
Peer reviewed version

Link to published version (if available):
10.1109/EUMC.2009.5296261

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
ABSTRACT: Classic linearization of an RF Power Amplifier (PA) is based on measuring its response to a representative test signal in order to extract pre-distortion parameters. Characterizing an RF PA under 3GPP LTE RF signals requires high speed data acquisition instruments and customized algorithms to estimate its response. In this work, a PA linearization method using a generic probing signal to extract pre-distortion parameters is proposed. A 12W GaN HEMT inverse Class-F structure designed to operate at 900MHz is tested to demonstrate the proof of concept.

\[V_{IN} = I_{IN} + jQ_{IN} \]

\[V_{OUT} = I_{OUT} + jQ_{OUT} \]

\[\text{Complex Gain} = \frac{I_{IN} + jQ_{IN}}{I_{OUT} + jQ_{OUT}} \]

CONCLUSION: A Generic PA linearization method using a generic probing signal to extract pre-distortion parameters is proposed. Due to the use of a relatively slowly varying envelope, the extraction of the pre-distortion parameters is:
- Less sensitive to coarse delay estimation during AM-AM and AM-PM measurements.
- Valid in the presence of various LTE signals which relax the requirements on base band resources.