
Peer reviewed version

Link to published version (if available):
10.1109/LAPC.2011.6114005

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Evaluating the effect of antenna tilt and rotation on antenna performance in an indoor environment

Geoffrey Hilton

Co-authors: Evangelos Mellios, Di Kong, David Halls and Andrew Nix
Aim of study

Undertake an initial evaluation of the performance of antenna elements suitable for a mobile handset for operation at 5.2GHz

- See how performance varies with tilt and rotation of antennas
- Require suitable measured angle of arrival (AoA) data
- Need to benchmark performance
Plan of action

Antenna elements: 3 element types (Cavity-backed Slot, Printed Inverted-F and Dielectric Resonator) at two positions on a small mobile terminal

Propagation data: Combine the measured full (3D) far-field radiation patterns of each antenna with measured AoA data for a laboratory/office space

Terminal orientation: Tilted and rotated in order to determine the variation in performance that is obtained for the 3 transmitter locations

Benchmarking: Results are presented as cumulative distribution functions of directivity relative to a benchmark Hertzian dipole for operation at 5.2GHz
Antenna orientation

Antenna tilted in x-z plane: Range 0° to 60°

Antenna tilted in y-z plane: Range 5° to 45°

Two antenna mounting positions on terminal: 11cm high, 6cm wide, 1.4cm thick
The bigger picture

For full antenna evaluation need to take into account all of this
Transmitter positions

Measurements performed at 10 transmitter locations in Laboratory
- Consider 3 of the transmitter positions here
- Single floor level

Kitchen: non-LoS, diffracted

Corner of laboratory: LoS

Anechoic chamber: non-LoS (door open)
Laboratory environment

Open plan environment:
- Floor area about 18m by 20m
- Ceiling height >3.2m
- High and low level benching
Scanning antenna

Antenna used to scan full Azimuth & Elevation for both V & H-polarisations

Flann dual-polarised horn antenna
- Directivity of 14.5dBi at 5.2GHz
- 30° & 33° HPBWs in principal planes

Co-polar response
Measured far-field radiation patterns (vertical feed)

Cross-polar response
Transmitter in kitchen

Signal intensity as projected onto wall area

Measured data from scanning antenna

Azimuth

Elevation
Signal AoAs

Process raw data to determine AoA components (Tx in Kitchen)

Process is being refined to improve the AoA determination
Corner of laboratory

Corner of room resembles a corner reflector antenna
Main ray paths

The main ray clusters are shown for each of the 3 locations
• azimuth perspective

Colour indicates Tx position:
• Solid lines show highest levels
• Dotted lines indicate the extent of high level signals
Summary of signal strengths

Corner of Lab (LoS)

Kitchen

Chamber

Full azimuth & elevation perspective
• Relative power levels, Tx (V) – Rx (V)
• Blue indicates signal levels of 10dB below peak levels

• Tx (V) - Rx (H) levels are 8.3dB lower for LoS and 3.5dB for Chamber
Measurement repeatability

Kitchen (raw data)

Difference (data normalised to maximum)

Along corridor

Peak value for difference pattern is 7dB lower than raw data

Entrance to kitchen
Antenna orientation - reminder

Top Antenna – ‘horizontal’ mounting
Side Antenna – ‘vertical’ mounting

Antenna tilted in y-z plane:
Range 5° to 45°

Antenna tilted in x-z plane:
Range 0° to 60°

Antenna rotated in x-y plane:
Range 0° to 360°

Apply equal probability for all configurations
Example of antenna tilt

Ideal Dipole
- z-directed
- no tilt
- vertical polarisation

Also need to rotate around z-axis

15° tilt
- Vertical components: 95%
- Horizontal components: 5%

30° tilt
- Vertical components: 81%
- Horizontal components: 19%
Cavity-backed slot antenna

Measured far-field radiation patterns for Element 3 (side)

DRAs & IFAs

Patterns for one of each type of element

Dielectric resonator

Vertical components Horizontal components

Inverted F

York University and Antenova designs
Directivity levels

<table>
<thead>
<tr>
<th>Slot</th>
<th>DRA</th>
<th>IFA</th>
<th>Ideal dipoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Side</td>
<td>Top</td>
<td>Side</td>
</tr>
<tr>
<td>6.8</td>
<td>6.5</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maximum Directivity levels for the elements in dBi

All practical elements on terminal have a Directivity between 5.9 and 8.8dBi

IFA has variation of about 3dB with same element though different position on terminal
Statistical analysis

Cumulative Distribution showing outcome of antenna tilts in two planes with full 360° rotation

Antenna field levels

No. of paths

AoA field levels

Polarisation misalignment

Normalisation: Jz source, no tilt

Solid line – top antenna
Dashed line – side antenna

Vertical and horizontal orientations for all types of element

Cumulative distribution - with respect to Jz source

\[D_{r(norm)} = 10 \log \left(\frac{\sum_{n=1}^{N} g_n C_n \Gamma_n^2}{\sum_{n=1}^{N} d_n C_n \Gamma_n} \right) \]

\[|g_n|^2 = D(\theta_n, \phi_n) \]
Summary of results

Corner of Lab.
Kitchen
Chamber

How to analyse overall performance?
• Plots mainly to right – better overall performance
• Levels below a given threshold, say -5dBi (‘outage’)

Azimuth rotation tends to favour the more omni-directional elements
Vertical Tx favours antennas with more dominant vertical component
Conclusions

AoA data for a number of transmitter locations within an indoor environment are considered, and these show that with no direct (visible) LoS, the signals reaching the receiver tend to be dominated firstly by the diffracted paths and then any reflected paths - these tend to be clustered.

For the environment considered, it is a predominantly ‘static’ environment and hence magnitudes & phases of received signals are similar with repeat measurements.

Variations in element patterns result in directivities ranging from 5.9 to 8.8dBi, though this does not help to identify which element will perform best under the test conditions considered here.

Variations in signal strength of greater than 30dB (with respect to the benchmark dipole) were observed due to polarisation misalignment and pattern directivity.
Where to next?

- Programme of measurements for home & office environments
- Use of access point antennas in addition to monopole Tx
- Use of horizontal and vertical polarisations for Tx

Evaluating system performance on different floors in a terrace house
Any Questions?