Palaeoenvironmental reconstruction and biostratinomic analysis of the Jurassic Yanliao Lagerstätte in Northeastern China—a case study

Zixiao Yanga, Shengyu Wanga, Qingyi Tiana, Bo Wangb, Manja Hethkec, Maria E. McNamarad, Michael J. Bentone, Xing Xuf, Baoyu Jianga,*

a Center for Research and Education on Biological Evolution and Environments, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

b Nanjing Institute of Geology and Palaeontology, Academia Sinica, 210008 Nanjing, Jiangsu, China

c Institut für Geologische Wissenschaften, Fachbereich Geowissenschaften, Freie Universität Berlin, Malteserstrasse 74–100, D–12249 Berlin, Germany

d School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Ireland.

e School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK.

f Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Academia Sinica, Beijing 100044, China

* Corresponding author. Email: byjiang@nju.edu.cn

ABSTRACT

The Middle–Late Jurassic Yanliao Lagerstätte contains numerous exceptionally preserved fossils of aquatic and land organisms, including salamanders, dinosaurs, pterosaurs and mammaliaforms. Despite extensive study of the diversity and evolutionary implications
of the biota, the palaeoenvironmental setting and taphonomy of the fossils remain poorly
understood. In this study, we reconstruct both the palaeoenvironment of the Daohugou
locality (one of the most famous Yanliao localities), and the biostratinomy of the fossils. We
use high-resolution data from field investigation and excavations to document in detail the
stratigraphic succession, lithofacies, facies associations, and biostratinomic features of the
Lagerstätte. Our results show that frequent volcanic eruptions generated an extensive
volcaniclastic apron and lake(s) in this region. The frequent alternation of thin lacustrine
deposits and thick volcaniclastic apron deposits reflects either that the studied area was
located in the marginal regions of a single lake, where the frequent influx of volcaniclastic
apron material caused substantial fluctuations in lake area and thus the frequent lateral
alternation of the two facies, or that many comparatively short-lived lakes developed on the
volcaniclastic apron. Most terrestrial insects are preserved in the laminated, normally graded
siltstone, claystone and tuff that forms many thin intervals with deposits of graded sandstone,
siltstone and tuff in between. Within each interval the terrestrial insects occur in many
laminae associated with abundant aquatic organisms, but are particularly abundant in some
laminae that directly underlie tuff of fallout origin. Most of these terrestrial insects are
interpreted to have been killed in the area adjacent to the studied palaeolake(s) during
volcanic eruptions. Their carcasses were transported by influxes of fresh volcaniclastic
material, primarily meteoric runoff and possibly minor distal pyroclastic flow into the
palaeolake(s), where they became buried prior to extended decay probably due to a
combination of rapid vertical settling, ash fall and water turbulence.
Keywords: Palaeoenvironment; Taphonomy; Jurassic; Yanliao Biota; NE China
1. Introduction

The Middle to Late Jurassic lacustrine deposits in the region encompassing the confluence of Inner Mongolia, Hebei and Liaoning provinces, northeastern China, preserve numerous exceptionally preserved land and aquatic animal fossils (Fig. 1), including various plants (algae, mosses, lycophytes, sphenophytes, ferns, seed ferns, cycadophytes, ginkgophytes and conifers), invertebrates (bivalves, anostracans, spinicaudatans, arachnids and insects) and vertebrates (fish, salamanders, anurans, squamates, pterosaurs, dinosaurs and mammaliaforms) (Huang et al., 2006; Sullivan et al., 2014; Pott and Jiang, 2017), yielding taxa that represent the earliest examples of their respective clades or reveal key evolutionary transitions (e.g. Gao and Shubin, 2003; Ji et al., 2006; Luo et al., 2007; Xu et al., 2009; Lü et al., 2010; Luo et al., 2011; Xu et al., 2011; Huang et al., 2012; Bi et al., 2014; Cai et al., 2014; Xu et al., 2015). These fossils were originally considered to be members of the Early Cretaceous Jehol Biota (Wang et al., 2000; Yuan, 2000), but subsequently proved to be of Middle–Late Jurassic age; they are currently referred to as the Daohugou Biota (e.g. Zhang, 2002) or part of the Yanliao Biota (e.g. Ren et al., 2002; Zhou et al., 2010; Xu et al., 2016).

This paper follows the latter terminology, as the extent to which the term “Daohugou Biota” is applicable to the strata containing similar biotas outside the Daohugou region is currently debated (Zhou et al., 2010; Huang, 2016; Xu et al., 2016). The Yanliao Biota spans about 10 million years, and is divided into two phases: the Bathonian–Callovian Daohugou phase and the Oxfordian Linglongta phase, named after representative fossil localities (Xu et al., 2016). Fossils from the Yanliao biota are often well articulated and exceptionally preserved. Available evidence indicates that many are autochthonous or paraautochthonous, or
allochthonous with very limited evidence of decay. Examples include (i) densely packed valves of Spinicaudata (so-called clam shrimps) that preserve delicate carapace ornamentation and sometimes soft-tissue remains such as the head, telson, antennae and eggs (Shen et al., 2003; Liao et al., 2017); (ii) Ginkgoales with leaves attached to shoots and with ovule clusters connected to the peduncle (Zhou et al., 2007); (iii) preservation of fragile structures such as filiform antennae, tarsomeres with spines and hairs and abdominal appendages in cicadas (Wang et al., 2013); (iv) preservation of soft tissue features such as body outlines, gill rakers, external gill filaments, caudal fins, eyes, liver, and even intestinal contents in salamanders (Gao et al., 2013); (v) preservation of exquisite integumentary structures including keratinous ungula sheaths, multi-layered wing membrane structures and densely packed melanosomes in pterosaurs (Kellner et al., 2010; Li et al., 2014); (vi) preservation of filamentous, ribbon–like and pennaceous feathers (and their constituent melanosomes) in dinosaurs (Xu and Zhang, 2005; Zhang et al., 2008; Xu et al., 2009; Xu et al., 2011; Li et al., 2014); and (vi) preservation of hair, patagia, and skin in mammaliaforms despite sometimes only partial preservation of the skeleton (Bi et al., 2014; Ji et al., 2006; Luo et al., 2007; Meng et al., 2006). These fossils have contributed significantly to our understanding of Jurassic terrestrial ecosystems, especially in terms of the evolution of paravians, integumentary structures such as feathers and fur and the ecological diversification of mammaliaforms (Xu et al., 2014; Martin et al., 2015). The biota is rapidly emerging as one of the most important Mesozoic Lagerstätten.

Despite extensive research on the biotic diversity and evolutionary significance of the Yanliao biota, the palaeoenvironmental setting is poorly understood (Wang et al., 2009; Liu et
al., 2010; Wang et al., 2013; Na et al., 2015; Huang, 2016; Xu et al., 2016). It is widely
accepted that the fossils are hosted within laminated lacustrine deposits. It is unclear,
however, whether these deposits represent a single lake or several lakes. The terrestrial
members of the biota are considered to have been killed by volcanic activity based on the
extensive distribution of volcanic rocks in the Yanshian sequences (e.g. Liu et al., 2010; Yuan
et al., 2010; Wang et al., 2013), but the biostratinomy of the fossils is poorly understood.

In this study, we present the results of a systematic study of the sedimentology and
palaeoenvironment of the Middle–Late Jurassic sequence at Daohugou (Fig. 1). Our results
reveal key characteristics such as lake origin, depositional model and ecosystem, in addition
to potential environmental factors that influenced exceptional fossil preservation.
Fig. 1. Geological and geographic setting of the studied area. A. Tectonic framework and distribution of the Mesozoic basins in the Yinshan–Yanshan tectonic belt (modified from Meng, 2003 and Y. Zhang et al., 2008); DMF, Dunhua–Mishan fault; TLF, Tan–Lu fault YYF; YQF, Yalvjiang–Qingdao fault; Yilan–Yitong fault. B. Distribution of the Yixian/Jiufotang, Tiaojishan, and Haifanggou formations in a series of northeast-oriented basins (modified from Jiang and Sha, 2006); I, Lingyuan–Sanshijiazi basin; II, Jianchang basin; III, Jinlingsi–Yangshan basin; BY, Beipiao–Yixian fault; CY, Chaoyang–Yaowangmiao fault; GJ, Western Guojiadian Basin fault; HJ, Hartao–Jinzhou fault; TS, Western Tangshenmiao Basin fault; XJ, Xipingpo–Jinxi fault; ZD, Zhangjiayingzi–
Daoerdeng fault; ZZ, Zhulu–Zhongsanjia fault. C–D. Geographic map of the studied area (C) and geological sketch map (D) show the studied outcrops and sections (modified from Liu et al., 2004).

2. Geological Setting

The studied area lies at the easternmost edge of the Yinshan–Yanshan tectonic belt (Davis et al., 1998; Zhang et al., 2008), which extends westward at least 1100 km from China’s east coast to Inner Mongolia along the northern edge of the North China craton (Fig. 1A). This belt is interpreted as having formed under the far-field effects of synchronous convergence of two plates (the Siberian in the north and the palaeo-Pacific in the east) toward the East Asian continent, during the Middle Jurassic to Early Cretaceous (Nie et al., 1990; Yin and Nie, 1996; Ziegler et al., 1996; Zhang et al., 2008). Structures in the western and central parts of the belt have predominantly eastward trends, which switch to northeastward trends in the easternmost part. The most obvious fold structures are synclines (and synforms) filled with Jurassic and Cretaceous strata; these are separated from anticlines with Precambrian rocks at the core by thrust and reverse faults that dip away from syncline hinges (Davis et al., 1998). The Yanliao Biota was discovered in the Jurassic Haifanggou and Tiaojishan formations (or Lanqi Formation in studies earlier than the 1990s) in three of these northeast-trending synclines (and synforms), belonging to the following basins: Lingyuan-Sanshijiazi (localities at Daohugou (including sites at Xigou, Chentaizi and Daohugou village), Zhujiagou and Jiangzhangzi in southeastern Inner Mongolia, and at Wubaiding and Guancaishan in Western Liaoning Province), Jianchang (localities at Mutoudeng (including...
Fanzhangzi and Bawanggou), and Nanshimen in northern Hebei Province) and Jinlingsi–Yangshan (the Daxishan locality in Linglongta Town, Western Liaoning Province) (Fig. 1B) (Wang et al., 1989; Wang et al., 2005; Sullivan et al., 2014; Huang, 2016; Xu et al., 2016).

The Jurassic strata in these basins unconformably overlie the Triassic (or older) strata and unconformably underlie the Lower Cretaceous Yixian and Jiufotang formations that yield the Jehol Biota (Figs. 1B, 1D and 2A). The Jurassic sequence consists of two stratigraphic successions bounded by a regional unconformity. The lower succession comprises the volcanic Xinglonggou Formation and the overlying succession, the coal-bearing Beipiao Formation. The upper succession is composed of the volcanic Haifanggou and Tiaojishan formations and the overlying Tuchengzi Formation (Wang et al., 1989). The geochronological framework of the sequence is constrained by radiometric dating, which indicates that the Xinglonggou, Tiaojishan and Tuchengzi formations are 177 Ma, 166–153 Ma and 154–137 Ma, respectively (Yang and Li, 2008; Xu et al., 2012; Xu et al., 2016).
Fig. 2. A. Stratigraphy (left) of the Mesozoic and the Haifanggou Formation (S1, S2, locations shown in Fig. 1D) in the Daohugou area, and high-resolution sections (right) from the two excavation pits and the Daohugou Palaeontological Fossil Museum (locations shown in Fig. 1D) showing occurrence horizons and amounts of collected terrestrial insects. B. Excavated section in north pit shows that lacustrine deposits (between the lines) directly overlie and underlie crudely bedded tuffs (bottom is on the lower left). C. Close-up view of
the transition from crudely bedded tuff to laminated lake deposits.

The interval that contains the Yanliao Biota in the Daohugou region, the Daohugou Beds, was assigned to the Haifanggou Formation in an early systematic survey of Mesozoic stratigraphy and palaeontology in western Liaoning (Wang et al., 1989). This was supported by evidence from invertebrate and plant fossils (Zhang, 2002; Shen et al., 2003; Huang et al., 2006; Jiang, 2006). The Haifanggou Formation was considered to be coeval with the Jiulongshan Formation in Beijing and Hebei in many previous studies (e.g. Ren et al., 2002; Shen et al., 2003; Huang et al., 2006; Jiang, 2006). The former differs significantly, however, from the typical Jiulongshan Formation in thickness, associated overlying and underlying strata, and position relative to the regional unconformity, as discussed by Bao et al. (1996) and Li et al. (1996). At a regional scale, the Haifanggou Formation disconformably overlies the Beipiao Formation or older strata, and conformably or disconformably underlies the Tiaojishan Formation. It is composed of polymictic conglomerates intercalated with tuffs, coals and sandstones in the lower part, and interbedded with sandstones, mudstones, and locally rhyolitic lavas in the upper part (Wang et al., 1989; Yang et al., 1997). In the studied area, the Haifanggou Formation unconformably overlies Archean granite gneiss or Mesoproterozoic quartz sandstone and conglomerate, and conformably or locally unconformably underlies volcanic breccia, tuffaceous conglomerate and intermediate or basic lava of the Tiaojishan Formation (Figs. 1D and 2A). The local low-angle unconformity between the Haifanggou and Tiaojishan formations (Huang, 2015) probably resulted from intense volcanic activity. Recent radiometric ages of the volcanic rocks overlying fossil-
bearing strata in the Daohugou region include 165–164 Ma (Chen et al., 2004), 159.8 Ma (He et al., 2004) and 164–158 Ma (Liu et al., 2006), indicating a largely Bathonian to Callovian age for the Haifanggou Formation, corresponding to the older Daohugou phase of the Yanliao Biota (Xu et al., 2016).

3. Methods

Two relatively continuous sections were measured (S1 and S2 in Figs. 1D and 2A). Small-scale excavations (about 15–20 m² in area and 3–4 m deep; Figs. 1D and 2) were conducted on two fossiliferous intervals to document, at a sub-centimetre scale, the diversity, abundance, completeness and articulation, and plan-view orientation (Supplementary material Appendix 1) of fossils and the lithology of the host strata. A detailed quantitative palaeobiological analysis of the fossil specimens will be presented elsewhere (Wang et al., in prep.). A total of 216 thin sections of representative lithofacies were prepared for petrographic analysis.

4. Results

4.1 Stratigraphy

The two measured sections (S1 and S2 in Fig. 2A) reveal that the Daohugou Beds at the Daohugou locality consist of three units, in ascending order: (1) greenish grey, massive lapilli tuff-breccia with rare grey, laminated mudstone intercalations; (2) greenish to pinkish grey, crudely bedded to massive tuff with rare intercalations of grey, graded sandstone, siltstone and tuff, grey laminated mudstone and grey to white, laminated to thinly bedded tuff; (3)
greenish to pinkish grey, crudely bedded to massive tuff alternating with grey, laminated to horizontally bedded lacustrine deposits, yielding abundant fossils of insects, clam shrimps, plants and rare vertebrates.

Previous research showed that most Yanliao fossils were recovered from the laminated lacustrine deposits of Unit 3 (Sullivan et al., 2014; Cheng et al., 2015; Luo et al., 2015) (Fig. 2A). Poorly preserved fossils of bivalves, anostracans, clam shrimps, insects and plants have also been reported from rare laminated mudstone intercalations in Unit 1 (Huang et al., 2015).

4.2 Depositional environments

4.2.1 Petrology

The classification of the volcaniclastic rocks in this paper follows Schmid (1981).

Sediments of the Daohugou Beds are mostly volcaniclastics, consisting mainly of angular crystals of quartz and vitric shards, with minor plagioclase, biotite and pumice, and rare scoria and juvenile lithics in a vitric or argillaceous matrix (Figs. 3 and 4). Vitric grains are usually blocky, platy or moss-like in shape exhibiting low vesicularity, with minor Y-shaped bobble wall shards, and fine- to extremely fine-grained (mostly 20–60 μm wide) (Figs. 3B–C and 4B–D). The dominant angular volcaniclasts and their fine grain size, and morphology of the vitric grains suggest that the eruptions were mainly phreatomagmatic (Heiken, 1972; Self, 1983; Fisher and Schmincke, 2012).
Fig. 3. Sedimentary texture and structure of crudely bedded to massive tuff and breccia-
bearing lapilli tuff (Lithofacies 1). A. Plant fragments (p) with preferred orientation, mudstone rip-ups (m), and juvenile lapilli (j); the coin is 19 mm in diameter. B–C. (B) Y-shaped and (C) blocky, platy vitric shards in a moss-like matrix; note the separated vesicles in vitric grains (arrows in C); plane-polarized photomicrographs. D. Crudely parallel to cross bedding (arrow); the pencil is 15 cm long. E–F. Migrated channel-fill bedding (E) and close-up of the scoured underlying non-laminated mudstone (F, Lithofacies 5); note the rip-ups (arrow) derived from the red non-laminated mudstone; the coin is 19 mm in diameter. G. Large-scale slump of lacustrine deposits (dashed line) within the tuff; note the undisturbed lacustrine deposits underlying the tuff; the round signs are 17 cm in diameter. H. Outsized accidental boulder of mudstone (dashed line) within lapilli tuff-breccia; the hammer is 28 cm long.
Fig. 4. Sedimentary texture and structure of graded sandstone, siltstone and tuff (Lithofacies 2) and laminated, normally graded siltstone, claystone and tuff (Lithofacies 3). A. A polished section from level Π (stratigraphic position shown in Fig. 6A) shows alternation of the two lithofacies (L2 and L3) with intercalation of tuff lamina (t, Lithofacies 6). B–C. Close-up view of the thin section marked in A shows the laminated, normally graded siltstone,
claystone and tuff is mainly composed of vitric and crystal grains. D. Close-up view of the
rectangle are in B show vitric grains are locally aligned parallel to margins of larger clasts. E–
F. Close-up views of the thin section marked in A show normal grading (E) and quenching
(F) structures in the graded sandstone, siltstone and tuff. B, D–F, plane-polarized; C, cross-
polarized.

The volcaniclastics underwent varying degrees of alteration. Devitrification is
particularly common, indicated by fuzzy microcrystalline textures at, and close to, the
margins of vitric grains (Figs. 3B–C and 4B–D) (Lofgren, 1971; Streck and Grunder, 1995).
X-ray diffraction (XRD) analysis (Supplementary material Appendix 1–2) on the fossil-
bearing mudstone from Unit 3 reveals a mean composition including 21.5% montmorillonite
and 16.5% illite, reflecting montmorillonitization and subsequent illitization of vitric grains
(Fisher and Schmincke, 2012; Huff, 2016), and 22.5% vermiculite, probably weathered from
biotite (Pozzuoli et al., 1992).

Pyroclastic flows generated subaerially but deposited subaqueously resemble flows
generated by re-sedimentation of fresh volcanic materials in both sediment composition and
flow behaviour and thus may produce almost identical deposits, especially for low-
temperature and distal pyroclastic flows (Whitham, 1989; Mandeville et al., 1996; Fisher and
Schmincke, 2012). The Daohugou volcaniclastics may thus include both pyroclastic and
epiclastic deposits, but we categorize these sediments together regardless their origins, in two
lithofacies, graded sandstone, siltstone and tuff, and laminated, normally graded siltstone,
claystone and tuff, based solely on the common mechanism of sediment transport, i.e.
subaqueous density flow and suspension.

4.2.2 Lithofacies

Six lithofacies are recognized here in the Daohugou Beds (Table 1).

<table>
<thead>
<tr>
<th>Lithofacies</th>
<th>Description</th>
<th>Interpretation</th>
<th>Volcaniclastic apron</th>
<th>Fan delta</th>
<th>Lake floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Crudely bedded to massive tuff and breccia-bearing lapilli tuff</td>
<td>Crudely parallel–, cross–, channel–fill bedded or massive; poorly sorted; ungraded or normally graded; oriented carbonized plant debris; up to 4 m thick</td>
<td>Pyroclastic flow</td>
<td>D</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>2 Graded sandstone, siltstone and tuff</td>
<td>Parallel– or cross–bedded to laminated; normally graded; soft sediment deformation; preferred orientation of plant debris; non– to moderately fossiliferous; millimetres to centimetres thick</td>
<td>Transformed subaqueous pyroclastic flow and hyperpycnal flow</td>
<td>D</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>3 Laminated, normally graded siltstone, claystone and tuff</td>
<td>Planar–laminated; moderately to well sorted; normally graded; small–scale syndepositional deformation; highly fossiliferous; laminae 100 μm–3 mm thick</td>
<td>Suspended–load–dominated hyperpycnal flow</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>4 Laminated, rhythmic siltstone and claystone</td>
<td>Planar–laminated; moderately to well sorted; normally graded or structureless; couplets of clay–poor and clay–rich laminae; moderately to highly fossiliferous; laminae 30–700 μm thick</td>
<td>Suspension and distal turbidity current</td>
<td>P</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>5 Non-laminated mudstone</td>
<td>Stratified; moderately to poorly sorted; normally graded or structureless; non– to moderately fossiliferous; centimetres to decimetres thick</td>
<td>Suspension and distal turbidity current</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Laminated to thinly bedded tuff</td>
<td>Stratified to laminated; moderately to well sorted; normally graded; non– to moderately fossiliferous; millimetres to decimetres thick</td>
<td>Subaqueous ash fall</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

*D = Dominant; A = Associated; P = Present.

Table 1 Lithofacies and facies associations of the Daohugou Beds

Lithofacies 1: Crudely bedded to massive tuff and breccia-bearing lapilli tuff. This
lithofacies can be massive or crudely bedded, the latter including parallel-, cross-, and channel-fill bedding, and range in thickness from several decimetres to nearly four metres (Fig. 3). The sediments are poorly sorted and occasionally normally graded. Carbonized land plant fragments (up to 0.5 m long) are common (Fig. 3A). Elongated clasts and plant fragments are typically aligned parallel to bedding and often show preferred orientation (Fig. 3A). Vesicles are present as subspherical voids less than 1 mm wide. Irregularly-shaped rip-up clasts of mudstone (cm to dm long) are occasional features at the bases of beds (Fig. 3A, E–F). Accidental lithics (typically 10–30 mm, maximum 2.7 m wide), consist mainly of tuff, granite and mudstone (Fig. 3H) and are rich in lapilli tuff-breccia from Unit 1 (Fig. 2A).

The crude stratification, poor sorting, and preferred orientation of carbonized plant fragments and elongate clasts are characteristic of pyroclastic flow deposits (Buesch, 1992; Branney and Kokelaar, 2002; Fisher and Schmincke, 2012). The carbonized plant fragments were probably engulfed when the flows passed over vegetation, as in modern pyroclastic flows (Hudspith et al., 2010). The presence of mudstone rip-ups and channel-fill bedding in the basal part of some tuffs indicate the initial flows may have been subaqueous and scoured unconsolidated lacustrine deposits (Whitham, 1989; Mandeville et al., 1996), whereas the absence of evidence for subaqueous transport in the overlying tuffs, such as lamination, sorting, grading, or presence of aquatic fossils, could reflect a shift to subaerial deposition of the subsequent flows. The presence of out-sized boulders of country rocks in Unit 1 suggests the deposits were formed proximal to phreatomagmatic eruptions accompanied by syneruption landslides, lahars or vent-clearing explosions (Belousov and Belousova, 2001; Hungr et al., 2001; Manville et al., 2009).
Lithofacies 2: Graded sandstone, siltstone and tuff. This lithofacies consists of horizontal-, wavy- and cross-stratified, moderately sorted, normally graded sandstone, sandy siltstone and siltstone (Figs. 4A, 4E–F and 6). Strata are usually 0.35–300 mm thick, with a sharp, sometimes erosive base, uneven top and lateral variations in thickness (Figs. 4A and 6). Clasts can exhibit a jigsaw fracture pattern (Fig. 4F). Plant debris is common, as are syndepositional deformational structures, such as load casts, rip-up clasts, convolute bedding and slump structures (Figs. 3G, 4A and 6).

This lithofacies resembles flood deposits generated by hyperpycnal flows (e.g. Kassem and Imran, 2001; Mulder and Alexander, 2001; Alexander and Mulder, 2002; Chapron et al., 2007). The dominant fresh volcaniclastic component of the sediments suggests that the flows represent either influxes of surface runoff carrying recently erupted tephra or distal subaqueous deposits of pyroclastic flows (Whitham, 1989; Mandeville et al., 1996; Mulder and Alexander, 2001; Fisher and Schmincke, 2012). Part of the tephra may have remained sufficiently hot at the site of deposition to produce quenching structures (Whitham, 1989; Büttner et al., 1999; Fisher and Schmincke, 2012).

Lithofacies 3: Laminated, normally graded siltstone, claystone and tuff. This lithofacies occurs mostly in the lower part of Unit 3 (Fig. 2A). It is moderately to well-sorted, and has normally graded laminae with sharp non-erosive bases and uneven tops (Figs. 4A–C and 6). The laminae usually are 100 μm–3 mm thick, but thickness can vary laterally (Fig. 6D). Millimetre-scale soft-sediment deformation structures are common, including wavy lamination and microfaults which locally penetrated and distorted a limited number of laminae (Figs. 4A and 6). Vitric chips locally aligned parallel to the margins of larger clasts...
represent possible welding structures (Fig. 4B–D).

The lithofacies bears characteristics of suspended-load-dominated hyperpycnal flow deposits, such as normal grading, sharp but non-erosive base and uneven top, common small-scale syndepositional deformation structures, and closely associated deposits of graded sandstone, siltstone and tuff (Sturm and Matter, 1978; Anderson et al., 1985; Mulder and Chapron, 2011). The flow was very low-energy, unable to erode the lake floor, and deposited sediments from buoyant plumes sympathetic to lake-floor topography (Chapron et al., 2007; Ducassou et al., 2008). The occasional welding structure suggests that part of the tephra may have been remained sufficiently hot at the site of deposition (Whitham, 1989; Fisher and Schmincke, 2012).

Lithofacies 4: Laminated, rhythmic siltstone and claystone. This lithofacies is moderately to well-sorted, and consists of laterally persistent couplets of clay-poor (dark) and clay-rich (light) laminae (ca. 30–700 μm thick) with clear bimodal grain size distribution (Fig. 5). Locally the clay-rich laminae exhibit a brown colour (Fig. 5B). This lithofacies occurs as thin intercalations in Lithofacies 3, in particular, at level E from the north pit, and levels 2, 13 and 16 from the south pit.

The lithofacies resulted from predominantly distal turbidity flow and suspension settling (Sturm and Matter, 1978; Anderson et al., 1985; Nelson et al., 1986; Smith, 1986). The couplet laminae probably reflect discontinuous accumulation of the biogenic and fine terrigeneous particles, resembling couplets produced in modern seasonally stratified water columns (Sturm and Matter, 1978; Sturm, 1979).
Fig. 5. Sedimentary texture and structure of laminated, rhythmic siltstone and claystone. A. Cross-polarized photomicrograph shows regular couplets of clay-rich (dark) and clay-poor (light) laminae interrupted by tuff laminae (t, Lithofacies 6); from a horizon near south pit. B. Plane-polarized photomicrograph shows brown-coloured clay-rich couplet laminae; from level 16 in south pit.

Lithofacies 5: Non-laminated mudstone. This lithofacies occurs in the upper part of Unit 3 (Fig. 2A). It occurs as poorly to moderately sorted, normally graded or internally structureless beds 35 mm to ca. 0.8 m thick (Fig. 3E–F).

This lithofacies probably represents distal turbidity flow and suspension deposits (Chun and Chough, 1995; Larsen and Crossey, 1996). The lack of internal structure may reflect extensive bioturbation or rapid deposition of suspended sediment (Sturm, 1979; Reineck and Singh, 2012).

Lithofacies 6: Laminated to thinly bedded tuff. This lithofacies occurs as frequent, irregular intercalations of laminae or minor thin beds (200 μm–200 mm thick) in Lithofacies 2–4 (Figs. 5A and 6C). It is laterally persistent with a sharp base and gradual upper contact, fine to extremely fine-grained, and normally graded with a vitric-rich top (Figs. 5A and 6C).
Small plant fragments are common.

This lithofacies is interpreted as subaqueous ash fall deposits based on the dominance of crystal and vitric particles, laterally persistence, associated subaqueous deposits, sharp basal contact and gradual upper contact and normal grading (Niem, 1977; Allen and Cas, 1998; Fisher and Schmincke, 2012).

4.2.3 Facies associations

The six lithofacies form three facies associations that characterise distinct palaeoenvironments: i.e. volcaniclastic apron, fan delta and lake floor (Table 1).

The volcaniclastic apron comprises Lithofacies 1, i.e., pyroclastic flow deposits associated with proximal fallout and eruption-related lahar deposits (Smith, 1988, 1991; Riggs and Busby-Spera, 1990). The presence of outsized boulders of mudstone in the basal part of the sequence reflects initial vent-clearing explosions that probably occurred when rising magma interacted with water-saturated sediments (Wilson and Walker, 1985; Belousov and Belousova, 2001).

The fan delta is characterized by Lithofacies 2 associated with Lithofacies 1, 3 and 6, with minor Lithofacies 4 and 5. The closely associated deposits of subaerial pyroclastic flow, subaqueous ash fall, hyperpycnal flow and suspension reflect a fan delta environment subject to significant influx of fresh volcaniclastic sediments (Nemec and Steel, 1988; Whitham, 1989; Horton and Schmitt, 1996; Mandeville et al., 1996).

The lake floor comprises mainly Lithofacies 3 associated with Lithofacies 4 and 6, with minor Lithofacies 2. The dominance of distal turbidity current and suspension deposits and
abundant aquatic fossils suggest a lake floor environment, typical of the low-energy central basins of temperate lakes (Sturm and Matter, 1978; Nelson et al., 1986; Reineck and Singh, 2012), based on the dominance of sediments formed by hyperpycnal flow. Frequent intercalations of tuff laminae or thin beds indicate that frequent volcanic eruptions occurred in the area.

4.3 Community composition and fossil preservation

Most fossils are preserved in laminated mudstone (Lithofacies 3 and 4), although rare aquatic fossils, especially clam shrimps, also occur scattered in Lithofacies 2, 5 and 6, and occasionally in Lithofacies 1 (Figs. 2A and 6). With rare exceptions (clam shrimps preserved in three-dimensions in Lithofacies 2 and 5), most fossils are preserved in two dimensions with their ventrodorsal or lateral surface parallel to bedding.
Fig. 6. Occurrences and abundance of terrestrial insects. A–B. Polished sections show stratigraphic secessions and number of uncovered terrestrial insects within the fossiliferous
levels Π (A) and C (B); 5 and 4 specimens, respectively from Π and C levels (see Fig. 2A) were not included due to uncertainty of their exact occurrence horizons. C–E. Cross-polarized photomicrographs of the thin sections from the horizons marked in A show detailed horizons and number of uncovered terrestrial insects.

Benthic aquatic organisms are abundant, but of low diversity. Only four species were identified (Wang et al., in prep.): the clam shrimp *Triglypta haifanggouensis*, recently reviewed by Liao et al. (2017), larvae of the mayfly *Fuyous gregarious* and *Shantous lacustris*, and the water boatman *Daohugocorixa vulcanica*. Clam shrimps are the dominant group of benthic aquatics and occur in all fossiliferous horizons with a density of up to 14487/m² (extrapolated from measurement of an 81.45 cm² surface). Mayfly larvae and water boatmen are less common. In the 35 quantitatively studied horizons, mayfly larvae occur in 25 horizons with a density of up to 421/m² (extrapolated from measurement of a 284.74 cm² surface) and water boatmen exist in 21 horizons with a density of up to 251/m² (extrapolated from measurement of a 636.9 cm² surface) (Wang et al., in prep.). Most aquatic fossils are articulated with little fragmentation and typically retain delicate details such as carapace ornamentation (clam shrimps), tergalius and cerci (mayfly larvae), and setae (water boatmen).

Terrestrial animals are represented exclusively by insects and are rare in the south pit (only 14 specimens were recovered in four horizons; Fig. 2A). In contrast, insects are abundant in the north pit, in which 380 specimens representing 15 orders and 57 families were collected from 11 levels (Fig. 2A). Among these, 54.9% of specimens are edaphic taxa, 37.3% sylvan, and 7.8% alpine (Wang et al., in prep.). Most terrestrial insects are preserved in
Lithofacies 3 that forms many thin intervals (ca. 7–28 mm thick) with deposits of lithofacies 2 in between (Figs. 2, 4 and 6). Within each interval the insects occur in many laminae associated with abundant aquatic organisms, but are particularly abundant in some laminae that directly underlie tuff of fallout origin (Fig. 6). The associated aquatic fossils sometimes show preferred plan-view orientation (e.g. horizons B2, C1, F1 and I3, Supplementary material Appendix 2). Most terrestrial insects are well preserved: over 50% of the specimens are complete and articulated, and various fine anatomical details are preserved (e.g., cerci, filiform antennae, tiny spines and setae) (Wang et al., in prep.).

Similarly, terrestrial plants are rare in the south pit (only five specimens were found) but more abundant in the north pit (114 specimens were recovered from the 11 fossiliferous levels mentioned above (Fig. 2A)). The plants include ferns, caytonialeans, bennettites, ginkgophytes, czekanowskialeans and conifers. Among these, tall-growing gymnosperms are dominant, preserving entire or large fragments of leaves and organs, while water- or moisture-bound groups such as ferns are represented by only rare fragmentary remains (Pott and Jiang, 2017).

5. Discussion

5.1 Depositional model

In the studied area, the lake floor and fan delta deposits are very thin, ranging from ca. 0.2 to 1 m thick, while the volcaniclastic apron deposits, which sandwiched successive lacustrine intervals, are often much thicker (up to at least 4.4 m thick) (Fig. 2A; e.g. levels 11–13 in Museum section). This distribution of lacustrine and volcaniclastic apron deposits
indicates that the lacustrine sediments formed on, and were derived mainly from, volcaniclastic apron deposits that directly underlie and overlie them (Figs. 2 and 7).

Fig. 7. A–B. Depositional model of the Daohugou beds in the studied area (A), and biostratinomic model of the land remains (B). C. Illustrative sketch (not for scale) of the evolution of the Daohugou lake(s): I–II, waterbodies gradually accumulated on the volcaniclastic apron, where the Daohugou ecosystem was established and developed; II–III, during syneruption periods, volcaniclastic influxes repeatedly devastated the ecosystem and buried the remains, and may even have destroyed the lake completely; keys as in Figs. 2 and 3. Some of the animal figures were revised from reconstructions by Rongshan Li, Nobu Tamura and April M. Isch.
There are two scenarios that could account for this frequent alternation of thin lacustrine deposits and thick volcaniclastic apron deposits. The studied section could represent deposition in marginal regions of a single lake, where the frequent influxes of volcaniclastic apron material caused substantial fluctuations in lake area and resulted in the frequent and abrupt lateral alternation of the two facies. The lake must have been bounded by steep margins with restricted development of marginal facies in littoral and shallow-water zones, at least at the studied sites, because there is no evidence for typical shallow-water wave activity such as wave-formed ripples or cross-stratification. Meanwhile the volcaniclastic influxes, including remobilized sediments on the marginal slope, may have frequently disturbed the underlying lacustrine deposits and formed the large mudstone rip-ups and slump structure (Figs. 3A, 3E–G and 6).

Alternatively, many comparatively short-lived lakes could have developed on the volcaniclastic apron in the studied area, as commonly seen in modern analogues (Anderson et al., 1985; Blair, 1987a; Manville et al., 2001; Dale et al., 2005; Christenson et al., 2015). These lakes may have been filled up or breached, and then covered by volcaniclastic apron sediments arising from subsequent eruptions. The extensively disturbed lacustrine deposits (Figs. 3A, 3E–G and 6), thus may reflect the process of filling up or breaching of the lakes, similar to the final lake-fill sequence in the Eocene Challis volcanic field, where extensive pyroclastic deposits filled a ca. 20 m deep intermontane lake (Palmer and Shawkey, 1997, 2001). The fine-textured tephra from the top of the volcaniclastic apron deposits formed a water-tight surface crust after wetting (Dale et al., 2005), upon which another cycle of lake
30 sediments accumulated (Fig. 7C).

It remains unclear which scenario applies here given the uncertainty about the basin structure and lake topography. Nonetheless, in either case, the hydrological regime clearly changed frequently and rapidly at the studied sites, causing the repeated and abrupt shift from volcaniclastic apron deposits to lacustrine deposits. This may be ascribed to damming of the drainage network by the emplacement of volcanic materials, as their modern and recent counterparts (Scott et al., 1996; Simon, 1999; Palmer and Shawkey, 1997, 2001). Active earthquakes and fault movements in Daohugou area associated with volcanism or tectonics (Liu et al., 2004; Zhang et al., 2008; Huang, 2015) may also have created areas of low topography, disrupting groundwater and surface-water systems (Blair, 1987b; Palmer and Shawkey, 1997, 2001).

5.2 Biostratinomic model

The high abundance of aquatic taxa in the lacustrine deposits reflects a combination of high population densities and background accumulation of aquatic animals (time averaging), especially those embedded in the laminated, rhythmic siltstone and claystone (Lithofacies 4). In contrast, repeated association of high concentrations of terrestrial insects of different niches and various ontogenetic stages (Liu et al., 2010), suggests repeated mass mortality events in the region. The dominant fresh volcaniclastic component of the host sediments and very limited decay of the carcasses before burial (Martínez–Delclòs and Martinell, 1993; Duncan et al., 2003; Wang et al., 2013) suggest that the mass mortality events occurred during, and were probably associated with volcanic eruptions, such as those resulting from modern
eruptions (Baxter, 1990; Dale et al., 2005; Christenson et al., 2015).

The close association of the land animal fossil-bearing laminae (Lithofacies 3) with graded sandstone, siltstone and tuff (Lithofacies 2), indicates that these land animal remains were probably transported into the studied lake(s) by influxes of fresh volcaniclastic material. Transport of terrestrial vertebrates with complete skeletons and extensive soft tissue preservation into lacustrine environments has been linked to high-temperature pyroclastic flow (Jiang et al., 2014). Evidence for hot emplacement in Lithofacies 2 and 3, however, is scarce, suggesting mainly runoff during high discharge periods associated with eruptions and possibly minor distal low-temperature pyroclastic flows (Sigurdsson et al., 1982); such flows carried newly erupted tephra and triggered subaqueous density flows. Organisms in littoral habitats may have been incorporated into the lake(s) postmortem.

As commonly observed in many taphonomic experiments, most freshly killed insects remain floating on the water surface in a still water body until significant decay occurs (e.g. Martínez-Delclòs and Martinell, 1993; Duncan et al., 2003; Wang et al., 2013). Indeed, the Daohugou fossils probably drifted far offshore (Fig. 7B), as indicated by the accompanying plant fossil assemblage including mostly large land plants with minor low-growing water-related plants (Pott and Jiang, 2017). The abundance and high fidelity of preservation of insects, however, probably reflects minimal floatation prior to burial. Such rapid sinking may be attributed to turbulent water caused by wind or continuing subaqueous density flow (Martínez-Delclòs and Martinell, 1993), but this conflicts with our evidence that the laminae hosting terrestrial insect fossils (Lithofacies 3) mostly resulted from very low-energy flows dominated by suspension processes. Rather, these thin fossiliferous intervals may reflect
repeated processes of rapid settling of fine-grained sediment particles and the floating
remains, by convective sedimentation. In other words, successive reconcentrations of
overflow or concentrations of ash fall in the surface water triggered fast-descending
convective plumes, forming vertical gravity currents that wrapped the remains, and eventually
reached the lake floor and generated the very low-energy hyperpycnal flows (Sturm and
Matter, 1978; Carey, 1997; Parsons et al., 2001; Ducassou et al., 2008; Davarpanah and
Wells, 2016) (Fig. 7B). This process may result in sedimentation rates one to three orders of
magnitude greater than the Stokes settling velocity (Carey, 1997; Davarpanah and Wells,
2016), and thus probably timely sealed the remains and protected them from further decay.

In addition, the particularly fossiliferous laminae directly underlying tuff laminae (Fig.
6A and C) may indicate that, although ash fall may not be concentrated enough to trigger
convective sedimentation, it could also cause rapid sinking and burial by simply adding
weight to the remains (Tian et al., in prep.).

5.3 Palaeoenvironmental implications

The stratigraphic succession shows that intense volcanic eruptions produced extensive
volcaniclastic apron deposits in the studied area. Lake(s) developed on the volcaniclastic
apron and were subject to frequent influxes of voluminous volcaniclastic sediments (Fig. 7).
The aquatic ecosystem of the lake(s) resembled that of modern short-lived waterbodies,
including a low-diversity aquatic fauna and high density of monospecific assemblages,
dominated by crustaceans and pond-type salamanders (Vannier et al., 2003; Liu et al., 2010;
Sullivan et al., 2014). In particular, clam shrimps yield dormant eggs that may rapidly hatch
after several years (to decades) of drought (Dumont and Negrea, 2002) or without prior desiccation (Bishop, 1967; Hethke et al., submitted). Hence, they disperse through water-, animal- and wind transportation (Tasch, 1969; Webb, 1979; Frank, 1988), and might have easily endured frequent collapses of the lacustrine ecosystem caused by volcanic eruptions. Their successful dispersal strategies mean that clam shrimps would have been able to rapidly colonize newly-built aquatic niches. Ephemerid nymphs and water boatmen were less abundant, and they probably colonized the new post-eruption lake habitats by migrating from nearby aquatic habitats (Batzer and Wissinger, 1996). However the longevity of the lake(s) remains uncertain as ecological comparison between these benthic aquatic taxa of the Haifanggou Formation and their modern relatives is inconclusive. Although clam shrimp population palaeoecology has often been interpreted based on an analogy with extant “shallow and temporary” habitats (e.g., Webb, 1979; Frank, 1988; Vannier et al., 2003; Olempska, 2004), their Mesozoic analogues clearly occupied a much wider ecological space (Olsen, 2016; Hethke et al., submitted). In addition, modern Corixidae can be early colonizers of temporary waters, but many species frequently appear in permanent ponds and lakes as well as streams (e.g. Brown, 1951; Jansson and Reavell, 1999). Further, mayfly nymphs occur in all sorts of water bodies, including shallow areas of deep permanent lakes (e.g. Lyman, 1943; Brittain and Sartori, 2009). The consistently low-diversity associations of clam shrimps, water boatmen and mayfly larvae might thus indicate small regional species richness and high disturbance in connected habitats (Chase, 2003); alternatively, they may reflect a lack of hydrological connectivity.

The presence of highlands surrounding the lake(s) is supported by extensive fan-delta
deposits and the preservation of alpine insects and upland plants in the lacustrine deposits (Liu et al., 2010; Na et al., 2015; Na et al., 2017; Pott and Jiang, 2017). The relatively high abundance of land plant debris in pyroclastic flow deposits and the paucity of epiclasts derived from weathering suggest that the region adjacent to the lake(s) was well vegetated. This is consistent with the inferred warm and humid climate reflected by the Yanliao flora (Liu et al., 2010; Na et al., 2015; Na et al., 2017; Pott and Jiang, 2017).

6. Conclusions

Six lithofacies are recognized in the Daohugou Beds, which form three facies associations in space and time, i.e. volcaniclastic apron, fan delta and lake floor. The stratigraphic succession shows that intense volcanic eruptions resulted in an extensive volcaniclastic apron and lake(s) in the studied area. Thin lacustrine deposits frequently alternated with thick volcaniclastic apron deposits. This reflects either that the studied area was located in marginal regions of a single lake, where the frequent influx of volcaniclastic apron material caused substantial fluctuations in lake area and thus the frequent lateral alternation of the two facies, or that many comparatively short-lived lakes developed on the volcaniclastic apron. Most terrestrial insects are preserved in the laminated, normally graded siltstone, claystone and tuff that forms many thin intervals with deposits of graded sandstone, siltstone and tuff in between. Within each interval the terrestrial insects occur in many laminae associated with abundant aquatic organisms, but are particularly abundant in some laminae that directly underlie tuff of fallout origin. Most of these terrestrial insects are interpreted to have been killed during volcanic eruptions. Their carcasses were dropped or
transported by influxes of fresh volcaniclastic material, mostly runoff and possibly minor
distal pyroclastic flow into the studied lake(s), where they became rapidly buried prior to
extended decay probably due to a combination of rapid vertical settling, ash fall and water
turbulence.

Acknowledgements

The authors thank Qi Zhang, He Wang, Miao Ge, and personnel of the Daohugou
National Geopark for their kind support in the field. We are also deeply grateful to Dr.
Christian Pott for identifying the plant fossils we collected, to Prof. Franz T. Fürsich, Prof.
Frank Riedel and Prof. Volker Lorenz for constructive discussion and suggestions, and to
Yingying Zhao for her great help with the drawings. This research was financially supported
by the National Science Foundation of China (41672010; 41688103; 41572010) and by a
European Research Council Starting Grant H2020–2014–ERC–StG–637698–ANICOLEVO
awarded to MMN.

Data availability

Supplementary materials to this article can be found in the online version of the paper.

References

Allen, S., Cas, R., 1998. Rhyolitic fallout and pyroclastic density current deposits from a

Ducassou E., Mulder T., Migeon S., et al., 2008. Nile floods recorded in deep Mediterranean

than extant members of the group.

Meng, Q.-R., 2003. What drove late Mesozoic extension of the northern China-Mongolia...

Jurassic–Cretaceous transition. Palaeoworld 21, 222–234.

Yin, A., Nie, S., 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring
regions. World and Regional Geology 1, 442–485.

Appendix 1. Supplementary methods

1. X-ray diffraction analysis

Two specimens of insect-bearing laminated mudstone were pulverized without cross contamination before XRD analysis. The prepared samples were then analyzed for mineralogy by XRD using Rigaku, Ultima IV with D/teX Ultra, at the Institute of Soil Science, Chinese Academy of Science.

2. Plan-view orientation measurement

Plan-view orientations of the aquatic insects Fuyous gregarious, Shantous lacustris, and Daohugocorixa vulcanica were obtained from nine horizons (A1, B1, B2, C1, E2, F1, I1, I3, I4, Fig. 2A) by subdividing a circle into 12 segments and counting the orientation of each individual. Two individuals whose heads point in opposite directions are treated as showing the same orientation. Hence, the segments 7–12 were mirrored, and only six directions (0–180°) remained to test for preferred orientations using Rayleigh’s test and the Chi-square test (Hethke et al., submitted). Rayleigh’s test is based on data drawn from a population with a von Mises distribution (Davis, 1986).

Rayleigh’s test has the following null and alternative hypotheses:

\[H_0: \text{the directions of aquatic insects are uniformly distributed} \]
\[H_1: \text{there is a single preferred direction} \]

Similarly, the null and alternative hypotheses of Chi-square test are:

\[H_0: \text{the directions of aquatic insects are uniformly distributed} \]
H_1: the directions of aquatic insects are not uniformly distributed

These two tests are used together to test for preferred orientations using the scheme of Hammer and Harper (2006).
References

Davis, J., 1986, Statistics and Data Analysis in Geology, John Wiley & Sons Canada, Ltd.

Appendix 2. Supplementary results

1. X-ray diffraction (XRD) analysis

<table>
<thead>
<tr>
<th></th>
<th>Montmorillonite</th>
<th>Vermiculite</th>
<th>Illite</th>
<th>Aluminite</th>
<th>Quartz</th>
<th>Feldspar</th>
<th>Dolomite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>24%</td>
<td>26%</td>
<td>22%</td>
<td>0%</td>
<td>14%</td>
<td>12%</td>
<td>2%</td>
</tr>
<tr>
<td>Sample 2</td>
<td>19%</td>
<td>19%</td>
<td>11%</td>
<td>14%</td>
<td>17%</td>
<td>19%</td>
<td>1%</td>
</tr>
<tr>
<td>Mean</td>
<td>21.5%</td>
<td>22.5%</td>
<td>16.5%</td>
<td>7%</td>
<td>15.5%</td>
<td>15.5%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Table 1 XRD analysis of the fossil-bearing mudstone from Unit 3.

2. Plan-view orientation

<table>
<thead>
<tr>
<th>Horizons</th>
<th>n</th>
<th>Mean</th>
<th>R</th>
<th>P (Rand)</th>
<th>Chi²</th>
<th>P (Rand)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>16</td>
<td>83.05</td>
<td>0.2253</td>
<td>0.45</td>
<td>6.5</td>
<td>0.26</td>
</tr>
<tr>
<td>B1</td>
<td>16</td>
<td>96.95</td>
<td>0.2253</td>
<td>0.45</td>
<td>5</td>
<td>0.42</td>
</tr>
<tr>
<td>B2</td>
<td>77</td>
<td>27.64</td>
<td>0.1368</td>
<td>0.24</td>
<td>39.96</td>
<td>1.52E-07</td>
</tr>
<tr>
<td>C1</td>
<td>103</td>
<td>68.74</td>
<td>0.112</td>
<td>0.28</td>
<td>33.49</td>
<td>3.01E-06</td>
</tr>
<tr>
<td>E2</td>
<td>13</td>
<td>45</td>
<td>0.2665</td>
<td>0.41</td>
<td>8.69</td>
<td>0.122</td>
</tr>
<tr>
<td>F1</td>
<td>27</td>
<td>83.05</td>
<td>0.1335</td>
<td>0.62</td>
<td>16.33</td>
<td>0.006</td>
</tr>
<tr>
<td>I1</td>
<td>17</td>
<td>60</td>
<td>0.3529</td>
<td>0.12</td>
<td>6.65</td>
<td>0.25</td>
</tr>
<tr>
<td>I3</td>
<td>110</td>
<td>86.39</td>
<td>0.1879</td>
<td>0.02</td>
<td>26.58</td>
<td>6.88E-05</td>
</tr>
<tr>
<td>I4</td>
<td>24</td>
<td>80.45</td>
<td>0.1102</td>
<td>0.75</td>
<td>10</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Table 2 Test results (Rayleigh and Chi-square) based on directional measurements of aquatic insects in nine horizons (locations shown in Fig. 2A).
Based on the results of the Chi-square test, aquatic insects of horizons B2, C1, F1 and I3 exhibit preferred orientations. The null hypothesis of random orientation can be rejected at a significance level of 1%. Among these four horizons, Rayleigh’s test further indicates a single preferred orientation in I3 at 5% significance level, while the null hypothesis could not be rejected for B2, C1, and F1, implying two or more preferred orientations in the respective horizons (Appendix 2, Table 2).