
Peer reviewed version

Link to published version (if available):
10.1021/acs.jpca.8b07491

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ACS at https://pubs.acs.org/doi/10.1021/acs.jpca.8b07491 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
Supplementary Information to accompany:

Spatially Resolved Optical Emission and Modelling Studies of Microwave-Activated Hydrogen Plasmas Operating under Conditions Relevant for Diamond Chemical Vapor Deposition

Edward J.D. Mahoney,¹,² Benjamin S. Truscott,¹,a Sohail Mushtaq,¹ Michael N.R. Ashfold,¹ and Yuri A. Mankelevich ³

¹ School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS
² Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Gibbet Hill Road, Coventry, U.K., CV4 7AL
³ Skobel’tsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie gory, Moscow, 119991 Russia

a Present address: Element Six Global Innovation Centre, Harwell Campus, Fermi Ave, Didcot, U.K., OX11 0QR
Figure S1

(a) $I_{em}(\lambda, z)$ Image (where $z = 0$ defines the substrate surface) in the wavelength range 423-497 nm from a hydrogen plasma operating under base conditions: $p = 150$ Torr, $P = 1.5$ kW, $F(H_2) = 300$ sccm, $d_{sub} = 32$ mm and $d_{wire} = 0.01"$. The strong lines at 434.0 nm and 486.1 nm are the H Balmer-γ and Balmer-β emissions. (b) $I_{em}(\lambda)$ plot of the summed emission intensities in the height range $3 \leq z \leq 6$ mm over the wavelength range $448 \leq \lambda \leq 465$ nm, with R branch lines of the G-B (0,0) band identified.
Figure S2

(a) $I_{em}(\lambda, z)$ image (where $z = 0$ defines the substrate surface) in the wavelength range 563-636 nm from a hydrogen plasma operating under base conditions: $p = 150$ Torr, $P = 1.5$ kW, $F(H_2) = 300$ sccm, $d_{sub} = 32$ mm and $d_{wire} = 0.01"$. (b) $I_{em}(\lambda)$ plot of the summed emission intensities in the height range $3 \leq z \leq 6$ mm over the range $600 \leq \lambda \leq 620$ nm, with the utilised H$_2$ d-a (0,0) Q branch lines identified.
Figure S3

Spatial profiles of (a) $I_{em}(H_2^*, d-a)$ emission and (b) $I_{em}(H\alpha)$ emission for a MW activated hydrogen plasma operating at three pressures with a substrate diameter $d_{sub} = 17$ mm, $d_{wire} = 0.004''$ and $P = 0.9$ kW. The relative intensities in any given plot are displayed on a common vertical scale. Tilt view images of the plasma above the substrate (indicated by the ellipse superposed on the $p = 275$ Torr image), aperture by the slot shaped viewing port, are shown in the inset in (b). The T_{sub} values at all three pressures were below our detection limit.
Figure S4

Spatial profiles of (a) $I_{em}(H_2^*, d-a)$ emission and (b) $I_{em}(H_α)$ emission from a MW activated hydrogen plasma operating at three pressures with a substrate diameter $d_{sub} = 17$ mm, $d_{wire} = 0.004^\prime\prime$, and $P = 1.85$ kW. The relative intensities in any given plot are displayed on a common vertical scale. The inset in (b) shows tilt view images of the plasma above the substrate, apertured by the slot shaped viewing port. The measured T_{sub} values are, respectively, below detection limit, 1020 °C and 1070 °C for $p = 75$ Torr (red), 150 Torr (black) and 275 Torr (blue).
Figure S5

Calculated (a) axial \((z, r = 0)\) and (b) radial \((z = 10.5 \text{ mm}, r)\) distributions of \(T_g\), \(T_e\) and \(T_{\text{tail}}\) (left hand axis) and the average absorbed MW power density \(|jE|\), and electric \(|E|\) and reduced electric \(|E|/(N\times a)\) fields (right hand axis) for \(d_{\text{sub}} = 18 \text{ mm}\) and base conditions of \(p\) and \(P\).
Figure S6
Calculated axial (z, $r = 0$) concentration distributions of (a) H($n = 1, 2, 3$) atoms, (b) the dominant charged species and (c) the ground and selected excited states of H$_2$ for $d_{\text{sub}} = 18$ mm and base conditions of p and P. Note that the distributions in (a) and (c) are plotted on a logarithmic scale.
Figure S7

Calculated radial (z = 10.5 mm, r) concentration distributions of (a) H(n = 1, 2, 3) atoms, (b) the dominant charged species and (c) the ground and selected excited states of H₂ for d_{sub} = 18 mm and base conditions of p and P. Note that the distributions in (a) and (c) are plotted on a logarithmic scale.
Figure S8
Comparisons of the calculated column densities (symbols) and measured emission intensities (lines) of (a) H$_2$(G, v = 0) and (b) H$_2$(d, v = 0) molecules for $p = 75$ Torr (red), 150 Torr (black) and 250 Torr (blue), with $P = 1.5$ kW and $d_{\text{sub}} = 32$ mm.
Figure S9

Comparisons of the calculated column densities (symbols) and measured emission intensities (lines) of (a) $\text{H}_2(d, v = 0)$ and (b) $\text{H}(n = 3)$ atoms for $d_{\text{sub}} = 17(18)$ mm (in the experiment (in the modelling), in red) and $d_{\text{sub}} = 32$ mm (black), with $P = 1.5$ kW, $p = 150$ Torr and $d_{\text{wire}} = 0.01”$.