Sgardoni, V., Ferre, PL., Nix, AR., & Bull, DR. (2009). Robust video broadcasting over 802.11a/g in time-correlated fading channels. In *International Conference on Consumer Electronics (ICCE), Las Vegas* (pp. 1 - 2). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICCE.2009.5012279

Peer reviewed version

Link to published version (if available):
10.1109/ICCE.2009.5012279

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
ROBUST VIDEO BROADCASTING OVER 802.11a/g IN TIME-CORRELATED FADING CHANNELS

Victoria Sgardeni, Pierre Ferré, Andrew Nix, David Bull
Motivation for the work …

• We want to broadcast video to large numbers of handheld devices using WiFi

• We want to enable new services such as personalised sports viewing or interactive city guides

• WiFi is ubiquitous and in most handsets … but how do we improve the video quality when broadcast protocols are used?

• Key contribution is the study of application layer FEC (AP-FEC) in combination with H.264 encoded video

• We develop and use a cross-layer 802.11a/g MAC-PHY simulator to analyse video performance

• We consider the impact of user motion using a time-correlated fading channel model – this model is critical!
The VISUALISE project

- The work presented here was part of the VISUALISE project
- Spectators at sporting events (World Rally Championship) used PDAs and mobile phones to receive live and pre-recorded video streams together with leader board information, timing and positional data, and general competitor information
Wireless video broadcasting

• The *reliable* broadcast of multi-channel video over WiFi to *large* numbers of handhelds is of great commercial interest
• Video quality deteriorates rapidly when WiFi broadcast protocols are used
• For Multicast/Broadcast there is no MAC frame retransmission in WiFi
• For an RTP application the packet loss rate at the application layer can be high (~10%)
• To improve the video quality we propose cross-packet AP-FEC with powerful error concealment in the decoder
The 802.11a/g Cross-layer Simulator

1. The cross layer simulator models the WiFi broadcast of H.264 encoded video packets over a time-correlated radio channel
 - A real video sequence is used to evaluate the received video quality at the handset

2. A time-varying fading channel is used to simulate the wireless transmission process. This accurately models the bursty nature of packet loss in a WiFi channel

3. An 802.11a/g MAC-PHY simulator is used to include the impact and overhead of the legacy 802.11 MAC protocol
Schematic of Cross-layer Simulator

Encoder + FEC/Error concealment

Decoder

Mobile device

NALUs

MAC

PHY

MAC-PHY simulator

Transmitter

Channel

Receiver
1. Video transmission simulator

- A sequence of video frames are *H.264* encoded, sent and decoded with and without AP-FEC and error concealment.
- Each video frame is translated into a number of *NAL units* and then 1:1 mapped to IP packets and WiFi MAC frames.
- Video *PSNR* is evaluated at the encoder prior to transmission – used as the reference “error-free PSNR”.
- *PSNR* of the decoded video is evaluated at the receiver after wireless transmission over the radio channel.
- The video sequence is taken from inside a rally car.
2. The time-varying channel model

• The multipath model assumes a Rayleigh fading process defined by the terminal velocity, carrier frequency and Doppler spectrum

• The spaced-time autocorrelation of the fading envelope is controlled by a Jakes PSD – this imposes *time correlation*

• The instantaneous signal is attenuated to model the desired *average* SNR at the receiver

• Maximum Doppler shift of 4Hz are considered (corresponding to a terminal speed of 1.8 km/h for a 2.4 GHz carrier).
3. The MAC-PHY simulator

- A time sequence of video frames enter the transmit MAC at CBR
- They are buffered in a transmission queue
- For each packet we use the complex channel gain that corresponds to the exact time of transmission
- If an error is detected then no MAC or IP layer retransmission is allowed and the packet is lost
Simulator outputs

MAC Layer
- Frame transmission delay MAC-to-MAC
- MAC Frame Loss Rate
- Throughput

Application Layer
- NAL unit Loss Rate (NLR) per video frame
- PSNR per received video frame
Simulator parameters

- Video sequence comprises 410 frames of H.264 encoded video at an average bit rate of 256kbps.
- Cross-packet AP-FEC can be added for further protection
- Equal frame protection AP-FEC with a depth of 8 packets is used based on an \((n,k)\) Reed Solomon code at rates of 0.875 and 0.75
- Error concealment based on Previous Frame Copy
- Wireless channel modeled for a 4Hz Doppler shift
- Mean received SNR modeled in the range 5–25 dB
- All 802.11a/g link speeds are simulated
NLR and video PSNR

- NLR at the MAC averaged over a 132 ms window (i.e. a video frame)
- Received video PSNR calculated per video frame without FEC
- Results correspond to ½ rate BPSK at 15dB SNR and 4 Hz Doppler
- Results averaged over 7 channel realisations
- Note the very bursty nature of the NLR
- Note the low PSNR that occurs with high NLR
Impact of Cross-packet AP-FEC on PSNR

- Mean PSNR per frame *improves significantly* when cross packet AP-FEC is applied in a slow fading channel (Doppler = 4 Hz)
- AP-FEC with code rate 0.75 approaches the error-free PSNR
Link speed performance

- Plots show average PSNR over all frames (for all 7 channel realisations) versus SNR for all link speeds, without FEC.
- For SNR ≥ 15dB, link speeds 1-3 achieve a PSNR > 30dB.
- When a time decorrelated fading model is used the error burst lengths are very small and it is much easier to conceal the lost NALs – this gives misleading results for static users.
PSNR improvement for a 4 Hz channel

- Average PSNR degradation shown over the entire video sequence as a function of mean SNR and link-speed
- PSNR improvements seen for when AP-FEC is applied
- Received PSNR is very nearly equivalent to transmit PSNR (no degradation) for SNR > 20dB using $\frac{1}{2}$ rate BPSK mode
Comparison of video quality in terms of PSNR

PSNR=19 dB

PSNR=26.3 dB

PSNR=33 dB

PSNR=38 dB
Conclusions

• In order to evaluate the received video quality it is vital to include a time correlated channel model to study the effects of error burst length and channel Doppler effects

• Use of cross-packet AP-FEC with a given depth and code rate can significantly improves the video quality in broadcast applications

• Good quality broadcast reception over 802.11a/g can be achieved for mean SNR >=15dB using error concealment and AP-FEC

• Analysis also needs to consider body shadowing and polarisation mismatch (see paper 8.3-5 at 10.05 tomorrow in Room N262 – “Delivering Live-Action to Handheld Devices: Experimental Results and Recommendations”
Thank you!

Acknowledgments: This work was partly funded by the Technology Strategy Board, UK Technology Programme: Project VISUALISE