
An edited version of this paper was published by AGU. Copyright 2015 American Geophysical Union. To view the published open abstract, go to http://dx.doi.org and enter the DOI.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
An edited version of this paper was published by AGU. Copyright 2015 American Geophysical Union.

To view the published open abstract, go to http://dx.doi.org and enter the DOI.
Quantifying the relative importance of land cover change from climate and land-use in the representative concentration pathways

T. Davies-Barnard1,2*, P.J. Valdes1, J.S. Singarayer3, A.J. Wiltshire4, C.D. Jones4

1 Cabot Institute and School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, UK
3 Department of Meteorology, University of Reading, Reading, UK
4 Met Office Hadley Centre, Exeter, UK

*Corresponding author address: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Laver Building, North Park Road, Exeter, EX4 4QE, United Kingdom. Email: t.davies-barnard@exeter.ac.uk
Key Points

• Land area changed by climate is larger than from land-use change in the RCPs
• Climate-induced forest increases offset 90% of deforestation in RCP8.5
• Land cover change is a net carbon sink when land-use and climate are included

Abstract

Climate change is projected to cause substantial alterations in vegetation distribution, but these have been given little attention in comparison to land-use in the Representative Concentration Pathway (RCP) scenarios. Here we assess the climate-induced land cover changes (CILCC) in the RCPs, and compare them to land-use land cover change (LULCC). To do this, we use an ensemble of simulations with and without LULCC in earth system model HadGEM2-ES for RCP2.6, RCP4.5 and RCP8.5. We find that climate change causes an expansion poleward of vegetation that affects more land area than LULCC in all of the RCPs considered here. The terrestrial carbon changes from CILCC are also larger than for LULCC. When considering only forest, the LULCC is larger, but the CILCC is highly variable with the overall radiative forcing of the scenario. The CILCC forest increase compensates 90% of the global anthropogenic deforestation by 2100 in RCP8.5, but just 3% in RCP2.6. Overall, bigger land cover changes tend to originate from LULCC in the shorter term or lower radiative forcing scenarios, and from CILCC in the longer term and higher radiative forcing scenarios. The extent to which CILCC could compensate for LULCC raises difficult questions regarding global forest and biodiversity offsetting, especially at different timescales. This research shows the importance of considering the relative size of CILCC to LULCC, especially with regard to the ecological effects of the different RCPs.
1. Introduction

The distribution of vegetation across the globe is due to a combination of climatic and anthropogenic influences, both of which are likely to alter over the next century. Dynamic global vegetation models are used to project the distribution of vegetation as the climate changes, and the results of this are referred to here as climate-induced land cover change (CILCC). The human alterations to the land surface are often known as land-use land cover change (LULCC), and encompass variations in agricultural land requirement. Possible scenarios of LULCC are projected in the Representative Concentration Pathways (RCPs) [Hurtt et al., 2011]. The RCPs are a set of future scenarios of climate change used for the 5th Climate Model Intercomparison Project (CMIP5) and the IPCC (International Panel on Climate Change) 5th Assessment Report [Taylor et al., 2012]. They vary in their total radiative forcing increase by 2100, which is indicated by the number of the RCP, (i.e. RCP8.5 has a radiative forcing increase of 8.5 Watts m\(^{-2}\) by 2100 compared to preindustrial levels) [van Vuuren et al., 2011]. The LULCC in the RCPs is prescribed by the scenario, and varies over time, though it is imposed differently between models, resulting in substantial variations [de Noblet-Ducoudré et al., 2012]. The pattern of LULCC in the RCPs has been well documented and is not linearly related to the radiative forcing of the scenario [Hurtt et al., 2011; Jones et al., 2011; van Vuuren et al., 2011; Betts et al., 2013; Brovkin et al., 2013]. Notably, RCP4.5 has afforestation in the mid to high
latitudes and RCP2.6 and RCP8.5 both have tropical deforestation [Hurtt et al., 2011]. LULCC in the RCPs has been extensively researched with regard to its magnitude and importance, [e.g. Thomson et al., 2010; Hurtt et al., 2011; Jones et al., 2012; Lawrence et al., 2012; Brovkin et al., 2013; Davies-Barnard et al., 2014a; Wilkenskjeld et al., 2014]. However, changes in vegetation cover occur due to responses to climatic alterations, as well as direct human influence.

CILCC in the RCPs is simulated dynamic vegetation or some earth system models, but is not a core part of the RCP scenarios, i.e. it is a simulated response, not an imposed forcing or boundary condition. Vegetation in the models is primarily limited by temperature, water availability and carbon dioxide availability to determine the type, distribution and amount of vegetation across the globe. Very few of the CMIP5 earth system models include dynamic vegetation (that is needed to project CILCC) and therefore little work has been done on CILCC in the RCPs, especially for the time period up to 2100. Briefly discussed in the IPCC 5th Assessment Report [Ciais et al., 2013], CILCC tends to be considered over longer timescales (for instance 2100 – 2300) and not in the context of LULCC. Recent research that does examine the 2005 - 2100 CILCC in the RCPs is hampered by the fact that the land cover changes are generally combined together within the standard RCP output [Betts et al., 2013], making it difficult to ascertain what is LULCC and what is CILCC. Understanding CILCC is crucial to understanding both the magnitude of progressive changes (which we focus on here) but also allow the identification of potential regional ecological thresholds where abrupt and irreversible changes occur, e.g. Amazon dieback [Good et al., 2012].

We aim here to highlight the importance of including CILCC in discussions of land cover change (LCC) in the RCPs. To do this, we disentangle vegetation changes induced by land-use change (LULCC), and vegetation changes induced by changes
to climate and atmospheric composition (CILCC). We use an ensemble of simulations of a selection of the RCP scenarios with and without LULCC in earth system model HadGEM2-ES (section 2). We show that for crucial aspects of environmental change in this model, such as forest and land carbon change (section 3), CILCC is often comparable and sometimes larger than LULCC. We conclude that CILCC has significant impacts for ecosystem change that are at least as big as those for LULCC (section 4) and the exact magnitude of these changes is a key research question that should be addressed.

2. Methods

2.1 Model and model simulations

We use the Met Office Hadley Centre’s coupled ESM, HadGEM2-ES [Collins et al., 2011; Martin et al., 2011]. This coupled model includes the MOSES2 (Met Office Surface Exchange Scheme) land-surface scheme [Essery et al., 2001]; the TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics) dynamic global-vegetation model in dynamic mode [Cox, 2001]; the HadGEM1 physical model [Martin et al., 2006]; and interactive ocean biogeochemistry, terrestrial biogeochemistry and dust and interactive atmospheric chemistry and aerosols. The atmosphere component contains 38 1.875° x 1.25° levels and interacts with water, energy and carbon within the land surface scheme [Essery et al., 2003] and the dynamic vegetation model [Cox, 2001].

Within the dynamic vegetation land surface part of the model there are nine land surface types, including five plant functional types: broadleaf tree, needle leaf tree, C₃ and C₄ grasses and shrubs; and inland water, ice and urban. The model does not
distinguish between primary and secondary land types. The agricultural fraction is imposed as an area where broadleaf and needle leaf trees and shrubs cannot be grown. Crops are physiologically identical to grasses in the model. Increases in agricultural fraction within a gridbox are preferentially expanded into existing grass areas, only converting trees to agricultural land when the other PFTs are not available. The vegetation distribution in the model is determined by a hierarchy based on height. This results in there being a succession from grasses to shrubs and then needle leaf and broadleaf trees, as the climate becomes suitable. The dynamic global vegetation model within HadGEM2-ES, TRIFFID, is a well known and used model, extensively documented in Cox et al., [1998] and Clark et al., [2011]. It is one of the models used in the multi-model Global Carbon Project annual carbon budgets [Le Quéré et al., 2014a, 2014b]. It has been the land surface model for several generations of the Hadley centre climate model, and therefore used in the IPCC’s assessment reports, including the most recent [Stocker et al., 2013]. The present day vegetation distribution within HadGEM2-ES is assessed in [Collins et al., 2011] and shows good agreement with present day distributions. For the tropical forests in particular, Good et al., [2012] shows that the distribution in climate space validates well. The model inter-comparison by Anav et al., [2013] shows that HadGEM2 has a reasonable representation of the land carbon stores.

The model setup is as for the HadGEM2-ES CMIP5 simulations [Jones et al., 2011] and the LUCID (Land-Use and Climate, IDentification of robust impacts) simulations of RCPs [Brovkin et al., 2013], using a fully dynamic atmosphere and ocean model. We use simulations of three of the RCP scenarios: RCP2.6, RCP4.5 and RCP8.5, from 2006 to 2100. Four ensemble members are initialised from historical simulations that ran from 1850 – 2005, and run for 95 years up to 2100. Two sets of simulations are used for each RCP – the standard RCP that includes LULCC, and a simulation where the agricultural fraction remains at the 2005 levels. For the simulations without
LULCC, all non land-use forcings (greenhouse gas concentrations and other aerosol forcings, etc.) are prescribed as for the equivalent RCP [Meinshausen et al., 2011].

2.2 Use of Simulations

The LULCC is taken here to be the change in the agricultural fraction imposed onto the model by the RCP scenario. It is inferred from the difference between the normal ‘RCP’ scenarios (with LULCC) and the ‘NoLUC’ scenarios (without LULCC) for the last year of the simulations (2100). The CILCC is taken here to be the changes in vegetation caused by anthropogenic climate change over the period 2005 – 2100. This is inferred from the difference between the mean of the 2005 NoLUC values compared to the 2100 NoLUC values. The net changes are considered to be the standard 2005 NoLUC values compared to the RCP 2100 values. The net changes include both CILCC and LULCC changes. So the LCC calculations can be described thus:

\[
\text{LULCC} = \text{RCP}^{2100} - \text{NoLUC}^{2100} \\
\text{CILCC} = \text{NoLUC}^{2100} - \text{Fix2005}^{2100} \\
\text{Net LCC} = \text{RCP}^{2100} - \text{Fix2005}^{2100}
\]

Where the Fix2005 is a fixed 95 years of the 2005 land cover. Figure 1 shows how we diagnose the vegetation and carbon changes.

Even without changes in land cover, terrestrial carbon storage in biomass and soil organic matter is projected to alter due to changes in vegetation productivity, turnover, litter input to soil and soil conditions (such as temperature and moisture). Therefore to assess the CILCC separately to the accumulated vegetation carbon (not
from LCC), a control without CILCC, LULCC but with accumulated carbon is required. These were not feasible to run as fully coupled simulations due to the computational expense, so we extrapolated the control baselines of 2005 land cover including the increases to land carbon from increased carbon dioxide and temperature, but exclude the changes from LCC. These extrapolated values are used as a ‘control’ scenario (Fix2005) with which to infer the amount of land carbon attributable to CILCC from the anomaly. Therefore the land carbon changes can be described thus:

\[
\begin{align*}
\text{LULCC carbon} &= \text{RCP}^{2100} - \text{NoLUC}^{2100} \\
\text{CILCC carbon} &= \text{NoLUC}^{2100} - \text{Fix2005}^{2100} \\
\text{Net LCC carbon} &= \text{RCP}^{2100} - \text{Fix2005}^{2100} \\
\text{Accumulated carbon} &= \text{RCP}^{2100} - \text{RCP}^{2006}
\end{align*}
\]

To obtain the grid box vegetation carbon, the carbon on each plant functional type (PFT) tile is weighted by the proportion of each PFT in the grid box. Therefore to approximate the vegetation carbon without any LCC, we weighted the 2100 vegetation carbon on each PFT tile by the 2005 vegetation PFT distribution (rather than the 2100 PFT distribution). This gives what the vegetation carbon would be in no LCC simulations, (excluding LULCC and CILCC, but including accumulated carbon).

To estimate the soil carbon, we take the 2005 soil carbon and scale it annually with the 2005 litter carbon and soil respiration. The soil carbon is updated each year with the input of carbon from litter carbon and then the soil respiration (which scales with the amount of soil carbon) is removed. To estimate the soil carbon, we therefore start with the 2005 soil carbon, add the litter carbon weighted by the difference between the 2005 and ‘n’ year PFTs, then take away the respiration weighted by proportional
difference between the 2005 soil carbon and the ‘n’ year soil carbon. This is repeated from n=2005 to n=2100. Thus the calculation used is:

\[
C_{nlcc}(n+1) = C_{nlcc}(n) + [LIT_{nlcc}*(PFT_{original}/PFT_{2005}(n))] - [RH_{original(n)}*(C_{nlcc}(n) / C_{original}(n))]
\]

where ‘nlcc’ is the constructed value, ‘original’ is the original RCP simulation value, \(C\) is soil carbon, \(LIT\) is litter carbon, \(PFT\) is the plant functional types on tiles, and \(RH\) is soil respiration.

These offline calculations of the global soil and vegetation carbon values use the same equations as the land surface model, JULES [Clark et al., 2011] that is within the coupled model. This approach has the advantage that a global value for the land carbon can be produced very efficiently and has been demonstrated as effective in other instances (for instance Liddicoat et al., [2013]).

3. Results

3.1 Forest

The most notable CILCC is a global increase in forest (needle leaf and broadleaf trees) that has an approximately proportional relationship with the total radiative forcing of the scenario (see Figure 2d). This is in contrast to the LULCC, which is scenario dependent and does not have the relationship with net climate forcing that might be expected. RCP2.6 and RCP8.5 both have substantial deforestation, whereas RCP4.5 has afforestation (Figure 2d). Though RCP2.6 and RCP8.5 have very similar levels of anthropogenic deforestation, their net forest change is very
different. In RCP2.6, the CILCC offsets only 3% of anthropogenic deforestation, whereas it offsets 91% in RCP8.5. The larger increase in CILCC forest in RCP8.5 is due to higher temperature and atmospheric carbon dioxide concentration, which allows more poleward expansion of forest than in RCP2.6 (see Figure 2e, 4a and 4b).

The LULCC and CILCC forest fraction changes have noticeably different latitudinal patterns, with the tropics contributing more to LULCC and the boreal forests contributing more to CILCC. The net changes in the boreal forest latitudinal band (Figure 2e) are dominated by the CILCC increases in forest, with only relatively small LULCC. The tropics show the opposite pattern, with little CILCC and the net forest change dominated by the LULCC (see Figure 2f). Because of this, there are only a small number of isolated gridcells where both LULCC and CILCC are both strong.

Globally, most of the LULCC in RCP2.6 and RCP8.5 is in the tropics, and most of the CILCC is boreal. RCP4.5 is slightly different, as there is extensive mid to high latitude afforestation due to the scenario’s universal carbon tax making afforestation a viable mitigation option [Thomson et al., 2010, 2011]. However, all three RCP scenarios considered here have positive net forest contributions from boreal forests, mainly from CILCC, and net tropical contributions that result mainly from LULCC.

The balance of CILCC and LULCC is different at the centennial and mid-Century time scale. The LULCC occurs relatively earlier, since LULCC agricultural expansion is instantaneous as it imposed in each year within the model. The CILCC vegetation expansion happens more gradually and therefore slightly later, as the expansion of vegetation northwards is commensurate with the increase in temperature and carbon dioxide. It also takes around 80 years in this model for abandoned agricultural land to fully reforest in the model. By 2050, globally there is very little CILCC (see Figure 2 a, b and c) and consequently there is much more influence of LULCC on the net boreal
forest LCC than at 2100. Thus the global forest amount at 2050 is more strongly
influenced by the tropics and LULCC. Because of the lack of CILCC at 2050, the net
LCC of RCP2.6 and RCP8.5 are much more similar than at 2100. The impact of
timescale on the balance of whether LULCC or CILCC is most dominant continues
further into the future. The relatively slow rate of forest growth means that for a
transient climate forcing, as is projected in the RCPs, there will be committed
vegetation changes for some time after the forcing stops [Jones et al., 2009].
Therefore on the multi-centennial scale, CILCC is likely to be more important than
LULCC.

In the tropics, there is only very slight dieback of broadleaf trees (Figure 2d and
Figure 4a) in favour of C4 grasses. Amazon dieback was a well known feature in
previous versions of the Hadley Centre model (notably HadCM3) and was primarily
caused by changes to precipitation over the Amazon under climate change [Cox et
al., 2003, 2004; Betts et al., 2004; Huntingford et al., 2008; Malhi et al., 2009].
Amazon dieback is absent in this version of the model (HadGEM2-ES), with only up
to 10% dieback over the southern edges of the Amazon (Figure 4a) [Good et al.,
2012]. However, since the dieback is approximately the same magnitude in all three
RCPs considered here, this suggests that a relatively small change in climate may
still trigger a tipping point in the Amazon in this model, which increases in carbon
dioxide only very slightly compensate for (Figure 2f). In the tropics overall, this
Amazon dieback is mitigated by increase in broadleaf trees over the Congo basin,
where shrubs give way to broadleaf trees as the climate warms (see Figure 4a and
4c). This gives the result that in RCP2.6 the tropics has a slight decrease in forest
from CILCC, but RCP4.5 has a slight increase, again aiding the mitigation of LULCC
in higher radiative forcing scenarios like RCP8.5, but not RCP2.6.
3.2 All vegetation

Considering the LCC across all vegetation types, CILCC is larger than LULCC at 2100 in all the scenarios considered here (Figures 3, 4, and 5). As a per cent of global land area, CILCC is only slightly more than LULCC in RCP2.6 and RCP4.5 (CILCC: 3.2% and 5.5%; LULCC 2.9% and 5.1% respectively). However, for the high scenario, RCP8.5, the CILCC and LULCC are 8.6% and 3.9% respectively, making CILCC a factor of two bigger. The LCC values quoted above are the conservatively calculated net figures, in that no annual or decadal variations are included and the values are the simple total difference in the amount of a PFT globally between 2005 and 2100 (rather than including changes of the same land type moving to different areas) [Pongratz et al., 2014; Wilkenskjeld et al., 2014]. Methods of LCC calculation that included the gross changes would probably give higher CILCC values because the shifts in the PFTs would be accounted for, whereas the current method mainly accounts for the expansions. The majority of the CILCC expansion is broadleaf trees at the high latitudes (Figure 4 a) but there are shifts in vegetation all the way down the order of vegetation succession (Figures 4 and 5). As the temperature and carbon dioxide increase, more dominant or more appropriately adapted PFTs are able to move into the regions previously unable to support them. The C_3 grasses colonise furthest north, replacing the areas of bare soil and C_4 grasses (Figure 5). However, since the dynamic vegetation in the model works on a height hierarchy, shrubs and then trees have competitive advantage over grasses as the climate becomes appropriate for them, causing shrubs and then trees to move into areas previously occupied by C_3 grasses (Figures 4 and 5). Broadleaf trees are the most dominant PFT in the model, and therefore have an expansion with little dieback and the other PFTs have shifts. Thus the net change can be small even when the gross change is much more widespread, because the net change doesn’t account for the shifts. Therefore the result that CILCC is larger than LULCC is likely to be robust for all the
RCP scenarios considered here, as by excluding shifts in distribution it is quite conservative.

3.3 Carbon cycle

CILCC is the largest contributor to carbon changes from net LCC and determines the signal (Figure 6a). The land carbon changes from CILCC are larger than those from LULCC in all the scenarios considered here. The net land carbon change is a sink in all three scenarios, strongly influenced by the CILCC. Soil carbon is the biggest contribution from CILCC, and is several times the size of the LULCC soil carbon change (Figure 6b). The difference in the change in soil carbon due to CILCC and LULCC is because of changes in Net Primary Production (NPP) that increase the inputs to the soil carbon [Jones and Falloon, 2009]. This is in line with the overall change in soil and vegetation carbon for all land cover (not just changed) from 2006 – 2100, which increases by 180 - 425 GtC carbon globally over the 95 year simulation (see Figure 6d, e and f). The expansion of vegetation into areas previously allocated as bare soil due to CILCC means that more litter is available to increase the soil carbon. For deforestation LULCC, the soil carbon increases a little under deforestation because some of the below ground biomass carbon goes into the soil. But the LULCC soil carbon in afforestation scenario RCP4.5 has soil carbon emissions because the trees replacing the grass have marginally lower NPP and therefore there is a loss of soil carbon. Note that the Gross Primary Production is higher for trees overall, but also trees also have higher maintenance requirements, and thus can have lower NPP. Vegetation carbon (Figure 6c) shows the opposite trend to soil carbon, with the LULCC carbon changes larger than the CILCC. The vegetation carbon changes for both CILCC and LULCC are similar to the equivalent changes in forest fraction, as in this model trees are the main stores of vegetation carbon (compare Figure 6c with Figure 2d). However, this model does not represent
any harvesting processes, which if included, would probably drive the soil carbon
input down rather than up, for conversion to crops (by reducing the litter inputs
when the harvest is removed elsewhere). Despite these uncertainties, these
simulations suggest that net LCC is a carbon sink in all the RCPs considered here
and the contribution of CILCC is larger than LULCC.

The LCC also affects the climate through changes to the atmospheric greenhouse
gas concentration. The net LCC carbon change gives a cooling (Figure 6a)
amounting to -0.02 K in RCP2.6, -0.21 K in RCP4.5, and -0.18 K in RCP8.5
(calculated using the HadGEM2-ES transient climate response to emissions [Gillett
et al., 2013]). It is notable that including CILCC changes the sign of the climate
effects of net LCC in two of the RCPs. The LULCC carbon only climate impacts are
+0.04 K, -0.08 K and +0.04 K (for RCP2.6, 4.5 and 8.5 respectively) [Davies-Barnard
et al., 2014b]. The contribution of CILCC to the carbon sink is larger than LULCC in
all of the RCPs considered here, with RCP8.5 approximately four times larger.
Further, the CILCC is also critical in maintaining the airborne fraction of emissions.
The LULCC and increasing fossil fuel emissions historically have reduced the
proportion of land-uptake of anthropogenic carbon emissions [Canadell et al., 2007].
The CILCC, particularly the increase in forest fraction shown in Figure 2, means that
the reduced carbon sink from LULCC is partially offset by the increase in the CILCC
carbon sink [Jones et al., 2012]. Therefore CILCC plays a significant role in the
climatic impacts from net LCC.

4. Discussion and Conclusions

Comparing the CILCC and LULCC, we find that the CILCC has a significant impact,
and in some cases a larger impact than LULCC. In all the RCPs we see a poleward
expansion and succession of vegetation, as found by field and model studies of the
response of vegetation to climate changes [Emanuel et al., 1985; Prentice et al.,
1991; Woodward et al., 1998; Walther et al., 2002; Soja et al., 2007; Colwell et al.,
2008; Betts et al., 2013]. The increased temperature opens up new regions that were
previously too cold to support vegetation, especially in the high latitude northern
hemisphere [MacDonald et al., 2008]. This contrasts with LULCC in the RCPs, which
is mainly in the tropics. In RCP4.5 the CILCC and LULCC globally work in parallel,
giving a larger overall LCC, whereas in RCP2.6 and RCP8.5 the CILCC and LULCC
offset each other.

The large CILCC in RCP8.5 means that it has a form of ‘forest offsetting’ over time
between the deforestation in the tropics and the northward expansion of boreal
forest. In RCP8.5, 91% of the anthropogenic deforestation is offset by CILCC. This
could be perceived as a potential way to offset the biodiversity loss, in a similar way
to biodiversity offsetting [Maron et al., 2012; Reid, 2013] – compensating for the loss
of tropical forest with boreal forest. However, offsetting of the total forest loss globally
is an incomplete story. Tropical forests especially tend to be areas of high
biodiversity [Myers et al., 2000] and established primary forests are more diverse
than secondary forest [Gibson et al., 2011]. This could be the cause of substantial
losses of global biodiversity if tropical forest were offset by boreal forest. The
northward shift of forest could also cause loss of some extreme cold adapted habits.
Ecosystems allocated in the model as ‘bare soil’ (because none of the model’s plant
functional types are able to sustain growth there) or C\textsubscript{3} grasses, could be lost
entirely. It is difficult for land surface models to effectively simulate these marginal
environments but they are nonetheless important and unique ecosystems.

In the short term, the net LCC would almost certainly cause losses of biodiversity.

Although over the full time period to 2100 the forest changes in RCP8.5 almost
cancel out, in the period up to 2050 they do not. This question of the time lag is
particular problem for biodiversity offsetting, as certain decreases are balanced
against uncertain increases [Moilanen et al., 2009; Bekessy et al., 2010]. Probable
extinctions in the tropics from LULCC would be unlikely to be meaningfully
compensated for by CILCC expansion of boreal forest. Furthermore, it is possible
that much of the forest gains would be not be realised, due to ‘boreal dieback’ from
effects such as increasing destruction of forests by pests [Kurz et al., 2008]. A forest
offsetting policy that relied on CILCC would essentially be ‘betting’ on vegetation
changes that may be slow or unable to be realised, whilst sacrificing established
ecosystems.

From the point of view of ecosystem disruption, the greater amount of CILCC than
LULCC would suggest that CILCC would cause more disruption in all three of the
RCP scenarios considered here. However, habitat destruction, particularly
conversion of land to agricultural use, is thought to be the most important driver of
biodiversity loss, with climate change less important [Hassan et al., 2005]. Since the
CILCC is only slightly higher than the amount of LULCC in RCP2.6 and RCP4.5, it is
possible that LULCC may have a bigger impact on biodiversity in these scenarios.
For RCP8.5, CILCC would likely still be a larger impact on biodiversity, since the total
area affected by CILCC is more than double than from LULCC. As well as the extent
of the impact, the duration also should be taken into account. After stabilisation of the
forcing, the effects of LULCC drop off, whereas the CILCC continues as the
vegetation reaches equilibrium. The CILCC is likely to continue well beyond 2100 for
decades or even centuries after the forcing has stabilised [Jones et al., 2010;
Liddicoat et al., 2013]. Comparing the disruptive impact, CILCC could be a more
serious challenge than LULCC, particularly in RCP8.5, because of the longevity and
quantity of impact, even if the severity is lower.
The important role of CILCC in terrestrial carbon changes highlights how critical it is to reduce the uncertainty in carbon cycle projections. CILCC accounts for 14 – 22% of total terrestrial carbon changes (depending on the RCP scenario), whereas LULCC only accounts of 6 – 12% (Figure 6). Soil carbon is the biggest contributor to the land carbon change from CILCC in the model used here, around two to three times larger than vegetation carbon change. However, soil carbon change is highly variable between models, in both net sign and magnitude [Nishina et al., 2014]. Some models project a global decrease in land carbon under climate change and JULES (the offline land surface model of HadGEM2-ES) is on the high side of the projections of soil carbon changes [Nishina et al., 2014]. This is likely to be related to the model’s sensitivity to carbon dioxide fertilisation, as this (rather than temperature) is the main driver of change in soil carbon in models [Nishina et al., 2014]. Further, the vegetation carbon increase from LULCC afforestation (in RCP4.5) and CILCC may be overestimated because of lack of nitrogen limitation in the model [Gruber and Galloway, 2008; Jain et al., 2013]. Conversely, the LULCC deforestation carbon change is small in HadGEM2-ES compared to other models [Brovkin et al., 2013]. However, the soil carbon storage size and future sink size is highly uncertain, and its representation here is one of many possible outcomes.

The carbon effect of net LCC is also influenced by two processes not directly included in the model used in these simulations: secondary LULCC and negative emissions using bioenergy with carbon capture and storage (BECCS). The carbon changes from secondary land use changes (for instance natural to managed forest, which isn’t accounted for in this model) can be substantial and may account for more carbon emissions than primary land use changes [Shevliakova et al., 2009; Hurtt et al., 2011; Lawrence et al., 2012]. Similarly, BECCS for the RCP2.6 scenario could give negative emissions of between 43.8 to 160.6 GtC [Kato and Yamagata, 2014]. According to those projections, the potential of BECCS likely to be bigger than the
net land carbon change in any of the three RCPs considered here (8, 101 or 83 GtC for the three RCPs respectively, see figure 5 a). Therefore the lack of representation of secondary LULCC and BECCS is a considerable limitation to this study. It is also notable that the total land carbon change (including non LCC effects) is at least four times the size of the change in land carbon from LCC in this model (see figure 5 d – f). Thus the contribution of LCC to overall global carbon emissions is relatively small. However, even though the carbon effects of LCC are not substantial, other environmental impacts of LCC may be worth considering in decision making, as discussed above.

The relative lack of analysis of CILCC in the RCPs can be attributed to a combination of possible causes, including a perceived lack of need and high uncertainty. Few of the CMIP5 models include dynamic vegetation (that projects CILCC) and only around half of the CMIP5 models have vegetation carbon cycle components (19 of 38 models, [es-doc, 2014]). Although there is a slight computational cost of including dynamic vegetation to calculate CILCC in earth system models, the first implementations of the terrestrial carbon cycle were around 14 years ago [Cox et al., 2000], so this is evidently not a case of inability. LULCC can be imposed onto a model using values from the Integrated Assessment Model that created the scenario, without the need for dynamic vegetation or an integrated terrestrial carbon cycle. This method excludes CILCC, and suggests a viewpoint that CILCC is not important or required. This perception is exacerbated by high uncertainty in climate-induced changes to terrestrial carbon storage. Land carbon differences within the parameter range of an individual model can be as big as the differences between the RCPs themselves [Booth et al., 2012] and are highly variable between models [Nishina et al., 2014]. This uncertainty presents a considerable challenge. But by neglecting to examine CILCC, we may be overestimating the importance of LULCC and misestimating land carbon change by as much as 22%.
Comparing the changes from CILCC and LULCC over 2006 – 2100, we have shown that not only is the CILCC the majority of net LCC, it is also the larger part of land carbon changes from net LCC. Moreover, even where CILCC is not as large as LULCC, as in the case of forest change, it gives rise to issues of offsetting. To what extent forest lost in the tropics could be substituted by boreal forest is both a qualitative and a quantitative issue. Our results suggest that CILCC in RCP8.5 may be able to quantitatively offset the deforestation, whereas it cannot in RCP2.6. Whether such forest offsetting would provide equivalent ecosystem and climate services is much more uncertain, and would be a useful extension to this work. Our work shows that CILCC is an important aspect of the land surface in the RCPs. If the potential size of the climate change impact caused or mitigated by an aspect of the earth system is a guide for the amount of research that should be done on a topic, then CILCC perhaps warrants more research.

Acknowledgements

We acknowledge funding from the Joint DECC/DEFRA Met Office Hadley Centre Climate Program (GA01101); the Natural Environment Research Council Dtg (NE/J500033/1); and the European Commission's 7th Framework Program Grant Agreement 282672 (EMBRACE). The data used in this paper is available from the Met Office Hadley Centre upon request. Thank you to the anonymous reviewers, who improved the paper with their comments.

es-doc v0.9.0.1 CMIP5 Model Component Properties, http://prod.static.esdoc.webfactional.com/js_client/demo/prod/comparator.htm

Essery, R., M. Best, and P. Cox (2001), *MOSES 2.2 technical documentation*, Hadley Centre Technical Note.

Lawrence, P. J. et al. (2012), Simulating the Biogeochemical and Biogeophysical Impacts of Transient Land Cover Change and Wood Harvest in the Community Climate System Model (CCSM4) from 1850 to 2100, *J. Clim.*, 25(9), 3071–3095, doi:10.1175/JCLI-D-11-00256.1.

Liddicoat, S., C. Jones, and E. Robertson (2013), CO2 Emissions Determined by HadGEM2-ES to be Compatible with the Representative Concentration

Figure Captions

Figure 1. Conceptual diagram of the simulations and how the different diagnostics used in the paper are calculated.

Figure 2. Changes in forest fraction (in per cent of total global land area) (top) globally, (middle) temperate/boreal forest area (33.75 N – 83.75 N, mid to high latitude Northern hemisphere) and (bottom) the Tropics (16.25 S – 21.25 N). For left column (a – c) 2050-2006 and for right column (d – f) 2100 – 2006.
Figure 3. The LULCC 2005 to 2100, encompassing the agricultural fraction changes (crop and pasture land).

Figure 4. Change in woody veg surface types, 2100 – 2005 from CILCC. Rows from the top: Broadleaf trees, needleleaf trees, shrubs.
Figure 5. Change in selected non woody vegetation/surface types from CILCC, 2100 – 2005. Rows from the top: C₃ grasses, C₄ grasses, bare soil.

Figure 6. Anomaly of total global land carbon storage changes from different sources, 2100 - 2005. For a) – c) LULCC, CILCC and Net (LULCC+CILCC). For d) – f) the Accumulated carbon storage change (from all land surface, not just LCC). Separated into: a) and d) vegetation and soil carbon; b) and e) soil carbon; c) and f) vegetation carbon. Note that the scale for d) to f) is 4 times larger than for a) – c).