
Peer reviewed version

Link to published version (if available): 10.1109/TCAD.2019.2912923

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at https://ieeexplore.ieee.org/document/8695747. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
A Streaming Dataflow Engine for Sparse Matrix-Vector Multiplication using High-Level Synthesis

Mohammad Hosseinabady, and Jose Luis Nunez-Yanez

Abstract—Using high-level synthesis techniques, this paper proposes an adaptable high-performance streaming dataflow engine for sparse matrix dense vector multiplication (SpMV) suitable for embedded FPGAs. As the SpMV is a memory-bound algorithm, this engine combines the three concepts of loop pipelining, dataflow graph, and data streaming to utilize most of the memory bandwidth available to the FPGA. The main goal of this paper is to show that FPGAs can provide comparable performance for memory-bound applications to that of the corresponding CPUs and GPUs but with significantly less energy consumption. Experimental results indicate that the FPGA provides higher performance compared to that of embedded GPUs for small and medium-size matrices by an average factor of 3.25 whereas the embedded GPU is faster for larger size matrices by an average factor of 1.88. In addition, the FPGA implementation is more energy efficient for the range of considered matrices by an average factor of 8.9 compared to the embedded CPU and GPU. A case study based on adapting the proposed SpMV optimization to accelerate the support vector machine (SVM) algorithm, one of the successful classification techniques in the machine learning literature, justifies the benefits of utilizing the proposed FPGA-based SpMV compared to that of the embedded CPU and GPU. The experimental results show that the FPGA is faster by an average factor of 1.7 and consumes less energy by an average factor of 6.8 compared to the GPU.

Index Terms—Sparse-Matrix-Vector, FPGA, High-Level Synthesis, Energy, Support Vector Machine, Edge Computing

I. INTRODUCTION

PARSE matrix-vector multiplication (SpMV) is one of the common operations used in several areas such as scientific optimization, circuit simulation, and machine learning [1]. Although SpMV has been known for a long time, recent progress in utilizing new architectures that consist of multi-core CPUs, many-core GPUs, and FPGAs has led to a renewed interest in research activities towards optimizing its performance for the corresponding applications [2].

Generally, cloud-based big-data computing and analysis are the main application framework for SpMV, especially in machine learning areas. However, with the challenges arising from centralized cloud-based computing such as scalability and security, modern machine learning techniques are utilizing distributed architectures, relying on the edge computing framework. In this approach, the edge processors consume the locally generated data to train or refine a model. These data usually collected by a group of local sensors, hence, their size is limited. Recently, it has been shown that this scenario can provide a highly accurate model [3] by proposing CoCoA framework. An extension of the CoCaA called Mocha [3] focuses on the nascent federated machine learning scheme that has been empirically evaluated by academia and industry [4], corroborate the theoretical studies. This new approach has motivated us to focus on efficiently developing the SpMV on edge candidate devices considering moderate datasets (i.e., training data) and limited dimension sizes (i.e., features and training points).

Embedded FPGAs are potential candidates for accelerating computations on the edge thanks to their low energy consumption, fine-grained parallelism and multi-precision capabilities that help efficient implementation of compute-intensive applications such as deep learning algorithms [5] on small devices. This has inspired us to optimize the Sparse Matrix-Vector Multiplication (SpMV) targeting on embedded FPGAs.

Traditionally, FPGA accelerators are designed by Hardware Description Languages (HDL) that can potentially provide a high-performance implementation. However, the HDL based design flow is tedious and time-consuming. In addition, the design is not easily adaptable (modifiable) to the versatile edge computing environment that includes a variety of algorithms with different configurations and complexity. To cope with these issues, we study the use of the High-Level Synthesis (HLS) that is increasingly popular for accelerating algorithms in embedded heterogeneous platforms. Studies have shown that HLS can provide high-performance and energy-efficient implementations with shortening time-to-market and addressing today’s system complexity [6].

The SpMV is known as a memory-bound algorithm with irregular memory access operations and its implementation on FPGA should be optimized for maximum memory bandwidth utilization. This requires optimizing the number of computational hardware threads and load balancing to keep them busy. To achieve these optimization objectives, this paper proposes a Streaming Dataflow Engine (SDE) architecture for SpMV running on an FPGA using high-level synthesis. To utilize the streaming data transfer capabilities provided by HLS tools via the burst data transfer protocol, this engine integrates the loop level and process level pipelining in the code enabling high memory access throughput by saturating the memory bandwidth.

Novelties and contributions of this paper are as follows.

- Proposing a streaming dataflow engine (SDF) for SpMV, comprised of multiple hardware threads that
can be used as a template in an HLS environment.

- Explaining the adaptivity of the proposed HLSDF for the versatile algorithm and configurations in the machine learning techniques on the edge computing paradigm
- Proposing a simple analytical model to understand the algorithm and platform bottlenecks and overheads
- Comparing the embedded FPGA implementation of the SpMV with multi-core embedded CPU and many-core embedded GPU versions and studying in which cases the FPGA implementation is more efficient.
- Optimizing the SVM algorithm as a real application that uses SpMV as an operator by merging it with other operators needed in SVM.

The rest of this paper is organized as follows. Preliminary concepts, definitions, and requirements are explained in the next section. Section III reviews previous work and clarifies the motivations and contributions of this work. The dataflow engine as the underlying structure of the proposed techniques is discussed in Section IV. Section V goes through the details of the proposed methodology. Section VI investigates the experimental results. Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section briefly explains concepts, techniques, and definitions that are considered throughout this paper.

A. Sparse matrix

Most of the elements in a sparse matrix are zeros. Fig. 1(a) shows such a matrix with four rows (denoted by \(n \)) and five columns (represented by \(m \)) which has 14 zero elements and 6 non-zero elements (denoted by \(\text{nnz} \)). Operators involving these matrices (such as multiplications) usually suffer from low compute-per-byte ratio which makes their traditional implementations inefficient. Using new computation techniques with associated matrix representations to achieve high performance and reduce the memory utilization have been proposed for sparse matrix manipulations. Using coordinate list (COO) in the form of \((\text{row index}, \text{column index}, \text{value})\) tuples for non-zero elements, as shown in Fig.1(b), is one way to reduce the matrix memory footprint. However, one of the row and column vectors has redundancy that can be removed. This leads to the Compressed Sparse Row (CSR) representation, shown in Fig.1(c) which is the common representation for sparse matrices. Three vectors, named \(\text{value, col_index and row_index} \), represent the matrix. The \(\text{value} \) vector contains the non-zero elements in row-order and their corresponding column indices are saved in \(\text{col_index} \) vector, therefore, the \(\text{col_index} \) vector contains all values, determines their sizes. The \(\text{row_index} \) elements are the indices of the \(\text{value} \) vector that contains the first element of each row in the original matrix. In other words, \(\text{row_index} \) elements point to the first element of each row in the \(\text{values} \) vector.

There are several different sparse matrix representations [7], especially used among HPC community and some of them rely heavily on the matrix sparsity pattern or the underlying computer architecture. These representations can be categorized into three main groups: General Format (GF), Architecture Specific Format (ASF) and Sparsity Pattern aware Format (SPF).

B. High-level synthesis

High-Level Synthesis (HLS) tools, which transform a high-level description of a task usually written in C/C++
into the equivalent HDL code, have been used recently to efficiently implement many computational or memory-intensive algorithms, especially on FPGA platforms [8]. The main goal of current HLS tools is to provide parallel implementations of the concurrencies that are modeled by designers in the input code using compiler directives (such as pragmas) or following a specific coding style suggested by the tools [9]. These concurrency models can be categorized in two main groups: statement level and process level.

1) Statement level: Independent expressions and assignments are automatically implemented in hardware running in parallel if there are enough resources in the underlying hardware. Extending this feature to iterative statements by completely or partially unrolling the iterations can be useful. Current high-level synthesis tools leverage compile-time code analysis and optimization techniques to provide a static scheduling for the single statements and loops in the code. Hence, this requires resolving ambiguity and dependencies among variables, especially in iterative statements, at compile-time to achieve maximum hardware performance. The efficiency of loop pipelining depends heavily on the compile-time to achieve maximum hardware performance. The efficiency of loop pipelining depends heavily on the static dependency and hazard analysis during which the compiler determines the fixed minimum loop iteration initiation intervals (II). The loop II is the minimum number of clock cycles before a loop iteration can start processing data by finding free resources. In other words, the II indicates the minimum interval between two consecutive loop iterations without encountering any hazards in the pipeline [9].

2) Process level: A process is a stand-alone block of statements without any side-effect, including loops, with specific inputs and outputs. Data dependency between processes can be represented by a dataflow graph in general. FPGAs can provide high performance running streaming dataflow processes. Streaming dataflow requires pipelining among processes and streaming data communication. Fig. 2(a) shows a dataflow of simple stream computing scheme which consists of three processes, Read, Compute and Write, communicating through buffers. Each of these processes can be implemented with a for loop in HLS. In the ideal case, which II’s of all loops are 1, this dataflow can be run at its highest performance as shown in Fig. 2(b) and it takes \(N \times II + l = N + l \) clock cycles to finish, where \(N \) is the loop iterations and \(l \) is a latency of one dataflow iteration. However, if the II of one process is higher than 1, it determines the II of the whole dataflow, consequently reducing the performance. For instance, if the II of Compute process is \(d \) as shown in Fig. 2(c), then the II of the design would be \(d \). In this case, the design takes \(N \times II + l = Nd + l \) clock cycles, which is \(d \) times slower than the ideal case if \(l \) is negligible compared to \(N \). Therefore, the main goal of stream computing in HLS is to minimize the processes’ initiation intervals or compensate for its negative impacts. In the sequel, this paper will explain some of the techniques to design an optimum stream computation engine for the sparse matrix multiplication.

III. PREVIOUS WORK

Sparse matrix operations are well-known problems in scientific computations and optimizations, especially in high-performance computing. Recently, a new wave of implementations is proposed [10] to support the application of these operations in the machine learning field. These algorithms mainly utilize multi-core CPUs or many-core GPUs [11], [12]. Several studies have investigated the optimization of SpMV on hardware and FPGAs [13], [14], [15]. Most of these research activities are focusing on high-end FPGAs and big-data such as approaches proposed in [14], [13], [16]. To get high-performance, they usually benefit from a complex data preprocessing, thanks to their powerful underlying computational hardware. In contrast to these approaches, our methodology targets embedded systems used in edge computing frameworks which process only parts of the big-data in a distributed computing scheme such as federated learning. In terms of the target sparse matrices, some work consider the sparsity pattern in a matrix and propose optimization techniques towards specific patterns such as the methods introduced in [14], whereas others make no assumptions about the sparsity structure of the matrix, such as [17]. Our method in this paper fits the second group.

Sadi et. al [16] propose a streaming SpMV accelerator utilizing 3D stacked High Bandwidth Memory (HBM) to overcome the memory wall issue. To consider large matrices whose \(x \) and \(y \) vectors do not fit into the on-chip memory, they propose matrix partitioning to fit the vector \(x \) into the on-chip memory. They also propose a two-step stream processing approach that is suitable for their architecture but would have high overhead in embedded FPGAs. In contrast to their approach, we use one step stream computing suitable for optimization on an embedded FPGA which does not benefit from the HBM technology.

Fowers, et. al [18] introduce an FPGA-based SpMV architecture and a sparse matrix decoding to exploit the parallelism across matrix rows. They have assumed the availability of two separate DRAMs on the system which may not be available in most current embedded systems. Designing an efficient floating point accumulator (i.e., multiplier and adder) to improve the performance of the SpMV is the main theme in [2][19]. Opposed to these approaches, our technique can be used with any accumulator design and only its latency is required (as explained in Section V) to determine the number of hardware threads to achieve a high-performance.

In terms of the parallelism, some previous work exploit the row based parallelism (such as [2], [19], [17]) and pad each row with zeros to make their sizes a product of the parallelization factor \(k \). Similar to these approaches,
we utilize the row-based parallelism however, we clearly explain the minimum value of the zero-padding for a given accumulator. In addition, our proposed techniques exploit the parallelism in a row and between rows using two main techniques in HLS that are loop pipelining and unrolling.

Reference [15] utilizes multi-port memory interfaces to increase the memory bandwidth. Similarly, we utilize multiple ports as well as the wide-buses on each port and compare the results with embedded GPU and CPU.

Finally, in contrast to other work, we show that the proposed approach is easily adaptable to the environment of a real application since the SpMV hardware description can be extended with other compute intensive operators maintaining the performance level. These concepts are explained through case studies in Section VI.

IV. PROPOSED STREAMING DATAFLOW ENGINE

This section explains the structure of the proposed streaming dataflow engine (SDE) with its performance model.

Fig. 3 shows the structure of the proposed SDE for implementing the sparse matrix-vector multiplication. The related sub-tasks are distributed into three main stages connecting through stream mapping layers. Whereas each stage consists of a few processes performing computation or data transfer between the FPGA and the main memory, a stream mapping layer reformats and distributes the data received from its input buffers among its output buffers. In addition, it resolves the data-type mismatch problem between two consecutive stages. For example, if the input stage uses a 128-bit bus to transfer data to the FPGA while the compute stage uses 32-bit float data-type, then the stream data mapper should provide this transformation by mapping an input stream data into four output stream data utilizing proper buffers and pipelined concatenation or splitting assignments.

The input stage, as shown in Fig. 3, consists of a few processes (denoted by s) each of which is responsible for reading data from the main memory, through a dedicated port, using a burst data transfer scheme. Each process is implemented by a pipelined loop with a specific initiation interval (I_{in}) which has a direct impact on the bandwidth utilization. The maximum input bandwidth utilization associated with a process is determined based on the number of bytes read per second which can be represented by Equ. (1) in which I_{in} is the initiation interval of the process reported by the HLS tool, b_{in} is the bus-width of the corresponding memory port, and f_{in} is the clock frequency of the memory interface.

The compute stage in Fig. 3 receives sequences of data from its predecessor stream data mapping layer and performs its task. This stage comprises of p processes each of which consists of t pipelined threads that can be run in parallel. The SpMV computation tasks are divided among these parallel processes. The maximum performance of a process in terms of the number of operations per second is denoted by Equ. (2) in which I_{comp} is the initiation interval of processes’ loop, c_{comp} denotes the number of operations in each loop iteration and f_{comp} determines the frequency of the operations.

The output stage consisting of w processes is responsible for writing the results to the main memory. It has a similar structure to the input stage.

One of the features of this structure is its adaptability to a specific application, such that it can be adapted to a given target application by adding operations to the code of each process as long as the added operator does not incur any loop dependency which results in no changes in I during the synthesis, in case of having enough resources on the FPGA.

$$BW_{in}^{max} = \frac{(b_{in} \times f_{in})}{(I_{in})}$$ \hspace{1cm} (1)

$$Perf_{comp}^{max} = \frac{t \times (c_{comp} \times f_{comp})}{(I_{comp})}$$ \hspace{1cm} (2)

$$BW_{out}^{max} = \frac{(b_{out} \times f_{out})}{(I_{out})}$$ \hspace{1cm} (3)

Performance model: We propose a performance model to determine the contribution of algorithm and platform on the design efficiency. This model simply clarifies the bottleneck of the whole design and can be used as a guideline to propose algorithmic or architectural optimization techniques. This model calculates the execution time of
the design as shown in Equ. 4, where \(t_{alg} \) represents the
time required by the algorithm which includes the ideal
execution time denoted by \(t_{ideal} \) and the algorithm overhead
represented by \(t_{over} \). Moreover, \(t_{plat} \) denotes the platform
overhead which consists of hardware \((t_{hard})\) and library \((t_{lib})\) overheads. An example of \(t_{lib} \) is the high-latency of
the floating-point operators that can have a negative impact in
pipelined design. The hardware module initialization is an example of \(t_{plat} \).

\[
T = t_{alg} + t_{plat} = (t_{ideal} + t_{over}) + (t_{lib} + t_{hard})
\] (4)

In addition, in the rest of this paper, we define \(M_{BRAM} \)
and \(M_{BW} \) as the amount of FPGA internal memory (i.e.,
BRAM) and the main memory bandwidth used by the
design.

V. SPMV: PROPOSED METHODOLOGY

Considering the dataflow engine of Fig. 3, this section
explains the proposed streaming computation architecture
in C language that can be synthesized by an HLS tool sup-
porting the dataflow pipelining such as Xilinx Vivado-HLS.
We also explain a sparse matrix representation suitable for
the data stream communication.

The proposed SpMV implementation consists of three
main tasks.

Task 1: Transferring the entire dense vector \(x \) into the
FPGA memory (i.e., BRAM).

Task 2: Invoking the stream computation engine

Task 3: Transferring the results from the FPGA to the main
memory.

In the sequel, we explain how to utilize different optimization
 techniques to implement these three tasks.

A. Naïve stream computing

The code presented in Listing 1 receives the data in values
and \(col_{index} \) vectors in a streaming fashion as their indices
in the algorithm (i.e., \(j \) at lines 7 and 8) is ascending during
the execution. The first step of stream computing in [16]
implements this algorithm in ASIC with their own designed
processing elements (PEs) which their details have not been
explained. Although, this algorithm can be synthesized by
available HLS tools, exploiting the parallelism in the code
is not straightforward (in the context of FPGA and HLS)
as the number of iterations of the inner loop at Line 6
is known at runtime. Therefore, the code static analysis
performed by an HLS tool cannot resolve the dependency
among the statements; consequently, the outer loop cannot
be pipelined or unrolled and should be executed sequentially
which makes its stream computing inefficient due to the
high iteration latency. To solve this problem, we modify
the sparse matrix CSR representation as explained in the
sequel.

The key point of the solution is making the length of
the inner loop in Listing 1 predictable for each iteration
of the outer loop. For this purpose, we modify the row-
index vector in Fig. 1(b) such that each value represents the
number of data element involved in the inner loop
performing the dot-product at Line 8 in Listing 1. The
new vector is called row_length as shown in Fig. 4
for the same matrix of Fig. 1(a). This representation is referred
to as Modified CSR (MCSR) throughout this paper. This
 technique is similar to the one presented in [20]. Note that,
the row_length elements can be computed by differenti-
ting two consecutive elements in the row_index vector.
Therefore, its computation can be done in the hardware
along with Task 1. The interested reader can refer to the
open source code of this research for more information [21].
The overheads associated with this technique are explained
in Section VI-C.

The aforementioned three tasks of this implementation
are as follows. Task 1 transfers the entire \(x \) into the FPGA
memory using the burst data transfer which takes about \(m \n(i.e., its length) clock cycles. To implement Tasks 2 and 3
the SDE structure of Fig. 3 can be used. Considering this
structure and the MCSR representation, Fig. 5 depicts the
pseudo-code of the naïve stream computation for the SpMV.
The dense vector \(x \) transferred to the FPGA is denoted by
\(x_{local} \) in this pseudo-code.

The input stage consists of three processes, \(P_1, P_2 \) and
\(P_3 \), to read row_length and col_index indices as well as
value vectors (as shown in Fig. 4) from the main memory in
a streaming manner using the burst data transfer protocol.
In this case \(s = 3 \), and as each process uses a dedicated
memory port and the burst data transfer is used to read
vectors, the minimum \(H_{lat} \) reported by the synthesis tool,
for each process is 1. As the data-types in the three stages
are the same, the streaming data mapping layer is very
simple and only consists of buffers as shown between
stages.

The code in process \(P_4 \) of Fig. 5 converts the nested loops
in Listing 1 into a single loop that can easily be pipelined.
The intra- and inter-loop iteration dependencies due to read-
after-write potential hazards on \(col_{left} \) variable and the
accumulation on the \(sum \) variable (at Line 10 of the \(P_4
process in Fig. 5) restricts the timing relation between the
two consecutive loop iterations. This can cause an II higher than one. For example, in our experiment, we obtained the initiation interval of 4 (i.e., $II = 4$) by synthesizing the code for Xilinx Zynq-MPSoC. The main reason for this high II is the high latency of the accumulate operator with the float data-type. Fig. 6(a) shows the simplified pipeline timing diagram. This restricts the whole task throughput and performance. In addition, as just one process is considered without any loop unrolling, therefore $p = 1, t = 1$, according to Fig. 3. The last stage (i.e., output stage) consists of one process which writes back the results into the main memory.

In this case, $w = 1$ and $I_{out} = 1$. If there are enough memory ports to transfer data into the FPGA, then this process requires about $(mnz \cdot II_{P4})$ clock cycles to complete. Taking the number of clock cycles for Task 1 into account, the entire SpMV takes about $(m + mnz \cdot II_{P4})$ cycles to execute. Therefore, Eqs. 5, 6 and 7 show the performance model, BRAM usage and memory bandwidth utilization, respectively. Note that in this case $t_{ideal} = (m + mnz)/f$ and $t_{lib} = (II_{P4} - 1)mnz/f$ because it is caused by the floating point operation latency.

$$T = (m + mnz)/f + (II_{P4} - 1)mnz/f + t_{lib}^{plat}$$

$$M_{BRAM} = m \cdot sizeo_f(DATATYPE)$$

$$M_{MW} = (m + mnz)/T$$

Our experimental results show that t_{lib}^{plat} is negligible, hence, according to Eq. 5, the main bottleneck of this design is the high initiation interval of process P4 in the compute stage. The next subsection explains how to cope with this issue.

B. Fast stream computing

One way to overcome the high initiation interval bottleneck of the P4 process is processing multiple data in one iteration of the process’s loop. Hence, the loop can be unrolled with a factor of II_{com}, i.e., $t = II_{com}$ in the SDE shown in Fig. 3. For example, according to our experiment, since $II_{com} = 4$ here, then it is enough to unroll the loop just 4 times. As such, the P4 process can consume the data generated by the input stage processes without causing any wait state in processes of the input stage. Listing 2 shows the corresponding snippet code. The corresponding simplified timing diagram is shown in Fig. 6(b). Although the II is not changed, using four elements in each iteration increases the throughput by a factor of 4 which cancels the negative impact of $II = 4$. Note that this technique increases the number of utilized adders/multipliers by a factor of II compared to the naive implementation. Utilizing multiple multipliers/adders has proposed by researchers who use the HDL design flow to cancel the high-latency of floating-point multipliers in a pipeline, such as scheme [18]. However, they have proposed their own fused accumulator which is not directly applicable to the context of HLS.

```
Listing 2: Fast stream computing code
```

As each iteration of the for loop at Line 1 of the snippet code in Listing 2 processes II_{com} data items of a row, the number of processed data element in each row should be a product of II_{com}. To satisfy this constraint some zero elements should be added to each row in the matrix representation in Fig. 4. This is referred to as zero-padding in the sequel of this paper. This zero-padding adds an overhead to the performance that will be examined later in Section VI for a set of matrices. The number of elements processed in each row is denoted by eup (elements under process) which is greater than mnz. Therefore, considering the number of Task 1 clock cycles, this implementation requires $(m + eup)$ clock cycles to complete. Equ. 8 shows the corresponding performance model, where $t_{ideal}^{alg} = (m + mnz)/f$ and $t_{lower}^{alg} = (eup - mnz)/f$. Note, this algorithm address the platform library overhead and introduce the algorithm overhead. The experimental results show that this ends up to improve the performance.

$$T = (m + mnz)/f + (eup - mnz)/f + t_{lib}^{plat}$$

$$M_{BRAM} = m \cdot sizeo_f(DATATYPE)$$

$$M_{MW} = (m + eup)/T$$

Note that, for implementing the zero-padding process, only the row_length vector should be modified and there is no need to modify the values and col_indices to contain zeros. The extra zeros can be inserted into the stream computing during the computation [21]. The complexity of the row_length modification algorithm is $O(n)$ and can be done in hardware (by a loop $II=1$ [21]) along with Task 1 which does not have any impact on the total performance.

This algorithm can be modified to cover other sparse matrix formats. This illustrates that the proposed HLS technique is easily modifiable and adaptable to new situations in contrast to the traditional HDL approach. For example, it can be modified as Listing 3 to support symmetric sparse matrices in which only lower-left or upper-right triangular shape of data should be saved in the CSR format. In this algorithm, each matrix element (i.e., value) should modify
two elements in the y output vector that has been shown in Lines 12 and 13. This requires keeping the y vector in the FPGA. However, multiple access to the y elements in one iteration of the outer pipelined loop increases the II, mainly because of the shortage in the number of ports on y for parallel data access. To solve this problem, Line 13 utilizes \(I_{com} \) copy of the y vector to save partial results. Lines 22 to 25 show how to merge these partial results to get the final y vector elements. The resource overheads of this modification are 61.1%, 15.2%, 11.2%, and 19.3% on DSP, FF, LUTRAM and LUT of the FPGA. It also reduces the maximum size of the sparse matrix by a factor of 2. The performance improvement of this modification is 63% for a symmetric sparse matrix of size 40960 \(\times \) 40960 with \(n_{nz} = 139264 \). Note that further optimization of this modified algorithm is beyond the scope of this paper and requires a separate article.

```c
for (r=0; r<\text{data size}; r++) {
    col = col_fifo.read();
    y_local[r] += value;
}
```

Listing 3: Fast stream computing code for sparse symmetric matrix

Although Listing 2 provides a fast streaming computation for SpMV, it utilizes three memory ports (i.e., memory interconnects on the FPGA) that restricts its scalability to utilize more ports for performing parallel threads, mainly due to the limited number of memory ports available in embedded systems. The next subsection explains how to reduce the number of utilized ports and increase the number of computation processes.

C. Reduced-port stream computing

To reduce the number of ports used by the design in Listing 2, the row and column indices can be combined and read through a single port. As shown in Fig. 7, the new format is defined by concatenating the number of elements in a row and the column indices of those elements. The new combined vector which is called indices has a length of \(n + \text{eup} \), where \(n \) is the number of rows. The corresponding implementation requires \(m + (n + \text{eup}) \) clock cycles to complete. Therefore, Eq. 11 shows the performance model,

\[
T = (m + (n + \text{eup})/p) + (n + \text{eup} - n_{nz})/p + t_{\text{plat}}
\]

where \(t_{\text{ideal}} = m + n_{nz} \) and \(t_{\text{over}} = n_{nz} + (n + \text{eup} - n_{nz})/p \).

It should be noted that interleaving the row and column indices is a very simple process and does not include any computation and can be done during the process of receiving the locally generated data by the embedded system on the edge computing platform which results in no overhead on preprocessing data. This can be done by buffering each row’s data at the edge platform before merging column and row indices. The goal of this optimization is to reduce the number of used ports and not to improve the performance, instead, it prepares the algorithm to utilize multiple ports to improve the performance. The next subsection clarifies the benefits of this approach.

D. Multi-port stream computing

One way to increase the design throughput is utilizing multiple ports to transfer data from memory to the FPGA in parallel. If the embedded FPGA contains \(P \) memory ports each having \(B \) bits, and the number of bits of each element in \(y \) is \(\text{sizeof}(\text{DATATYPE}) \), \(n_{nz} \) and \(\text{eup} \) are \(g \) and \(h \), respectively, then the number of computing processes, denoted by \(p \) in Fig. 3 satisfies Eq. (14). In this case, the rows in the input sparse matrix can be divided into \(p \) parts, each processed by a computing process, resulting in a maximum of \(p \) times speed-up. However, the maximum speed-up is limited by the part that contains more data elements. As each hardware thread calculates a part of the output vector \(y \), Tasks 2 and 3, mentioned earlier in this section, execute sequentially. Therefore, the entire \(y \) is saved into the FPGA BRAM and transferred to the memory after Task 2 finishes.

\[
p \leq \frac{P \cdot B}{g + h}
\]

Tasks 1 and 3 can also benefit from multiple port utilization. If we use \(k \) ports to transfer these vectors, then this implementation requires about \(m/k + (n + \text{eup})/p + n/k \) clock cycles to complete. Therefore, Eq. 15 shows the performance model, where \(t_{\text{ideal}} = m/k + (n + \text{eup})/p + n/k \) and \(t_{\text{over}} = n + \text{eup} - n_{nz} \cdot n_{nz} + (n + \text{eup} - n_{nz})/p + m/k \).

\[
T = (m/k + (n + \text{eup})/p) + (n + \text{eup} - n_{nz})/p + t_{\text{plat}}
\]

\[
M_{\text{BRAM}} = (n + p + m) \cdot \text{sizeof}(\text{DATATYPE})
\]

\[
M_{\text{MW}} = (n + m + \text{eup})/T
\]
E. Load balancing

To get the maximum performance by utilizing multiple computing processors, their workloads should be balanced through a proper matrix partitioning. This pre-processed matrix partitioning problem can be modeled using the 1D chains-on-chains partitioning (CCP) problem [22, 23]. If all rows are denoted by the $R = \langle r_0, r_1, \ldots r_{N-1} \rangle$ chain (i.e., an ordered set) and the elements under process in each row denoted by $EUP = \langle eup_0, eup_1, \ldots eup_{N-1} \rangle$, then the partitioning problem is dividing R into p disjoint and non-empty sub-chains denoted by $R = \langle P_0, P_1, \ldots, P_{p-1} \rangle$ in which $P_i = \langle r_{j_0}, r_{j_1}, \ldots r_{j_k} \rangle$. If the number of elements being processed in each partition is denoted by $eup_p = \sum_{i=0}^{j_k} eup_i$, then the objective of the partitioning is to minimize the largest value of eup_p, where $0 \leq i \leq p$, as all partitions are running in parallel and the optimum case is when the execution of the largest partition is minimized. In the ideal case, this minimum happens when all partitions have the same number of elements under process (eup).

For the sake of simplicity, we use a greedy algorithm as shown in Algorithm 1 to solve this load balancing problem. The ideal case of eup_p, is $eup_{eqv} = (\sum_{i=0}^{N-1} eup_i)/p$ such that all partitions have the same number of elements under process. Starting at the first partition and first line, the algorithm adds lines to the partition until the difference between the partitions eup_p and eup_{eqv} is decreasing. Note that the complexity of the load balancing process is $O(n)$, where n is the number of rows, and can be done on the hardware with a pipelined loop with $\Pi=1$ [21] or on the processor available in the embedded system and does not have a low overhead.

Algorithm 1: Load balancing algorithm

Data: no_part: number of partition
Data: eup: number of total eup
Data: R = \langle r_0, r_1, \ldots r_{N-1} \rangle:

\[\text{Result: } \langle P_0, P_1, \ldots, P_{p-1} \rangle: \]

1. ideal_part_size = eup/no_part
2. $P_0 = r_0$
3. $j = 0$
4. for $i \leftarrow 1$ to $N - 1$ do
5. \[\text{if } P_j + |r_i| < \text{ideal_part_size then} \]
6. \[P_j = P_j + r_i \]
7. else
8. \[\text{if } j + 1 < \text{no_part then} \]
9. \[j = j + 1; \]
10. end
11. end
12. end

VI. EXPERIMENTAL RESULTS

This section evaluates the proposed SpMV optimization techniques. For this purpose, firstly, several sparse matrices, selected as benchmarks, are used to study the impact of each optimization technique explained in Section V. Then, the performance results are compared with the performance of a multi-core embedded CPU and two many-core embedded GPUs running the corresponding SpMV. Finally, two case studies are examined to explain the efficiency of the proposed methods in practice. Before delving into the detailed analysis and comparison, the next subsection explains the experimental set-up used for generating results.

A. Experimental setup

To evaluate the proposed methods, we use three state-of-the-art embedded platforms available on the market. Xilinx ZCU102 evaluation board featuring the Zynq UltraScale XCZU9EG-2FFVB1156 FPGA [24], referred to as Zynq-MPSoC in the sequel, is used to run the proposed SpMV on its embedded FPGA. In addition, this platform is used to execute the multi-threaded version of SpMV on its quad-core embedded processor. Nvidia Jetson TX1 and TX2 as two available commercial embedded GPUs are used for running the corresponding SpMV on their embedded GPUs.

Zynq-MPSoC: The Xilinx Zynq Ultrascale+ MPSoC consists of two main parts: the multi-core ARM processing system (PS) and the programmable logic (PL). This embedded system is supported by an external 64-bit DDR4 memory as the main memory for program code and data that are shared between the PL and PS through dedicated ports. Our design utilizes the four 128-bit high performance (HP) ports on the Zynq-MPSoC to transfer data between the main memory and the PS. In this system, the FPGA and the CPU power domain supply voltages are provided by 23 voltage rails [24] among them VCCINT and VCC_PSINTFP supply the main powers for the FPGA and CPU in this paper, respectively. The corresponding voltage regulator, provided these voltage rails, supports the Power Management Bus (PMBUS) and I2C protocol, so the power consumption can be monitored through software using the proper I2C APIs in Linux. We use the Xilinx SDSoC environment [25] which utilizes Xilinx Vivado- HLS and Vivado as the synthesis tool-chain to generate the bitstream file for the FPGA configuration and related drivers and software in Linux to invoke the accelerator.

TX1 and TX2: These embedded systems are based on NVIDIA Tegra X1 and X2 SoC [26], respectively. Whereas the TX1 consists of an NVIDIA Maxwell GPU with 256 CUDA cores, a Quad ARM A57, and 4 GB 64bit memory, the TX2 encompasses the NVIDIA Pascal architecture with 256 CUDA cores, a Quad ARM A57, and 8 GB 128bit memory. The cuSPARSE library [27], one of the most efficient industrial libraries provided by Nvidia for sparse matrix operation, is used in this paper for SpMV implementation on the embedded GPUs. In this system, the GPU and the CPU power domain supply voltages are provided by VDD_GPU and VDD_CPU voltage rails. The powers drawn from these rails are measured as the power consumption of each part. Note that these two platforms utilize programmable voltage regulators that can be monitored at runtime through the I2C protocol. Consequently, a software thread can read the power consumption of these modules at runtime using the I2C software library available in the Linux OS [21].

Note that the power measurements in the experimental results do not include the cool-down power in which capacitors in the accelerator are discharged after the kernel execution has completed. However, for the sake of completeness and giving a value for the energy consumed during this
period, we measured the power consumption after finishing a task. Our measurements show that for the GPU this period takes about 4ms and consumes 11388uJ energy, and for the FPGA it takes around 57ms and consumes 6071uJ. Note that studying and Optimization of the cool-down energy consumption requires separate research that is beyond the scope of this paper.

B. Benchmarking

A group of sparse matrices from the University of Florida Sparse Matrix Collection [28] has been considered as our benchmarks in this section. According to the histogram of these matrices [28] the dimension and the number of non-zero elements for most of matrices are less than 10^5 and 10^6, respectively. Therefore, the benchmarks chosen here are among the most frequently occurring mid-range matrices to be processed by our underlying FPGA. This is in line with the motivations of this research, explained in Section I, in which an embedded system only processes a part of a big data. Table I shows the statistics of these sparse matrices. The first column is the name of the matrix as it appears in [28], the number of rows and columns are shown in Columns 2 and 3, respectively. The last column represents the number of non-zero elements in each matrix.

<table>
<thead>
<tr>
<th>Matrix name</th>
<th>n</th>
<th>m</th>
<th>nnz</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcstil03</td>
<td>112</td>
<td>112</td>
<td>376</td>
</tr>
<tr>
<td>rotor1</td>
<td>1356</td>
<td>1356</td>
<td>3078</td>
</tr>
<tr>
<td>fpga_decp_11</td>
<td>1220</td>
<td>1220</td>
<td>5892</td>
</tr>
<tr>
<td>cape8</td>
<td>1016</td>
<td>1016</td>
<td>11068</td>
</tr>
<tr>
<td>c-4f</td>
<td>16352</td>
<td>16352</td>
<td>78444</td>
</tr>
<tr>
<td>sib3880u</td>
<td>4880</td>
<td>4880</td>
<td>10225</td>
</tr>
<tr>
<td>rajat22</td>
<td>75632</td>
<td>352</td>
<td>137228</td>
</tr>
<tr>
<td>TF6</td>
<td>13324</td>
<td>13324</td>
<td>101253</td>
</tr>
<tr>
<td>g7ba088</td>
<td>24872</td>
<td>24872</td>
<td>249378</td>
</tr>
<tr>
<td>Slo</td>
<td>13404</td>
<td>33404</td>
<td>675328</td>
</tr>
<tr>
<td>Ba5c</td>
<td>3552</td>
<td>3552</td>
<td>70031</td>
</tr>
<tr>
<td>IGS-17</td>
<td>10562</td>
<td>27844</td>
<td>103508</td>
</tr>
<tr>
<td>mixtank_new</td>
<td>22880</td>
<td>22880</td>
<td>399641</td>
</tr>
<tr>
<td>TSOPF_RS_b300_c2</td>
<td>253108</td>
<td>531508</td>
<td>947677</td>
</tr>
</tbody>
</table>

Table II: Sparse matrix statistics

C. FPGA accelerator results

This section examines the performance of the proposed techniques on each sparse matrix benchmark and points out to the corresponding resource utilization and limitations as well as its scalability.

Performance: To evaluate the performance of the proposed methodology, we consider two different FPGA clock frequencies (100MHz and 200MHz) and two single and double precision floating data type, denoted by SP and DP, respectively. The FPGA clock frequency has a direct impact on the II of the stream computing engine of Fig. 3. Increasing the clock frequency increases the latency of the floating-point operation used for the accumulation at Line 17 of Listing 1. The synthesis results show $II = 4$ and $II = 8$ for the SP data type at design frequencies of 100MHz and 200MHz, respectively. For the DP data type, the initiation intervals change to 5 and 10 at design frequencies of 100MHz and 200MHz, respectively. The different IIs result in a different number of elements under process (eup) after applying the zero-padding technique, which has been shown in Table II for the single precision.

As mentioned in Subsection V-A, transforming the CSR to MCSR can be done in the hardware along with transferring the vector x into FPGA. This design comes with hardware and energy overheads. The synthesized hardware shows 0.8%, 13.3% and 2.1% overhead on FF, $LUTRAM$ and LUT in FPGA resource utilization, respectively. In addition, its energy overhead for bcstil03 and TSOPF_RS_b300_c2 sparse matrices are 18% and 0.9%, respectively, corresponding to the smallest and largest matrix in our benchmark.

As mentioned in Subsubsection V-E the load balancing algorithm, that can be done on the CPU, has a very low overhead as its complexity is $O(n)$, where n is the number of rows. This overhead is 0.3% for bcstil03 matrix and 7.6% for TSOPF_RS_b300_c2, corresponding to the smallest and largest matrix in our benchmark.

Fig. 9 compares the speed-up of the different levels of optimizations explained in Section V to the naïve version. According to this diagram, the fast-stream version speeds up the naïve version up to 3.91 times that is quite close to the upper bound of $II_{com} = 4$. Merging the two indices vectors in the reduced-port case abates this speed-up; however, it enables increasing the number of hardware processes in the multi-port option that eventually increases the speed-up factor to 21.1. As can be seen from this diagram, the load balancing technique has a great impact on the large matrices with an unbalanced distribution of nnz elements such as mixtank_new.

Fig. 10 shows the execution time of the proposed SpMV for the two different frequencies. For each frequency two diagrams are plotted, one based on the performance formula
of Eq. 15 without the platform overhead (i.e., t_{plat}) and the other based on the real measurement. As can be seen, the platform overhead is almost zero for $f = 100\,\text{MHz}$ and it is negligible for $f = 200\,\text{MHz}$. This shows the low overhead of using HLS for implementing the proposed algorithm.

Table III shows the memory bandwidth utilization for each sparse matrix for the two different design frequencies. The theoretical limit for using four 128-bit HP memory ports in Zynq MPSoC are $((128 \times 4)/8) \times 100\,\text{MHz} = 6.4\,\text{GB/s}$ and $((128 \times 4)/8) \times 200\,\text{MHz} = 12.8\,\text{GB/s}$ at design frequencies of $100\,\text{MHz}$ and $200\,\text{MHz}$, respectively. This table shows that the proposed methodology has managed to achieve up to 93.8% and 79.7% of these theoretical memory bandwidths, respectively.

TABLE III: Utilized memory bandwidth (GB/s)

<table>
<thead>
<tr>
<th>Matrix name</th>
<th>100MHz</th>
<th>200MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>acock3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>rose1</td>
<td>0.5</td>
<td>7.2</td>
</tr>
<tr>
<td>fpga.Deep_11</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>spaceStation_5</td>
<td>5.2</td>
<td>8.9</td>
</tr>
<tr>
<td>cagc8</td>
<td>5.5</td>
<td>9.0</td>
</tr>
<tr>
<td>c-8k</td>
<td>5.1</td>
<td>8.9</td>
</tr>
<tr>
<td>m2k18800a</td>
<td>5.8</td>
<td>10.4</td>
</tr>
<tr>
<td>abhab2</td>
<td>5.8</td>
<td>8.5</td>
</tr>
<tr>
<td>m2k18800a</td>
<td>5.8</td>
<td>12.4</td>
</tr>
<tr>
<td>m2k18800a</td>
<td>5.8</td>
<td>9.3</td>
</tr>
<tr>
<td>vpr</td>
<td>5.5</td>
<td>9.1</td>
</tr>
<tr>
<td>g7jac080</td>
<td>5.3</td>
<td>8.8</td>
</tr>
<tr>
<td>bcsstk03</td>
<td>5.8</td>
<td>10.2</td>
</tr>
<tr>
<td>kIS017</td>
<td>6.0</td>
<td>10.4</td>
</tr>
<tr>
<td>tSOPF_RS_c2</td>
<td>6.1</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Table IV Shows a brief comparison with three other SpMV design on FPGA. The first row shows the number of Giga FLoating point Operation Per Second (GFLOPS), the second row is the maximum memory bandwidth utilization. The maximum sparse matrix dimension handled in each case is shown in the third row and the last row shows the maximum design frequency. Note that [18] utilizes an Altera Startix V D5 FPGA with two DRAM supporting an aggregate memory bandwidth of 21.3GB/s, so this is the reason for achieving a performance of 3.9 GFLOPS.

TABLE IV: Comparison with other SpMV implementation on FPGA

<table>
<thead>
<tr>
<th></th>
<th>Our method</th>
<th>Ref. [17]</th>
<th>Ref. [18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory BW (GB/s)</td>
<td>2.5</td>
<td>< 2.5</td>
<td>< 3.9</td>
</tr>
<tr>
<td>Max. matrix dimension size</td>
<td>10.2</td>
<td>10.2</td>
<td>10.2</td>
</tr>
<tr>
<td>Max. frequency</td>
<td>200</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

Resource utilization and limitation: Fig. 8 shows the percentage of resource utilization for each optimization level explained in Section V.

Regarding the data sizes, as the proposed techniques keep the x or y dense vectors into the FPGA BRAM, the implementations should allocate almost all the BRAM to be able to process large matrices. This is the reason for high BRAM utilizations. Table V shows the maximum matrix dimension sizes that can be processed by each optimization technique using the Zynq-MPSoC. However, there is no any limitation on the number of non-zero elements in each matrix due to the streaming mechanism of reading these data. The first three optimization techniques do not impose any restriction on the number of rows as they only keep the x dense vector into the BRAM. However, the last technique restricts both the number of rows and columns of the sparse matrices as it requires to save both the x and y vectors into the BRAM.

TABLE V: Maximum matrix dimensions for the Zynq-MPSoC FPGA

<table>
<thead>
<tr>
<th>Resource</th>
<th>naive</th>
<th>fast-stream</th>
<th>reduced-port</th>
<th>multi-port</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX n</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>50000</td>
</tr>
<tr>
<td>MAX m</td>
<td>980000</td>
<td>980000</td>
<td>980000</td>
<td>50000</td>
</tr>
</tbody>
</table>

In terms of the scalability, the limiting factor of our design for higher performance is memory bandwidth and not the available hardware resources. Therefore, a larger chip will not help to improve performance but performance scalability will be obtained with several devices working in parallel to benefit from the aggregated memory bandwidth.

D. Comparison with embedded CPU and GPU

This subsection compares the performance and energy consumption of our proposed FPGA design for SpMV with the corresponding ones running on embedded CPU and GPUs.

Embedded CPU: Table VI compares the performance of the proposed SpMV on the FPGA with the corresponding
software implementation running on the quad-core Corex-A53 available on the Zynq-MPSoc. The software implementation utilizes the OpenMP parallel programming model to employ multiple cores available on the processor. The first column of this table shows the benchmark names, Columns 2, 3, and 4 represent the execution time in \textit{msec} after running the software implementation of the SpMV on one, two, and four cores, respectively. The execution time of the fastest FPGA implementation is presented in the fifth column. The amount of speed-up achievable by using the FPGA is shown in the last column. As a general rule, the FPGA implementation shows better performance compared to the quad-core CPU version when the \textit{nnz} factor increases.

TABLE VI: SpMV FPGA execution time (\textit{msec}) comparison with embedded CPU

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>CPU</th>
<th>GPU-A53</th>
<th>CPU-A53</th>
<th>FPGA (double)</th>
<th>FPGA (float)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a6</td>
<td>0.20</td>
<td>0.0132</td>
<td>0.0168</td>
<td>0.0129</td>
<td>0.0134</td>
</tr>
<tr>
<td>car5</td>
<td>0.73</td>
<td>0.0718</td>
<td>0.0927</td>
<td>0.0776</td>
<td>0.0785</td>
</tr>
<tr>
<td>car11</td>
<td>0.12</td>
<td>0.0103</td>
<td>0.0149</td>
<td>0.0116</td>
<td>0.0121</td>
</tr>
<tr>
<td>nag5</td>
<td>0.07</td>
<td>0.0069</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
<tr>
<td>hmr</td>
<td>0.07</td>
<td>0.0067</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
<tr>
<td>pwc</td>
<td>0.07</td>
<td>0.0067</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
<tr>
<td>minres</td>
<td>0.07</td>
<td>0.0067</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
<tr>
<td>matrix9</td>
<td>0.07</td>
<td>0.0067</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
<tr>
<td>matrix11</td>
<td>0.07</td>
<td>0.0067</td>
<td>0.0101</td>
<td>0.0071</td>
<td>0.0075</td>
</tr>
</tbody>
</table>

Embedded GPU: This section uses Nvidia Jetson-TX1&TX2 embedded GPUs to compare with our SpMV implementation on the FPGA. GPUs provide massive parallelisms which are suitable for implementing regular algorithms. In addition, utilizing different types of on-chip memory such as scratch-pad, they overcome the high latency of accessing data in the off-chip global memory. Fig. 11 compares the SpMV execution time running on 4-Core CPUs, GPUs and FPGA for the \textit{SP} and \textit{DP} data types. The GPU execution times include the data transfer and computation similar to that of the CPU and FPGA.

As can be seen, FPGA shows better performance compared to GPUs and CPU if both data transfer and computation are considered in an application. However, it is also worth considering only the computation for the GPU implementation as in some iterative applications the data transfer performs only once. Considering this assumption, Fig. 12 compares the GPU and FPGA performance for two different range of matrix sizes. According to these diagrams, whereas the FPGA generally shows better performance for low \textit{nnz} factor, GPU presents a higher performance for larger \textit{nnz} factors.

![Fig. 11: Data transfer plus computation execution time: FPGA vs GPU](image)

Fig. 12 depicts two performance trends of running SpMV on embedded GPUs and FPGA for low and high values of \textit{nnz} considering \textit{SP} and \textit{DP} data types. As can be seen, the embedded FPGA shows better performance with small and medium-size matrices and the embedded GPUs show better performance when the value of \textit{nnz} is large. However, both FPGA and GPU provide higher performances than that of the embedded CPU. According to the measured data, the speed-up factor of the FPGA implementation to that of the GPU for small and medium-size matrices is 3.25 on average whereas the speed-up factor of the GPU for large size matrices is 1.58 on average.

The CPU usually benefits from their extensive cache memory to cope with memory intensive applications. Therefore, in cases that the data being processed fits the cache memory, the CPU can show better performance than other architectures. This justifies the better performance of CPU for smaller sparse matrices. On the other hand, GPU benefits from utilizing a large number of hardware threads and coalesce memory access, therefore they can show better performance in tasks that provide a large amount of data to keep all threads busy. This explains why GPU can show better performance for large sparse matrices.

Energy consumption: This section compares the energy consumption of running SpMV on the embedded FPGA, the multi-core embedded CPU, and the many-core embedded GPU. Fig. 13 compares the energy consumption of the SpMV running on the FPGA, CPU, and GPU in \textit{µJ}. As can be seen the energy consumptions of the CPU and GPU implementations are much more than that of the FPGA. For example for the last case as shown in Fig. 13, the FPGA consumes 4097.23/1849.32 = 2.21 times less energy. According to the measured energy consumption for all benchmark matrices, on average the FPGA implementation consumes 8.9 times less energy compared to the GPU. This confirms the benefit of using FPGA instead of CPU and GPU in situations that energy consumption is an important factor, such as mobile edge devices.

E. Case Study 1: SAXPY

In some applications and libraries, the SpMV kernel usually computes \(y = y + \alpha Ax + \beta \). This kernel requires to read the previous \(y \) vector as an input, as it appears on the right-hand side. The proposed techniques can be easily modified to efficiently implement this kernel without adding overhead. For this purpose, the streaming data format presented in Fig. 7 can be modified to interleaving the \(y \) vector elements with the \textit{values} vector similar to interleaving the column and row indices. In this case, both vectors in Fig. 7 have the same length. Processes in the stream mapping layer (Fig. 3) can separate the \(y \) values into a FIFO what will be used later in the compute stage layer. For example, the \(y \) elements can be read and used an initialization value for the sum variable at Line 4 of P4 process in Fig. 5. Figs. 14 (a) and (b) compare the SAXPY execution time running on GPU and FPGA for two range of matrix \textit{sizes} similar to Fig. 12. In addition, the amount of energy consumption is shown in Fig. 14(c).

F. Case Study 2: Support Vector Machine

This section puts the proposed SDE in Fig. 3 into practice to show its adaptability and efficiency in real
applications. For this purpose, we have chosen Support Vector Machine (SVM) which is one of the successful classification algorithms in the literature [29]. We have modified LIBSVM [30], one of the state-of-the-art SVM implementations, to use embedded FPGA, GPU and CPU implementations of the SpMV.

To make the paper self-contained, the C-SVM [30] as one type of the SVM is briefly explained here. C-SVM solves the optimization problem in Equ. (18) subject to Equ. (19), where \(x_i \in \mathbb{R}^n, i = 1, \ldots, l \) are the training vectors, \(y_i \in \{1, -1\} \) represents the class labels, \(C \) is the regularization parameter, \(w \) is the vector of model coefficients, \(b \) is a constant and \(\xi_i \) denotes parameters for handling non-separable data. The function \(\phi \) is used to transform data from the input space to the feature space.

\[
\min_{w,b,\xi} \frac{1}{2} w^T w + C \sum_{i=1}^{l} \xi_i \quad (18)
\]

\[
y_i (w^T \phi(x_i) + b) \geq 1 - \xi_i , \xi_i \geq 0; i = 1, \ldots, l \quad (19)
\]

The dual form of the problem which is more suitable for iterative optimization is shown in Equ. (20) and Equ. (21), where \(e = [1, \ldots, 1]^T \) and \(Q \) is an \(l \times l \) matrix as shown in Equ. (22). The \(K(x_i, x_j) = \phi(x_i)^T \phi(x_j) \) in Equ. (22) is the kernel function.

\[
\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha + e^T \alpha \quad (20)
\]

\[
\text{subject to} \quad y^T \alpha = 0, \quad 0 \leq \alpha_i \leq C; \ i = 1, \ldots, l \quad (21)
\]

\[
Q_{ij} = y_i y_j K(x_i, x_j) \quad (22)
\]

After solving this problem, the model coefficients can be obtained using Equ. (23).

\[
w = \sum_{i=1}^{l} y_i \alpha_i \phi(x_i) \quad (23)
\]

In our implementation, we have considered the sigmoid kernel function which can be represented as Equ. (24).

\[
kernl: K(x_i, x_j) = \tanh(\gamma x_i^T x_j + r) \quad (24)
\]

The calculation of the \(Q \) matrix in Equ. (22), which its computation graph is depicted in Fig. 15(a), is Equ. compute-intensive part of this algorithm and it takes up to 80% of the total SVM execution time with the sigmoid kernel. Each \(x_i^T x_j \) term in (24) is the result obtained by invoking the SpMV operation.

Other researchers also follow this mechanism to accelerate the SVM on multi-core CPU, GPUs and ASIC design. Among them are [30] which utilizes multi-core CPU and GPU. Eriko, et al. [31] propose an ASIC accelerator for SpMV to perform the Q computation in SVM. An ASIC accelerator for sparse matrix sparse vector multiplication is proposed by [1] that has been used to speed-up the SVM execution. They have used a simulation approach to evaluate their designs.

Our proposed SpMV can be used to perform this operation. However, we would like to emphasize that the proposed SpMV can be easily adapted to the requirement of \(Q \) computation (which is invoking \(\tanh \) function after
SpMV) to improve the performance. Note that the hyperbolic tangent (i.e., tanh) function calculation is also time-consuming. As these operations apply to each element of the SpMV output individually, it can be merged into the SpMV pipeline in our proposed FPGA implementation while the initiation interval remains intact. For this purpose, only the processes in the output stage of Fig. 3 should be modified. For example, the assignment in the loop body of the P4 process in Fig. 5 can be modified to \(Y[i] = \tanh(\gamma \ast \text{results}_f_{\text{fifo}} + r) \) without any changed in the initiation interval of the corresponding loop. Fig. 15(b) shows the modified output stage corresponding to the SDE of Fig. 3. As the pipeline structure can hide the latency of the tanh function, the overall performance remains unchanged.

To evaluate the impact of SpMV implementations used in the SVM, we have considered nine training data sets, taken from [30], with different sizes shown in Table VII. Figs. 16(a) and 16(b) compare the performance and energy consumption of the SVM training phase running on the embedded FPGA, GPU and quad-core CPU. As can be seen, running the adapted SpMV on the FPGA slightly improves the performance and significantly reduces the energy consumption. Averaging all the measurements for the given datasets in Table VII, the FPGA-2 implementation of the SVM is 1.7 times faster consumes 6.8 times less energy compared to the embedded GPU version.

G. Challenges and Lessons

The challenges and take away lessons for using HLS as design flow are as follows:

- Reusing the software-based algorithm in HLS is not straightforward and may need lots of modifications to allow synthesis tools exploit enough parallelism to provide the required performance. Thinking in stream computing can be helpful to cope with this issue.
- Taking advantage of loop pipelining is the key technique to provide scalable design as it can provide parallelism with minimum resource utilization.
- Utilizing all the memory ports available on the FPGA side can provide enough data for several pipelined stream computing threads on the FPGA to maximize performance.

VII. Conclusions

This paper has proposed an efficient sparse matrix dense vector multiplication to be used in a high-level synthesis approach and run on an embedded FPGA. The proposed method is based on stream computing techniques in which computation and data transfer between the FPGA and the main memory are executing in a pipelined fashion. The experimental results indicate that the FPGA implementation of SpMV can be more performance-efficient for small and medium-size matrices compared to the GPU versions while the GPU can show better performance in large size matrices.

Acknowledgment

The authors would like to thank the support received from EPSRC for this work part of the ENEAC project (EP/N002539/1). The open source code of this research can be found at [21].

References

M. Hosseimabady received the BS degree in electrical engineering from the Sharif University of Technology, Sharif, Iran, in 1992, the MS degree in electrical engineering and the PhD degree in computer engineering from the University of Tehran in 1995 and 2006, respectively. He is currently a researcher with the University of Bristol, working on energy proportional computing based on the reconfigurable platforms. His research interests include high-level reliability and testability, reconfigurable architectures, dynamic resource management, runtime power management. He has published several papers on these topics in journals and conference proceedings.

Jase Yunez-Nanez received the PhD degree in hardware-based parallel data compression from the University of Loughborough, United Kingdom, with three patents awarded on the topic of highspeed parallel data compression. He is a senior lecturer in digital systems at the University of Bristol and member of the microelectronics group. His main area of expertise is in the design of reconfigurable architectures for signal processing with a focus on run-time adaptation, parallelism and energy-efficiency. He is the PI in several industrial (e.g., TSB, DSTL, ESA) and UK research council projects including a CASE award by ARM in the field of run-time energy prediction and energy-aware scheduling. He is currently also involved as a coinvestigator in the EU ENTRA and Energy-ICT FP7 projects.