
Peer reviewed version

Link to published version (if available):
10.1016/S1474-4422(19)30020-1

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(19)30020-1/fulltext. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Primum non nocere: a call for balance when reporting on chronic traumatic encephalopathy

Stewart, W1,2, Allinson, K3, Al-Sarraj, S4, Bachmeir, C5,6,7, Barlow, K8, Belli, A9, Burns, M10, Carson, A11, Crawford, F5,6,12, Dams-O’Connor, K13, Diaz-Arrastia, R14, Dixon, CE15,16, Edlow, BL17,18, Ferguson, S5,6,12, Fischl, B18, Folkerth, RD19, Gentleman, S20, Giza, CC21,22, Grady, MS23, Helmy, A24, Herceg, M25,26, Holton, JL27, Howell, D28,29, Hutchinson, P24, Iacono, D30,31, Iglesias, JE32,33, Ikonomovic, MD34, Johnson, VE23, Keene, CD35, Kofler, JK36, Koliatsos, V37,38, Lee, EB39, Levin, H40, Lifshitz, J41,42,43, Ling, H27, Loane, DJ44,45,46,47, Love, S48, Maas, AIR49, Marklund, N50, Master, CL51,52, McElvenny, DM53, Meaney, DF54, Menon, DK55,56, Montine, TJ57, Mouzon, B5,6,12, Mufson, EJ58, Ojo, JO5,6,12, Prins, M15,16, Revesz, T27, Ritchie, CW59, Smith, C60,61, Sylvester, R62, Tang, CY63, Trojanowski, JQ64,65,66, Urankar, K48, Vink, R67, Wellington, C68, Wilde, EA69,70, Wilson, L71, Yeates, K72, Smith, DH23

1Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK
2Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
3Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
4The Institute of Psychiatry Psychology and Neurosciences, Kings College London
5Roskamp Institute, Sarasota, Florida, USA
6The Open University, Milton Keynes, UK
7Bay Pines VA Healthcare System, Florida, USA
8Child Health Research Centre, Faculty of Medicine, The University of Queensland, Australia
9Institute of Inflammation and Ageing, University of Birmingham, UK
10Georgetown University Medical Center, Washington DC, USA
11Centre for Clinical Brain Sciences, University of Edinburgh, UK
12James A. Haley Veterans’ Hospital, Tampa, Florida, USA
13Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
14Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
15Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, USA
16Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, USA
17Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
18Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, USA
19City of New York Office of the Chief Medical Examiner, and New York University School of Medicine, New York, USA
20Division of Brain Sciences, Department of Medicine, Imperial College London, UK
21UCLA Steve Tisch BrainSPORT Program, USA
Departments of Pediatrics and Neurosurgery, David Geffen School of Medicine and UCLA Mattel Children’s Hospital, University of California, Los Angeles, California, USA

Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK

Department of Physical Medicine and Rehabilitation, Phelps Hospital Northwell Health, New York, USA.

School of Public Health, New York Medical College, New York, USA

Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK

Sports Medicine Center, Children’s Hospital Colorado, USA

Department of Orthopedics, School of Medicine, University of Colorado Anschutz Medical Campus, USA

Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ, USA

Atlantic Neuroscience Institute, Atlantic Health System, NJ, USA

Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, UK

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA

Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA

Department of Pathology, University of Washington, Seattle, USA.

Department of Pathology, Division of Neuropathology, UPMC Presbyterian Hospital, Pittsburgh, USA

Departments of Pathology, Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA

Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, USA

Translational Neuropathology Research Laboratories, Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA

Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, USA

Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, USA

University of Arizona College of Medicine Phoenix, 42283, Child Health, Phoenix, USA

Phoenix Veteran Affairs Healthcare System, Phoenix, USA

Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, USA

Shock Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, USA.

School of Biochemistry and Immunology, Trinity College Dublin, Ireland.

Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland

Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK

Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund University, Lund, Sweden

Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, USA

Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, USA

Research Division, Institute of Occupational Medicine, Edinburgh, UK.

Department of Bioengineering, University of Pennsylvania, Philadelphia, USA

NIHR Global Health Research Group on Neurotrauma, University of Cambridge, Cambridge, UK

Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK

Department of Pathology, Stanford University, Stanford, CA, USA

Barrow Neurological Institute, Depts of Neurobiology and Neurology, Phoenix, USA

Centre for Dementia Prevention Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK

Academic Neuropathology, University of Edinburgh, Edinburgh, UK.

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.

Homerton University Hospital NHS Trust, National Hospital of Neurology and Neurosurgery, University College London, London, UK

Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA

Department of Pathology and Laboratory Medicine, Institute on Aging, and Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.

Institute on Aging, University of Pennsylvania, Philadelphia, USA.

Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA

Health Sciences, University of South Australia, Adelaide, Australia

Department of Pathology and Laboratory Medicine, Djaavad Mowafaghian Centre for Brain Health, International Collaboration on Repair Discoveries, School of Biomedical Engineering, University of British Columbia, Canada

Department of Neurology, University of Utah, Salt Lake City, USA

Michael DeBakey VA Medical Center and Baylor College of Medicine, Houston, USA.

Division of Psychology, University of Stirling, Stirling, UK

Department of Psychology, Alberta Children’s Hospital Research Institute, & Hotchkiss Brain Institute, University of Calgary, Canada.

Corresponding Author: Dr William Stewart, MBChB, Ph.D, FRCPath.
Department of Neuropathology
Queen Elizabeth University Hospital
1345 Govan Rd
Glasgow G51 4TF, UK.

Email: William.Stewart@glasgow.ac.uk
Tel: +44 (0)141 354 9535
As clinicians and researchers in traumatic brain injury and neurodegeneration we are concerned by the tone of reporting on chronic traumatic encephalopathy (CTE) that has developed in the past decade, highlighted in a recent article in the New York Times1. Misleading reporting can have unintended, negative consequences and we call for balance from the medical and scientific communities and the media when communicating on issues related to CTE.

Contrary to common perception, the clinical syndrome of CTE has not yet been fully defined2, its prevalence is unknown and the neuropathological diagnostic criteria are no more than preliminary3. Crucially, we have incomplete understanding of the extent or distribution of pathology required to produce neurological dysfunction or to distinguish disease from normality, with the neuropathologic changes of CTE reported in apparently asymptomatic individuals4,5. Finally, although commonly quoted, there remains no consensus agreement on staging the severity of CTE pathology. In short, a single focus of the pathology implicated in CTE is not yet sufficient evidence to define disease.

Recognizing limitations of the diagnostic process in human pathology, pathologists are careful to note that they are merely providing an opinion; acknowledging that another pathologist might reasonably reach a different conclusion on the same case6. In diagnoses where the criteria for assessment and reporting are established by broad consensus, the expectation is that variance in opinion is minimised. At this time, however, while CTE diagnostic criteria remain far from established, it is to be expected that there will be discordance in opinions on individual cases1.
Unfortunately, the uncertainties around the clinical syndrome and the pathological definition of CTE are not acknowledged adequately in much of the current research literature or related media reporting, which at times has resembled ‘science by press conference’7. Too often an inaccurate impression is portrayed that CTE is clinically defined, its prevalence is high and pathology evaluation is a simple ‘positive’ or ‘negative’ decision. This distorted reporting on CTE may have dire consequences. Specifically, individuals with potentially treatable conditions, such as depression or post-traumatic stress disorder, might make decisions on their future based on a misplaced belief that their symptoms inevitably herald an untreatable, degenerative brain disease culminating in dementia.

We propose that the principle of ‘first, to do no harm’ is employed when communicating on CTE, whatever the platform. In particular, the many remaining uncertainties should always be acknowledged. Otherwise, there is a distinct risk of doing very real harm.
References