
Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
1. Abstract
We interrogated EEG time-frequency data in bilateral temporo-frontal cortical networks in AD patients, non-AD dementia patients and age-matched healthy controls. We found increased gamma activity in AD patients compared to controls, and in controls’ novel trials compared to repeated trials indicating a potential prediction error. We then applied two dynamic causal models (DCMs) to test the slow amplitude envelope of signal transmission through the network, and for phase-amplitude coupling to each individual’s recordings. Slow envelope analysis revealed a loss of tempo-frontal connectivity specifically in AD patients. Phase-amp DCMs revealed strong correlations between oscillator amplitudes in bilateral top-down and bottom-up connections in AD patients, which did not appear in controls or non-AD patients.

2. Background
- Alzheimer’s disease (AD) is the most prevalent cause of dementia in older adults, accounting for approximately two-thirds of dementia cases.
- AD initially presents with a decline in explicit (recognition) memory, and implicit (priming) memory is preserved during early stages of the disease, which begins to decline during later stages of AD[1,2].
- Medial temporal lobe atrophy is a strong indicator of developing AD in non-demented individuals, and has been implicated in explicit memory processing.
- Oscillatory power at low frequencies, including theta (4 – 8 Hz), has been found to significantly increase in scalp recordings of temporal and frontal regions during successful episodic memory recall[3].

3. Methods: Visual Memory Task
21 AD patients, 16 non-AD dementia patients (12 Vascular dementia (VD), 2 Fronto-temporal dementia (FTD), 1 alcohol-induced dementia, 1 mixed-AD/VD) and 21 healthy age-matched controls performed two behavioural memory tasks while 64-channel EEG recordings were taken. All EEG data pre-processing and analyses were conducted with SPM12.

4. 3D Source Localisation and Extraction
Left: One-sample t-tests identified sources of significant activity in a 3D Source Reconstruction, for all patients and controls. Six sources were identified for the recognition task: left inferior occipital gyrus (OCG), right occipital pole (OCP), left and right inferior temporal gyr (ITG), and left and right triangular part of inferior frontal gyr (IFG). Right: MNI coordinates for the left and right ITG and left and right IFG (circled in red) were used in the source extraction for time-frequency analysis. Family-wise error (FWE) corrected (p < 0.05).

5. Time-Frequency Analyses Show Increased Gamma Activity in AD and Novel Trials
Left: Novel trials show greater early gamma activity (p = 0.002, p = 0.032) and mid-trial beta activity (p = 0.018) than repeated trials in controls ITG, whereas repeated trials show greater late gamma activity than novel trials in control ITG (p = 0.001).
Right: AD patients show greater gamma power mid-trial than controls (p = 0.041), and controls show greater theta activity towards the end of the trial than AD patients (p = 0.033), in ITG. AD patients also show significantly greater beta activity in ITG at the end of the trial compared to controls (p = 0.011). Black line indicates stimulus onset (time = 0 ms); asterisks indicate significant differences in power.

6. Parametric Empirical Bayes (PEB) Reveals Frontotemporal Circuit Dropout in AD
Top left: PEB effect sizes of significant parameter value differences between AD patients and controls (recognition task). Parameters: Bottom-up connections from left ITG - left IFG (A(1)(5,3)) and subcortical input into the left IOCG (C(1)). A(1)(5,3) and C(1) decreased in AD patients compared to controls. Top right: Top-down connections from right ITG - right OCP (A(2)(2,4)), shows significant positive correlation with accuracy score in AD patients and controls. Patients = red, controls = blue.

7. Conclusions
- Our results show increased gamma activity in ITG in novel compared to repeated trials, and in AD patients compared to controls which may indicate a prediction error in recognition memory tasks.
- Also, controls show increased ITG theta activity compared to AD patients, which has been linked to recall and recognition memory.
- PEB analysis of slow envelope DCMs found that left hemisphere connectivity between frontal and temporal regions are compromised in AD, suggesting explicit memory circuit dropout.

8. References