Nicolaou, M., Doufexi, A., Armour, SMD., & Sun, Y. (2009). Performance analysis for partial feedback downlink MIMO with unitary codebook beamforming for LTE. In *IEEE International Conference on Communications Workshops, 2009 (ICC Workshops 2009), Dresden, Germany* (pp. 1 - 5). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ICCW.2009.5208022

Peer reviewed version

Link to published version (if available): 10.1109/ICCW.2009.5208022

Link to publication record in Explore Bristol Research

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
I. Unitary Beamforming with Cross-Layer Cooperation
- Unitary Preceding Matrices determined offline.
- Each Mobile Station selects identifies suitable beams that provide preferential channel conditions.
- Beams generated according to a Fourier basis to ensure uniform sector coverage.
- Codebook E consists of a unitary matrix set, $E = [e_1, e_2, \ldots, e_M]$ where e_g is the g-th preceding matrix and e_g^m being the m-th preceding vector. According to the Fourier basis, $e_g^m = \exp\left(\frac{2\pi i m}{M}\right)$.

II. Introduction to Beam Selection with Partial Feedback
- Exploitation of Multiuser Diversity requires Channel Quality Indicator (CQI) feedback from each Mobile Station.
- Unitary Beamforming requires CQI values for each of the preceding matrices resulting in a M-fold increase in uplink feedback overhead.
- MU-MIMO requires CQI values to be fed back for each of the spatial layer of each preceding matrix, resulting in a further increase in uplink overhead.
- The Base Station makes a decision on the optimum preceding matrix and performs resource allocation based on received CQI values.
- Partial Feedback strategies limit uplink feedback overhead by considering only CQI values for a preferred preceding matrix from each Mobile Station.
- Since Mobile Stations decide independently on preferred beams, the Base Station cannot fully optimise resource allocation. We think you could explain this better; i.e. that it’s a joint decision process between MS and BS.
- Partial Feedback algorithms achieve inferior downlink performance with respect to full feedback.

III. Introduction to Beam Selection with Partial Feedback
- Exploitation of Multiuser Diversity requires Channel Quality Indicator (CQI) feedback.
- Unitary Beamforming requires CQI values for each of the preceding matrices resulting in an M-fold increase in uplink feedback overhead.
- MU-MIMO requires CQI values to be fed back for each of the spatial layer of each preceding matrix, resulting in a further increase in uplink overhead.
- The Base Station makes a decision on the optimum preceding matrix and performs resource allocation based on received CQI values.
- Partial Feedback strategies limit uplink feedback overhead by considering only CQI values for a preferred preceding matrix from each Mobile Station.
- Since Mobile Stations decide independently on preferred beams, the Base Station cannot fully optimise resource allocation. We think you could explain this better; i.e. that it’s a joint decision process between MS and BS.
- Partial Feedback algorithms achieve inferior downlink performance with respect to full feedback.

IV. Beam Selection and Group Priorities for SU-MIMO with Partial Feedback
- For SU-MIMO all spatial layers are assigned to the same user.
- Assign the Mobile Station that achieves the highest aggregate SNR on its best beam.
- Consider Theoretical Results for different codebook sizes.

- Consider simulated PHY Performance for Different Beam Selection Strategies.

- Optimising performance on the weak spatial layer for SU-MIMO achieves lower overall bit error rates.
- A simple greedy scheduling approach, results in excessive bit errors due to the low SNR on the weak spatial layer.
- Increased benefits extracted by a higher codebook size.

V. Beam Selection and Group Priorities for MU-MIMO with Partial Feedback
- Different Users can occupy different spatial layers of the same Physical Resource Block (PRB).
- Higher Capacity can be achieved with respect to SU-MIMO due to the exploitation of the additional spatial layer.
- For an increasing codebook size and decreasing Mobile Station number, optimisation of both spatial layers becomes harder. Hence no additional diversity benefits can be extracted from a large codebook with partial feedback.
- For a large number of Mobile Stations, independent users should select the beam that maximises performance independently on a spatial layer.
- For a small number of Mobile Stations, independent users should select the beam that maximises aggregate performance across all spatial layers.

- Best subspace partial feedback criterion achieves performance very close to optimum for $K=50$.
 For smaller numbers of Mobile Stations, optimising performance across both spatial layers becomes less likely. A smaller codebook size should be used to ensure all layers are optimised.

Conclusions
- The use of multiple preceding beams can give rise to increased downlink rates due to additional diversity.
- Conventional Unitary Codebook Beamforming imposes additional uplink feedback overhead.
- Partial Feedback CQI and beam selection strategies for SU-MIMO and MU-MIMO proposed in this paper.
- For SU-MIMO a tradeoff exists between codebook size and number of users. For a large number of users, a large codebook can be used. The beam that maximises gain on a spatial layer, irrespective of other layers achieves performance very close to full feedback.