
Peer reviewed version

Link to published version (if available):
10.2174/1566524019666190126112238

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Bentham Science Publisher at http://www.eurekaselect.com/169393/article. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
A Bromodomain and Extraterminal Protein Inhibitor OTX015 Suppresses T Helper Cell Proliferation and Differentiation

Xiao Hu1,2,*, Lauren P. Schewitz-Bowers2,3,*, Philippa J. P. Lait2, David A. Copland2,3, Madeleine L. Stimpson2, Jing Jing Li1, Yizhi Liu1, Andrew D. Dick2,3, Richard W. J. Lee2,3,§, Lai Wei1,§

1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
2 Translational Health Sciences, University of Bristol, Bristol, UK.
3 National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.

*These authors contributed equally to this work
§Correspondence: richard.lee@bristol.ac.uk, weil9@mail.sysu.edu.cn
Supplementary Fig 1. Human CD4+ T cells sorting panel. A single-cell suspension of live human CD4+ T cells were sorted for CD3+/CD4+ double-positive cells, then CXCR3+CCR4−CCR6− were sorted as Th1 cells, CXCR3+CCR4+CCR6+ as IFN-γ & IL-17 double positive cells and CXCR3−CCR4+CCR6+ as Th17 cells.

Supplementary Fig 2. Effects of OTX015 concentrations and treatment durations on murine CD4+ T cells. Murine CD4+ T cells were isolated and treated with different concentrations of OTX015 for different durations. (A) Viability change of murine Th1 or Th17 cells induced from CD4+ T cells by different concentrations of OTX015 for 96 hours (n = 2). (B) Viability of murine Th1 or Th17 cells induced from CD4+ T cells treated with 50 or 100 nM OTX015 for different durations of time (n = 2). (C) Proliferation change of murine Th1 or Th17 cells induced from CD4+ T cells treated with different concentrations of OTX015 for 96 hours (n = 2). (D) Proliferation change of murine Th1 or Th17 cells induced from CD4+ T cells treated with 50 or 100 nM OTX015 for different durations of time (n = 2). (E) Frequencies of IFN-γ− or IL-17− expressing cells in murine Th1 or Th17 cells induced from CD4+ T cells treated with different concentrations of OTX015 for 96 hours (n = 2). (F) Frequencies of IFN-γ− or IL-17− expressing cells in murine Th1 or Th17 cells induced from CD4+ T cells treated with 50 or 100 nM OTX015 for different duration of time (n = 2). (G) There was no difference in viability between control and 50 nM OTX015 treated group in murine Th1/Th17 induced from naïve CD4+ T cell or in stimulated murine memory CD4+ T cells (n =5 for Th1/Th17 cells and n =4 for memory CD4+ T cells). Data are shown as means ± SD, * P < 0.05 ** P < 0.01.

Supplementary Fig 3. Effects of JQ1 and OTX015 on murine CD4+ T cell subsets. Murine CD4+ T cells were isolated and polarized into Th1 or Th17. Cells were treated with or without JQ1 or OTX015 at 50 and 100 nM for 3 days. (A) Frequencies of IFN-γ− or IL-17− expressing cells in murine Th1 or Th17
induced from CD4+ T cells (n = 4). (B) Suppression of proliferation in murine Th1 or Th17 induced from CD4+ T cells (n = 4). (C) Viability of murine Th1 or Th17 induced from CD4+ T cell (n = 4). Data are shown as means ± SD.

Supplementary Fig 4. Viability of human CD4+ T cells treated with OTX015. Human CD4+ T cells were isolated and treated with different concentrations of OTX015 for 5 days (n = 12). Data are shown as means ± SD.

Supplementary Fig 5. Equivalent effects of JQ1 and OTX015 on human CD4+ T cells. (A - C) JQ1 and OTX015 equivalently affected the frequencies of IL-17 single-positive cells (A), IFN-γ single-positive cells (B) and IFN-γ/IL-17 double-positive cells (C) in the stimulated human CD4+ T cells (n = 6). (D) JQ1 and OTX015 equivalently affected the proliferation of the stimulated human CD4+ T cells (n = 6). (E) JQ1 and OTX015 equivalently affected the viability of the stimulated human CD4+ T cells (n = 6). Data are shown as means ± SD.

Supplementary Fig 6. Viability of different human T cell subsets treated with OTX015. Viability change of human naïve, central memory and effector memory T cells treated with different concentrations of OTX015 on day 5. Data are shown as means ± SD, ** P < 0.01 *** P < 0.005 **** P < 0.001.
Supplementary Figure 5

Supplementary Figure 6