (9). Interestingly, *H. americanum* may additionally be spread via ingestion of prey containing the cystozoite stages of the parasite. However this mode of transmission has not been evaluated for *H. canis* (4).

Clinical signs of *H. canis* relate to the severity of the parasite burden. It frequently causes a chronic sub-clinical infection. Dogs commonly may have a low parasite burden (<1%
of neutrophils containing gamonts) and be asymptomatic or show only mild clinical signs, whereas more severe clinical signs including fever, lethargy and emaciation are noted with high parasite burdens (4, 10, 11). In published case reports of dogs suffering from clinical signs of H. canis, the percentage of neutrophils containing gamonts varied from 21% to 90% (12-14). The commonly reported periostitis caused by H. americanum has also occasionally been reported with H. canis, and can be associated with skeletal and muscle pain (8, 14, 15).

The most common haematological abnormalities associated with H. canis infection include mild anaemia and neutrophilia, while rare extreme leukocytosis (up to 150 x10^9/L leukocytes) can occur with high parasitaemia (12-14, 16, 17). Serum biochemistry abnormalities typically include hyperproteininaemia with hyperglobulinaemia, hypoalbuminaemia, and increased activities of creatine kinase and alkaline phosphatase (4, 17).

Infection of dogs with H. canis has been recognised in Asia (13), Europe (18), the Mediterranean basin (19-21), the Middle East (17, 22), South America (23), and in the southern states of the USA in North America (24). Most recently, H. canis was unexpectedly identified for the first time in Queensland, Australia, in an Ixodes holocyclus Neumann tick collected from a dog, and the Australian biosecurity authorities are investigating the potential sources of this infection (25). The first known case of canine hepatozoonosis in the UK was presented in 2011 at the European Society of Veterinary Clinical Pathology congress in a dog imported from Ireland (26). Here we further evaluate this case using phylogenetic analysis, and we report two additional clinical cases of this infection imported from Cyprus.

Case 1

A 12-year-old, entire male, Beagle, was presented in September 2010 to a veterinary practice in London, UK, having been acquired from a rescue centre in Ireland. There was no clinical history available from prior to the Irish rescue centre and no microchip or tattoo was present.
The dog was presented on the 14th of September 2010 (Day 1), was thin but bright and alert. Significant clinical findings included pale mucous membranes, a slightly enlarged prostate (presumed to be benign prostatic hyperplasia), occasional cough, slight nasal discharge and positive tracheal pinch. Haematology results are shown in Table 1. On Day 1, the dog had a mild to moderate, normocytic, normochromic, non-regenerative anaemia. On blood smear examination moderate numbers of neutrophils contained intracytoplasmic elliptical structures (~9-11µm long, ~4-5µm wide) which were clear to lightly basophilic in colour and interpreted as *Hepatozoon* gamonts (Figures 1 and 2). *Hepatozoon* gamonts were noted in approximately 33% neutrophils. Testing for vector borne diseases (VBD; see molecular investigation) revealed infection with *H. canis*. Serum biochemistry revealed only a mild hyperglobulinaemia and mild hypoalbuminaemia. Due to the moderate parasitaemia and mild clinical signs, a diagnosis of hepatozoonosis was made. Treatment was initiated with imidocarb dipropionate (Imizol® Schering-Plough Animal Health, Darmstadt, Germany; 6.6mg/kg, by subcutaneous injection, every 14 days) and doxycycline (Ronaxan, Merial, Lyon, France; 10mg/kg orally once daily for 28 days).

Haematology on Day 30 revealed an improvement in the anaemia and a borderline monocytosis. Although *Hepatozoon* gamonts were still present in neutrophils (approximately 5%), there was reduction in the peripheral parasite burden. Further injections of imidocarb dipropionate were administered (total of four injections). At this time, the dog was castrated for management of the prostatomegaly. Haematology on Day 44 revealed resolution of the anaemia and a mild, novel, neutropenia. No *Hepatozoon* gamonts were encountered during the blood smear examination.

Two months later (Day 112) haematology demonstrated recurrence of the borderline anaemia. Very rare *Hepatozoon* gamonts were present in neutrophils (<1%). A final course of two injections of imidocarb dipropionate (6.6mg/kg, subcutaneously 14 days apart) were administered. A final haematology on Day 154 demonstrated continued borderline anaemia.
with slight regeneration and a mild leukopenia. No *Hepatozoon* gamonts were encountered on examination of peripheral blood smears and on buffy coat preparations. This finding was supported by conventional PCR analysis for *Hepatozoon* spp. which was negative. Monthly ectoparasitic prevention was recommended for the dog. The dog was doing clinically well until the end of 2011 after which time clinical follow up was unavailable.

Case 2

A five-month-old, entire male, cross-breed, clinically healthy dog was imported into the UK from a rescue centre in Paphos, Cyprus (Day 0); the day before travelling it had been treated with fipronil and (S)-methoprene spot-on (FrontlineCombo®, Merial, Lyon, France). The dog presented to a veterinary practice in Leicester, UK on the 7th of September 2014 (Day 1) due to lethargy and presence of tick infestation. Fipronil spray (Frontline® Spray 0.25% w/v Cutaneous Spray Solution, Merial) was applied, visible ticks were manually removed and disposed of without any further identification. EDTA blood was collected for VBD testing, which revealed infection with *H. canis*.

The dog's lethargy resolved spontaneously on Day 2. Due to financial limitations, the foster owner declined further investigations and treatment. On Day 22, automated haematology and serum biochemistry parameters were unremarkable. However, blood smear and buffy coat examinations revealed the presence of low numbers *Hepatozoon* gamonts in neutrophils (approximately 8%) (Table 2). Imidocarb dipropionate (6.6 mg/kg, by subcutaneous injection, 14 days apart) was administered on Days 22 and 36. On Day 36, the dog remained well but low numbers of *Hepatozoon* gamonts were still visible on blood smear examination (<1%) and PCR was positive. Another six injections of imidocarb dipropionate (6.6 mg/kg, subcutaneously) were administered weekly. On Day 85 the parasitaemia was not apparent on blood smear examination, but PCR remained positive. Monthly ectoparasitic
prevention was recommended. One and three years following treatment completion, the dog was described as healthy by the owner via telephone communication.

Case 3

An adult, neutered female, Poodle cross, clinically healthy dog was imported into the UK from a rescue centre in Paphos, Cyprus (Day 0); the day before travelling it had been treated with fipronil and (S)-methoprene spot-on. The dog presented to a veterinary practice in the Midlands, UK on the 10th of August 2015 (Day 1) due to anorexia, lethargy and presence of ticks which were manually removed and disposed of without any further identification. EDTA blood was collected for blood smear examination and VBD testing. On Day 1, the dog had a mild neutrophilia and on blood smear examination, moderate numbers of neutrophils (approximately 40%) contained *Hepatozoon* gamonts. Testing for VBD revealed infection with *H. canis* (Table 3). Due to the moderate parasitaemia and mild clinical signs, a diagnosis of hepatozoonosis was made. Treatment was initiated with imidocarb dipropionate (6.6 mg/kg, by subcutaneous injection, 14 days apart, for 8 weeks) and doxycycline (10 mg/kg, orally once daily, for 28 days).

On Day 60 the dog was reported to be clinically healthy by the veterinarian and no *Hepatozoon* gamonts were noted on blood smear examination; however, the dog remained PCR positive for *H. canis*. It was subsequently lost to follow-up and no further clinical information was available for this case.

Travel history

All cases reported here were dogs imported to the UK. The dogs in Cases 2 and 3 were imported from Cyprus, a European Union (EU) member island state situated in the eastern Mediterranean basin (35°10’N and 33°22’E) with a temperate climate. The predominant tick species found in Cyprus is *R. sanguineus* (27, 28) and a recent study has found that clinically
healthy dogs from the area of Paphos have a PCR prevalence of 45% for *H. canis*, 20% for *Mycoplasma haemocanis*, 3% for *Anaplasma platys* and 1% for *Ehrlichia canis* (9). According to the Ministry of Agriculture, Rural Development and Environment of the Republic of Cyprus 8244 dogs travelled from Cyprus to the UK in the years 2015, 2016 and 2017 with the numbers increasing each year (http://www.philenews.com/koinonia/eidiseis/article/536613/steilame-10-850-adespotoys-skyloy-s-esto-exoteriko-pinakas).

Both Cases 2 and 3, fulfilled all the requirements set by UK’s pet travel scheme (PETS) for entering the country, that includes microchip identification, rabies vaccination 21-days prior to arrival into the UK, and tapeworm treatment administration by a certified vet between 5-days and 24-hours prior to arrival into the UK (https://www.gov.uk/take-pet-abroad). Despite not being a requirement since January 2012, both dogs received acaricide treatment 24-hours prior to for entry into the UK, and yet attached ticks were noted upon arrival.

Case 1 did not have a microchip or a tattoo, making it difficult to trace its movements and determine where it became infected with *H. canis*. Both Ireland and UK were considered unlikely countries for acquiring *H. canis* infection as it has not previously been documented in either of these countries and the main vector, *R. sanguineus*, does not appear to be endemic in Ireland or the UK (29, 30). The most common tick encountered in both Ireland and the UK is *Ixodes ricinus*, which has not been shown to be a vector for *H. canis* (29-31). It was considered most likely that Case 1 became chronically infected with *H. canis* in an endemic area, most likely in Southern Europe, possibly in Cyprus (9), France (32), Greece (33), Italy (34), Portugal (35) or Spain (36) and then entered Ireland, either prior to the introduction of PETS or illegally (37). Another possibility, considered less likely, was infection following ingestion of a tick in Ireland that had previously fed on a dog infected with *H. canis*.
Molecular investigation, sequencing and phylogenetic analysis

For all three cases DNA was extracted from 100 µL of EDTA-blood using a commercial kit (NucleoSpin® Blood, Machery-Nagel, Germany) according to the manufacturer's instructions. For the VBD testing, previously described conventional PCR assays, were used to detect infection with *Ehrlichia/Anaplasma* spp. (38) and *Hepatozoon* spp. (39), and quantitative PCR assays were used to detect infection with *Leishmania* spp. (40), *Babesia* spp. (41), “*Candidatus Mycoplasma haematoparvum*” and *M. haemocanis* (42). For each PCR assay, appropriate positive and negative controls were included.

Hepatozoon spp. PCR amplicons were purified using a commercial kit (ExoSAP-IT, Affymetrix, USB, Cleveland, Ohio, USA) according to the manufacturer's instructions, and the DNA sequenced using forward and reverse primers. The derived sequences were assembled using MacVector v15.5.4 (MacVector Inc, Cambridge, UK). DNA sequences were deposited in the European Nucleotide Archive. The derived sequence from Case 1 (LS453286) yielded 100% identity to an existing 18s rRNA gene for *H. canis* (AF418558) over 625 bp. The derived sequences from Cases 2 and 3 (LS453287 and LS453288) yielded 99% identities to an existing 18s rRNA gene for *H. canis* (KX818220) over 625 bp and 577 bp respectively. Sequences obtained in this study were aligned using ClustalW to selected 18S rRNA gene sequences from *Hepatozoon* spp. found in GenBank and a phylogenetic tree was subsequently generated (Figure 3). All *H. canis* sequences compared clustered into two clades, separate from *H. felis*, with Cases 2 and 3 separate from Case 1. It was not possible to predict the origin of Case 1’s *H. canis* using available sequence data.

Discussion

These three cases highlight the risk of introducing non-endemic diseases, such as *H. canis* infection, into the UK through dogs being imported from, or having a travel history to,
countries where *H. canis* is endemic. Furthermore, they illustrate the spectrum of clinicopathological changes which *H. canis* infected dogs present with, as well as the diagnostic and treatment options available.

All cases had mild clinical signs that developed shortly after arrival, thus potentially the transportation stress may have aided the development of clinical hepatozoonosis from a prior sub-clinical infection (43). Only Case 1 displayed mild abnormalities on its haematology and biochemistry. Despite the high parasite burden (approximately 33%) a neutrophilia was not observed. Indeed, a transient neutropenia was present on Day 44. It is unknown if this was related to therapy resulting in the removal of parasitized neutrophils, or whether there was underlying inflammation resulting in neutrophil consumption. Dogs with a high parasite burden may be at an increased risk of secondary infections. Immune compromise can occur for multiple reasons. Neutrophils which contain gamonts have reduced myeloperoxidase activity (44), and have been reported to be deficient in oxidative bactericidal capacity (45). The mild non-regenerative anaemia noted in this case was attributed to anaemia of inflammatory disease, despite the lack of an inflammatory leukogram. The anaemia did improve with treatment; however, a borderline anaemia still remained on the final haematology. Also, in Case 1 there was a mild hyperglobulinaemia and hypoalbuminaemia, as with other reported cases of canine hepatozoonosis due to *H. canis* (4, 17). The hypoalbuminaemia most likely was due to an acute phase protein response or developed in compensation to the hyperglobulinaemia, and the hyperglobulinaemia likely reflected chronic inflammation. The timing of clinical presentation of all 3 dogs would suggest that they became infected during summer when *R. sanguineus* is most abundant and there is increased risk of pathogen transmission (46). Therefore, veterinarians should be aware that dogs imported to UK, or having a travel history to, countries where *H. canis* is endemic during summer or early autumn are more likely to have acquired this pathogen compared to dogs
imported during the winter or spring. Still, given the existence of chronic subclinical infection with *H. canis*, it is possible that dogs imported all year round could develop clinical signs.

Blood smear examination was the most important diagnostic step in order to identify the *Hepatozoon* gamonts and establish the infection in these three cases. The morphology of the gamonts alone cannot distinguish infecting species and given the different prognosis and treatment recommendations, PCR and sequencing were performed (4). Interestingly, none of the three cases presented here were found to be co-infected with other vector-borne pathogens that have frequently been reported in *H. canis*-infected dogs, such as *A. platys*, *E. canis*, or *L. infantum* (21). These other vector-borne pathogens are common in the canine population of Cyprus (9, 19, 47) and for Cases 1 and 3 there were clinical concerns initially for *E. canis* co-infection, thus doxycycline was administrated. Interestingly, the highest PCR prevalence (37.9%) recorded for *Hepatozoon felis* in cats has been reported in Cyprus, and *H. felis* infected cats are 12 times more likely to be co-infected with *Leishmania infantum* compared to the cats that are PCR negative for *H. felis* (48, 49).

Imidocarb dipropionate has been described as the drug of choice for treatment of hepatozoonosis caused by *H. canis* (4). However, as in Cases 2 and 3, imidocarb dipropionate has been described as being ineffective in eliminating *H. canis* infection, despite repeated administration over a period of eight months to three naturally infected dogs (34). In all of our three cases, treatment resulted in a decrease in the peripheral parasite burden, and eventual absence of *Hepatozoon* gamonts on blood smear examination, and a negative *Hepatozoon* spp. PCR result on blood in Case 1. As PCR was not performed on haemolymphatic tissues, complete elimination of the infection could not be confirmed for Case 1. Complete elimination of the parasitaemia is difficult to determine on examination of peripheral blood smears alone. This is also supported by a published case report of a dog in Japan described as having a positive blood PCR for *H. canis* 242 days after diagnosis, despite an absence of gamonts on peripheral blood smear examination (13). In the absence of a more effective
treatment, imidocarb dipropionate currently remains the drug of choice (6.6 mg/kg, subcutaneously 14 days apart) to manage clinical hepatozoonosis due to *H. canis*, and the prognosis is considered good (4).

We recommend that *H. canis* positive dogs receive regular and effective ectoparasitic prevention to prevent onward transmission and to minimise the risk of acquiring co-infections with other vector-borne pathogens, and that they are not used as blood donors. Repeat blood smear and buffy coat examinations, as well as PCR’s would be advised every 6-months to monitor for parasitaemia, and treatment initiated if clinically warranted (e.g. lethargy, weight loss, pyrexia) alongside a positive PCR result or blood smear examination. Administration of immunosuppressive or chemotherapeutic agents should be avoided if possible, but if necessary, more frequent monitoring of parasitaemia can be performed.

Hepatozoon species have been previously reported in the UK from pine martens (*Martes martes*) in Scotland (50), wild red squirrels (*Sciurus vulgaris*) in the Isle of Wight (51) and most recently in ticks infesting cats from south-east England for *H. felis* and from Wales for *Hepatozoon silvestris* (52). Additionally, a letter to Veterinary Record by Skeldon et al. described a case of *H. canis* infection in a dog imported into the UK from Cyprus (53). Due to clinical deterioration that dog was euthanised and no further diagnostic tests were performed.

At the moment the risk of *H. canis* becoming an endemic infection in the canine population of UK is low since the current climate does not favour the survival of the main vector *R. sanguineus* (54). However, if climate changes progress to establishing suitable conditions for these ticks, then *H. canis* could potentially become endemic in UK especially in the face of the expanding distribution of *R. sanguineus* ticks in northern Europe (55). The recent outbreak of canine babesiosis in UK (56) has raised awareness of the risks associated with dog importation and the Public Health England’s Tick Surveillance Scheme’s (https://www.gov.uk/guidance/tick-surveillance-scheme) data analysis revealed that dogs
travelling form Cyprus and Spain may result in *R. sanguineus* tick importation (57). *Rhipicephalus sanguineus* ticks can survive and establish populations within houses in the UK where canine hosts are present, and could transmit *H. canis* to other canine hosts within such environments (57). Additionally, other potential vector ticks that have not yet been investigated may transmit *H. canis*. In south Hungary, an area considered free from *R. sanguineus* ticks, canine hepatozoonosis has been reported, so *Dermacentor marginatus* and *Dermacentor reticulatus* ticks that are present there have been considered as possible *H. canis* vectors, although this has not been confirmed (58). *Dermacentor reticulatus* ticks are present in parts of the UK such as western Wales and south-west England, but in small numbers (29) so, the overall risk of *H. canis* transmission in the UK is thought to be very limited.

These findings, alongside the identification of various non-UK endemic infectious pathogens in imported dogs has sparked discussion of altering the current PETS following the Brexit referendum (59). Possible reintroduction of a requirement for acaricide treatment of dogs by a veterinarian 24-hours prior to entry into the UK has been considered as a measure for reducing the risk of tick importation in the UK. Still, it is questionable whether it would be effective as demonstrated by Cases 2 and 3 that, despite receiving acaricides prior to travelling, both dogs were still found to be infested with ticks upon arrival. A modification of this scheme for acaricide treatment of dogs 48-72 hours, followed by examination by a veterinarian 24 hours, prior to entry into the UK, to document an apparent absence of ticks could also be discussed. Implementing stricter requirements, for example a 10-day quarantine facility stay and extensive infectious agent screening such as those in existence in Australia (http://www.agriculture.gov.au/cats-dogs/step-by-step-guides/category-3-step-by-step-guide-for-dogs), could also be explored.

In the era of increased canine international travel, UK veterinary surgeons and diagnosticians should be aware of *H. canis* infection. Dogs with a travel history from endemic
countries, especially from Southern Europe, are advised to be molecularly tested for *Hepatozoon* spp. alongside other VBD and blood smear evaluation.

Acknowledgements

The authors thank the veterinarians Kenneth Landro and Sarah Hatton who helped in the collection of the samples and provided clinical information.

References

2. James SP. On a parasite found in the white corpuscles of the blood of dogs: Office of the superintendent of government printing, India; 1905.
53. DEFRA. Risk of incursion and establishment of certain exotic disease and tick species to the UK via international pet travel. 2011.
Figure 1. Case 1, Day 1 blood smear: Neutrophil containing a *Hepatozoon canis* gamont in the cytoplasm. 100x oil; Modified Wright’s stain.
Figure 2. Case 1, Day 1 blood smear: Neutrophils on the feathered edge containing numerous *Hepatozoon canis* gamonts in the cytoplasm. 100x oil; Modified Wright’s stain.
Figure 3. Phylogenetic tree constructed using the neighbour-joining program, corrected for nucleotide substitutions by the Kimura-2 parameter model, in MacVector. The data set was resampled 1000 times to generate bootstrap percentages. The country of origin is indicated in bold letters for H. canis sequences.
Table 1 Serial haematology and molecular results from Case 1 (days from initial diagnosis)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Day 1</th>
<th>Day 30</th>
<th>Day 44</th>
<th>Day 112</th>
<th>Day 154</th>
<th>Reference Interval</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC</td>
<td>4.2</td>
<td>5.0</td>
<td>5.2</td>
<td>4.4</td>
<td>4.7</td>
<td>5.5 – 8.5</td>
<td>x10¹²/L</td>
</tr>
<tr>
<td>HGB</td>
<td>9.8</td>
<td>11.8</td>
<td>12.4</td>
<td>10.6</td>
<td>11.2</td>
<td>12.0 – 18.0</td>
<td>g/dL</td>
</tr>
<tr>
<td>HCT</td>
<td>30.0</td>
<td>35.0</td>
<td>37.0</td>
<td>35.0</td>
<td>38.0</td>
<td>37.0 – 55.0</td>
<td>na</td>
</tr>
<tr>
<td>MCV</td>
<td>70.8</td>
<td>69.7</td>
<td>70.6</td>
<td>80.1*</td>
<td>81.5*</td>
<td>60.0 – 77.0</td>
<td>f/L</td>
</tr>
<tr>
<td>MCH</td>
<td>23.2</td>
<td>23.7</td>
<td>23.9</td>
<td>24.1</td>
<td>23.9</td>
<td>19.5 – 24.5</td>
<td>p/g</td>
</tr>
<tr>
<td>MCHC</td>
<td>32.7</td>
<td>34.0</td>
<td>33.8</td>
<td>30.1</td>
<td>29.4</td>
<td>31.0 – 37.0</td>
<td>g/dL</td>
</tr>
<tr>
<td>WBC</td>
<td>8.0</td>
<td>7.4</td>
<td>8.0</td>
<td>7.3</td>
<td>4.9</td>
<td>6.0 – 17.1</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>5.5</td>
<td>3.3</td>
<td>2.6</td>
<td>4.3</td>
<td>3.0</td>
<td>3.0 – 11.5</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>1.3</td>
<td>1.9</td>
<td>2.9</td>
<td>2.0</td>
<td>1.6</td>
<td>1.0 – 4.8</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Monocytes</td>
<td>0.8</td>
<td>1.8</td>
<td>1.4</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2 – 1.5</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0 – 1.3</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Polychromasia</td>
<td>Abs.</td>
<td>Mild</td>
<td>Mild</td>
<td>Abs.</td>
<td>Mild</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Platelets</td>
<td>114**</td>
<td>249</td>
<td>282</td>
<td>111**</td>
<td>187</td>
<td>150 – 900</td>
<td>x10⁹/L</td>
</tr>
<tr>
<td>Hepatozoon spp. PCR</td>
<td>Pos.</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>Neg.</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>Hepatozoon gamonts</td>
<td>~33%</td>
<td>~5%</td>
<td>Neg.</td>
<td><1%</td>
<td>Neg.</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Haematology analyses were performed with Cell-DYN 3500 Haematology Analyser (Abbott, Chicago, Illinois, United States).

Abnormal findings are denoted by bold font.

+ : % of neutrophils containing *H. canis* gamonts on the monolayer

*: In vitro swelling

**: Moderate platelet clumping, platelet numbers adequate on blood smear examination.

Abbreviations: RBC red blood cells; HGB haemoglobin; HCT haematocrit; MCV mean corpuscular volume; MCH mean cell haemoglobin; MCHC mean corpuscular haemoglobin concentration; WBC white blood cell; Abs. absent; Neg. negative; na not applicable; pos. positive

Table 2 Serial blood smear and molecular results from Case 2 (days from initial presentation)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Day 1</th>
<th>Day 22</th>
<th>Day 36</th>
<th>Day 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatozoon spp. PCR</td>
<td>na</td>
<td>na</td>
<td>Pos.</td>
<td>Pos.</td>
</tr>
<tr>
<td>Hepatozoon gamonts</td>
<td>na</td>
<td>~8%</td>
<td><1%</td>
<td>Neg.</td>
</tr>
</tbody>
</table>

Abnormal findings are denoted by bold font.

+ : % of neutrophils containing *H. canis* gamonts on the monolayer

Abbreviations: na not applicable; Pos. positive; Neg. negative
Table 3 Serial blood smear and molecular results from Case 3 (days from initial diagnosis)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Day 1</th>
<th>Day 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatozoon spp PCR</td>
<td>Pos.</td>
<td>Pos.</td>
</tr>
<tr>
<td>Hepatozoon gamonts on blood smear*</td>
<td>~40%</td>
<td>Neg.</td>
</tr>
</tbody>
</table>

Abnormal findings are denoted by bold font.
*+: % of neutrophils containing *H. canis* gamonts on the monolayer

Abbreviations: *Pos.* positive; *Neg.* negative