14C Enrichment of Surface Deposits on Oldbury Reactor Core Graphite Determined by Secondary Ion Mass Spectrometry and Thermal Oxidation/Liquid Scintillation Techniques

Liam Payne, Peter J. Heard and Thomas B. Scott
Irradiated graphite

- Historically, the United Kingdom has built a number of graphite moderated reactors.
- Many of these reactors are in the process of decommissioning.
- Majority of the graphite classified as Intermediate Level Waste (ILW).
- Significant quantity for eventual disposal in a Geological Disposal Facility (GDF)
Sample provenance

- 49 samples
 - 6 x fuel channels
 - 2 x interstitial channels
- Oldbury reactor one
- Before receiving at UoB:
 - All samples had Bulk Density by Immersion (BDI)
 - One sample (Q15C5 6L/1) analysed for open pore volume and differential thermal oxidation

Blue = Fuel Channel
Red = Interstitial Channel
Scanning Electron Microscopy

Channel Wall Face

Inner Brick
Scanning Electron Microscopy

Channel Wall Face

Inner Brick
SEM-FIB

Channel Wall Face

Inner Brick
Channel Wall Face

Inner Brick

SEM-FIB
Secondary Ion Mass Spectrometry

- Incident gallium ion beam sputters the sample surface
- Secondary ion mass fragments generated
- Mass/Charge (m/z) ratio and intensity measured using Magnetic Sector mass spectrometer
- Corrections needed for interference peaks
- Low spectral resolution compared to commercial instruments
- **Ability to analyse radioactive samples**
SIMS Results

M10
4L: 55.3 ± 6.7 ppm
EDND: 38.18
7L: No coating present (< LOD)
EDND: 42.14

J01A4
4U: No coating present (< LOD)
EDND: 15.42
7U: No coating present (< LOD)
EDND: 15.55

F16
4L: 26.1 ± 3.1 ppm
EDND: 38.18
7L: 22.7 ± 5.5 ppm
EDND: 42.14

L13B2
4L: 28.8 ± 4.3 ppm
EDND: 45.22
7L: 12.8 ± 1.5 ppm
EDND: 49.92

Q15C5
2U: 20.8 ± 3.9 ppm
EDND: 26.54
7L: 13.2 ± 3.9 ppm
EDND: 51.22
11U: 5.3 ± 1.8 ppm
EDND: 15.48

N15A4
4U: 24.9 ± 8.9 ppm*
EDND: 28.78
8U: 19.2 ± 1.1 ppm
EDND: 26.49

J15B5
4L: 28.5 ± 4.9 ppm
EDND: 45.52
7L: 6.6 ± 0.6 ppm
EDND: 49.92

E19B5
4U: 24.6 ± 0.8 ppm
EDND: 26.05
7U: 5.4 ± 1.4 ppm
EDND: 23.77

*Indicates thin coating sample

EDND: Equivalent DIDO Nickel Dose
ppm: Parts Per Million
SIMS-Conclusions

- Inner brick slices give results below the limits of detection (estimated at approximately 2 ppm)
- Channel wall faces appear to be ^{14}C enriched when deposit is present
 - 5-60 ppm
 - Samples lower in the channel appear to have higher concentration
 - Does not appear to be correlated with lifetime neutron dose (EDND)
- Ion maps show the ^{14}C is uniformly distributed in the deposit

For full details see: L. Payne, P. J. Heard and T. B. Scott. “Enrichment of C-14 on surface deposits of Oldbury reactor graphite investigated with the use of Magnetic Sector Secondary Ion Mass Spectrometry (MS-SIMS).” WMSymposia2015 proceedings
Thermal Oxidation/LSC

- Oxidation Tube
- Air Supply
- Furnace
- Flow Meter
- Wash Bottle
- Bubbler System
Thermal Oxidation/LSC

Experimental run 1:
• 450 °C for 50 hours
• 50 mL/min air
• Copper catalyst
• Aliquots taken at 0, 1, 2, 3, 5, 8, 10, 25, 35 and 50 hours
• Counted using LSC for 60 minutes

Experimental run 2:
• 600 °C for up to 145 hours (full oxidation)
• 50 mL/min air
• Copper catalyst
• Aliquots taken at 0, 1, 2, 3, 5, 7 hours and others up to final duration (depending on lab access)
• Counted using LSC for 60 minutes
Thermal Oxidation/LSC

Red - 600 °C
Black - 450 °C

Q15C5 2U Slice 1

Q15C5 2U Slice 2

Q15C5 7L Slice 1

Q15C5 11U Slice 1
450 °C

Q15C5 2U Slice 1

Q15C5 2U Slice 2

Q15C5 7L Slice 1

Q15C5 11U Slice 1
600 °C

Q15C5 2U Slice 1

Q15C5 2U Slice 2

Q15C5 7L Slice 1

Q15C5 11U Slice 1
Activity per mass

![Graph showing Activity per mass](image)

- **14C activity (Bq/g)**
- **Temperature (°C)**

Legend:
- Q15C5 2U 1
- Q15C5 2U 2
- Q15C5 7L 1
- Q15C5 11U 1
Total activity

^{14}C activity (Bq)

Temperature (°C)

- Q15C5 2U 1
- Q15C5 2U 2
- Q15C5 7L 1
- Q15C5 11U 1
Comparison between SIMS/LSC

Mass of 14C (g) = Activity of 14C (Bq)/Specific activity of 14C (1.65×10^{11} Bq/g)

14C concentration (ppm) = Mass of 14C (g)/Mass of material (g)

<table>
<thead>
<tr>
<th>Sample</th>
<th>14C concentration SIMS (ppm)</th>
<th>14C concentration LSC (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q15C5 2U Slice 1</td>
<td>20.8 ± 3.9</td>
<td>20.9</td>
</tr>
<tr>
<td>Q15C5 2U Slice 2</td>
<td>4.1 ± 3.4</td>
<td>2.8</td>
</tr>
<tr>
<td>Q15C5 7L Slice 1</td>
<td>13.2 ± 3.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Q15C5 11U Slice 1</td>
<td>5.3 ± 1.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Thermal Oxidation/LSC
Conclusions

• Rapid initial release of 14C at 450 °C from channel wall face samples with significant deposit.
 • Inner brick sample still shows significant 14C release at 450 °C
 • Adsorbed precursor species
• Initial release of 14C at 600 °C from all samples
 • Surface (and subsurface) complexes from coolant gas
• Slow later release of 14C at 600 °C from all samples
 • Precursor species located in the graphite lattice
Conclusions

• Samples exposed to channel wall face (usually) have a pronounced carbonaceous deposit present

• Inner brick samples do not have such a deposit but have microstructural changes present associated with a lifetime in a nuclear reactor

• SIMS and LSC analysis highlights a relative enrichment in 14C on the channel wall face deposits.
 • This enrichment appears to be influenced by location within the reactor but not with lifetime neutron dose

• 14C located in this deposit could be more labile than 14C located in bulk graphite
Acknowledgements

The authors would like to thank Magnox Ltd. for their support. This work was funded by EPSRC and Radioactive Waste Management in the UK under the GeoWaste contract (EP/I036354/1).
14C Enrichment of Surface Deposits on Oldbury Reactor Core Graphite Determined by Secondary Ion Mass Spectrometry and Thermal Oxidation/Liquid Scintillation Techniques

Liam Payne

Liam.payne@Bristol.ac.uk

+44 (0) 117 331 7683
SIMS - Irradiated Graphite

Counts vs. m/z

- 16 = O⁻
- 24 = 12C₂⁻
- 26 = 12C14C⁻
- 28 = 14C14N⁻
- 28 = 12C16O⁻
SIMS- Ratios

- **m/z 14:**
 - ^{14}C
 - ^{14}N
 - $^{12}\text{CH}_2$

- **m/z 28:**
 - $^{14}\text{C}_2$
 - $^{14}\text{C}^{14}\text{N}$
 - $^{14}\text{C}^{12}\text{CH}_2$
 - $^{12}\text{C}^{16}\text{O}$
 - N_2
 - $^{12}\text{CH}_2\text{N}$
 - Si

More possible ^{14}C containing species
Can investigate effects of oxygen
EDX data suggest these are not present
- Isobaric mass interference effects still present in raw spectra
- Geometrical and location effects on signal
 - use of ratios negates these effects
 - 28:24
 - 16:24
Irradiated PGA graphite samples

- Depth profile 1800 seconds on 300 µm² area
- Depth approximately 300nm
- Six repeats of different areas on each surface
- Ratios calculated
 - 28:24 (¹⁴C₂:¹²C₂)
 - 16:24 (¹⁶O:¹²C₂)
 - 24:(24+26)(¹²C₂:¹²C₂+¹²CN)
SIMS- Concentration Calculation

- Linear regression performed on oxygen experiment data
- Difference calculated between \(x_1 \) and \(x_0 \) at point \(y_1 \)
- Calculated difference in parts per million
- Corrected for CN contribution

ASSUMPTIONS

- Signal arising from \(^{12}C_2^-\) is constant
- CO species signal generated by injecting oxygen is similar to that found if oxygen is already present
- Corrected signal arising at 28 Da is due to \(^{14}C_2^-\)