
Peer reviewed version

Link to published version (if available):
10.1007/s00410-015-1218-4

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Springer at http://link.springer.com/article/10.1007%2Fs00410-015-1218-4

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
TEXTURAL AND CHEMICAL CONSEQUENCES OF
INTERACTION BETWEEN HYDROUS MAFIC AND FELSCIC
MAGMAS: AN EXPERIMENTAL STUDY

Mattia Pistone1,2, Jonathan D. Blundy 1, Richard A. Brooker 1, EIMF 3

1) School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, BS8 1RJ, Bristol, United Kingdom.
2) Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution,
10th Street & Constitution Avenue NW, Washington, DC 20560-0119, United States.
3) Edinburgh Ion Microprobe Facility, School of Geosciences, University of Edinburgh, Grant Institute, Kings Buildings, West Mains Road, EH9 3JW, Edinburgh, United Kingdom.

Abstract

Mantle-derived, hydrous mafic magmas are often invoked as a mechanism to transfer heat, mass and volatiles to felsic plutons in Earth’s crust. Field observations suggest that mafic, water-rich magmas often intrude viscous felsic crystal-rich mushes. This scenario can advect water from the crystallising mafic magma to the felsic magma, leading to an increase of melt fraction in the felsic mush, and subsequent mobilisation, at the same time as the mafic magma becomes quenched through a combination of cooling and water loss. To investigate such a scenario we conducted experiments on a water-undersaturated (4 wt.% H\textsubscript{2}O in the interstitial melt) dacitic crystal mush (50-80 vol.% quartz crystals) subject to volatile supply from a water-saturated (\geq 6 wt.% H\textsubscript{2}O) andesite magma at 950 °C and 4 kbar (12 km depth). Our experimental run products show unidirectional solidification textures (i.e. comb layering) as crystals nucleate at the mafic-felsic interface and grow into the mafic end-member. This process is driven by isothermal and isobaric undercooling resulting from a change in liquidus temperature as water migrates from the mafic to the felsic
magma. We refer to this process as “chemical quenching” and suggest that some
textures associated with natural mafic-felsic interactions are not simply cooling-driven
in origin, but can be caused by exsolution of volatiles adjacent to an interface,
whether a water-undersaturated felsic magma (as in our experiments) or a fracture.

1. Introduction

Mantle-derived, hydrous mafic magmas provide heat, mass and volatiles to
felsic magma reservoirs in Earth’s crust. Inputs of mafic magma can lead to a wide
range of physical and chemical interactions. Mafic dykes, sheets and inclusion
swarms are commonly associated with granitoids worldwide (e.g. Blundy and Sparks
1992; John and Blundy 1993; Sisson et al. 1996; Czuppon et al. 2012). Mafic magmas
have been frequently invoked as a means of contributing to crustal pluton construction
(e.g. John and Blundy 1993; de Saint Blanquat et al. 2006; Leuthold et al. 2012),
sustaining shallow magmatic bodies (e.g. Murphy et al. 2000; Ruprecht and
Bachmann 2010; Ruprecht et al. 2012) and favouring the generation of ore deposits
(e.g. Hattori and Keith 2001; Sinclair 2007; Blundy et al. 2015). Primary, subduction-
related mafic magmas are generally crystal-poor and hydrous (H$_2$O contents of 1-7
wt.%, with 4 wt.% on average; Sisson and Layne 1993; Ulmer 2001; Plank et al.
2013; CO$_2$ contents of > 250 ppm; Cervantes and Wallace 2003), and intrude more
felsic magmas resident in shallower crustal reservoirs. These felsic magmas are
generally crystal-rich mushes and rheologically locked-up (solid fraction \geq 0.5,
Bachmann and Bergantz 2004), which hampers convection.

Broadly two main types of mafic-felsic magma interactions have been
described: magma mingling, and magma mixing. Magma mingling is the physical
interaction between two magmas that are unable to mix thoroughly as a result of high
viscosity (Sparks and Marshall 1986; Frost and Mahood 1987; Sato and Sato 2009) and density contrast (Blake and Fink 1987; Koyaguchi and Blake 1989; Grasset and Albarède 1994) or low degree of mechanical stirring (D’Lemos 1987). Magma mixing is the chemical interaction between two magmas that forms a new “daughter magma” with composition intermediate between the original interacting compositions. Vigorous convective stirring (e.g. Oldenburg et al. 1989) by chaotic advection (e.g. Perugini and Poli 2004; Morgavi et al. 2012) and chemical diffusion (e.g. Watson 1982; Lesher 1994) can lead to the complete blending (or hybridisation) of the two original compositions leaving nearly no vestige of the magmatic “protoliths” (e.g. Humphreys et al. 2010).

Magma mixing involves diffusion of heat and melt components, including volatiles, between the mafic and felsic end-member magmas. Diffusion is a relatively slow process in nature, which cannot lead to large-scale redistribution of chemical components in the absence of convection (Bindeman and Davis 1999). Diffusion in natural silicate melts is a relatively slow process for many of the melt components (except for H$_2$O and alkalis; Ni and Zhang 2008; Morgan et al. 2008; Acosta-Vigil et al. 2012), and cannot lead to their large-scale redistribution in the absence of convection. Thermal diffusivities are of the order of 10^{-7} m2/s in H$_2$O-bearing rhyolitic melts at high temperature (> 800 °C; Romine et al. 2012). This is orders of magnitude larger than chemical diffusivities in silicate melts (Hofmann 1980; Watson 1981; Sparks and Marshall 1986). Volatile diffusion is about 3 orders of magnitude slower than heat diffusion: in hydrous rhyolite melt at 950 °C and 4 kbar (experimental conditions of this study) the diffusivity of H$_2$O (the most abundant volatile) is about 10^{-10} m2/s (Ni and Zhang 2008). At these temperature and pressure conditions, the diffusivities of major elements are 1-3 orders of magnitude lower than H$_2$O
diffusivity, with the diffusivities of network-forming species (SiO$_2$ and Al$_2$O$_3$ $\approx 10^{-12}$ m2/s) less than those of network-modifying species (CaO $\approx 10^{-12}$ m2/s; MgO and K$_2$O $\approx 10^{-11}$ m2/s; Na$_2$O $\approx 10^{-10}$ m2/s) (van der Laan and Wyllie 1993).

Experimental studies designed to better understand the chemistry of magma mixing have tended to focus on the interaction between two liquids of contrasted composition either under anhydrous (Watson 1982; Watson and Jurewicz 1984; Bindeman and Perchuk 1993) or hydrous conditions (Yoder 1973; Johnston and Wyllie 1988; van der Laan and Wyllie 1993). In the latter case both end-member compositions contained identical initial H$_2$O contents. In a few cases, magma mixing was investigated through dynamic experiments where two or more samples are forced to mix under an applied torque (i.e. mixing and mingling). In these tests the interacting samples display efficient mixing at super-liquidus conditions (Kouchi and Sunagawa 1982; 1985; Morgavi et al. 2012) or, conversely, very poor mixing when one of the two samples is crystal-bearing and, thus, the viscosity contrast between the two systems is large (Laumonier et al. 2014). To date, there are only a few high-temperature and -pressure melting experiments designed to simulate interaction between mafic and felsic magmas, as opposed to liquids. None of these studies has investigated interaction in a realistic scenario where the two samples have different H$_2$O content and crystallinity prior to interaction, and interact at temperatures consistent with thermal convergence between a hot mafic H$_2$O-rich magma and a relatively cool hydrous felsic magma. This interaction scenario is the focus of the present experimental study.

Our principal motivation is to interpret features of felsic-mafic magma interaction observed in the field. A well-known example is the Tertiary Adamello Massif (Alps, Italy), where dominantly tonalite and subordinate granodiorite plutons
are associated with small mafic/ultramafic intrusions, syn-plutonic mafic dykes and sills, and ubiquitous mafic inclusions (Blundy 1989; Blundy and Sparks 1992; John and Blundy 1993). The mafic bodies are texturally and compositionally heterogeneous as a result of variable assimilation of tonalite leading to xenocrystic textures. For example, reactions of quartz phenocrysts from the tonalite with fine-grained dark hornblende-bearing mafic magma produce coronas of green hornblende (Figure 1A). It has also been observed that several mafic and ultramafic rocks can display comb layering at the margins with juxtaposed silicic rocks (e.g. crescumulates layers in Cornone di Blumone, Adamello Massif, Alps, Italy; Ulmer 1986; mafic and ultramafic zonations in Cortland, Duke Island, Ardara and Lac des Iles complexes; Sha 1995). In such a case, elongate grains of hornblende and feldspars are found perpendicular to the interface between felsic and mafic rocks and/or in proximity of fractures in the mingled rock structures (Figure 1B, C). The comb layers are typically asymmetric, and hence display a variety of unidirectional solidification textures (USTs). The presence of hornblende in the gabbroic rock suggests significant H₂O in the original mafic melt (at least 4 wt.% H₂O; e.g. Yoder and Tilley 1962; Holloway and Burnham 1972). Field relationships suggest that the tonalitic crystal mush experienced rheological remobilisation during mafic magma intrusions. Based on such field relationships (Figure 1A), Blundy and Sparks (1992) hypothesise the following scenario: (i) a felsic pluton formed in the crust (< 10 km depth) comprises a crystal mush close to its rheological lock-up point (≥ 0.5 solid fraction) and at or close to H₂O-saturation for the interstitial melt; (ii) this pluton is intruded by a H₂O-rich mafic magma coming from greater depth (< 20 km); (iii) during the subsequent thermal and chemical interaction the two magmas act as a closed-system (i.e. no net loss of volatiles). Interaction might be expected to produce: i) advection of H₂O from
the crystallising mafic magma to the felsic mush; ii) melting and remobilisation of the felsic mush; iii) thermal quenching of the mafic magma. We simulated this interaction scenario experimentally with an H2O-undersaturated (4 wt.% H2O in the interstitial melt) dacitic crystal mush (50-80 vol.% quartz crystals) subject to a volatile supply from a nearly H2O-saturated (≥ 6 wt.% H2O) andesite magma at 4 kbar and 950 °C. In this contribution we will show that mafic-felsic interactions of the type shown in Figure 1A can also lead to comb layering textures such as that in Figure 1B, C.

Experimental and analytical methods

Experimental strategy

Preparation and synthesis of the starting materials

Preparation of the starting materials was carried out following the approach of Pistone et al. (2012) and Pistone (2012). The two silicate compositions (F = felsic; M = mafic) are synthetic equivalents of natural Adamello bulk compositions JM101 (dacite/tonalite) and JM102 (andesite/diorite) reported by Blundy and Sparks (1992), who used a natural powder of the latter for a series of H2O-saturated, 1 kbar experiments. However, with respect to the original recipe of JM102 composition, M composition has been modified to generate a more felsic system approaching the composition of F (= JM101). Such a compositional modification of M, which violates the original definition of “mafic composition”, represents an experimental compromise that allows constraining the influence of H2O only and, simultaneously, attenuating the diffusion of other slower melt components driven by limited chemical gradients, which otherwise could have “overwritten” the H2O signature during interaction experiments. In addition, sample M is crystal-free to maximise H2O content in the melt during synthesis; however, this differs from the original natural
scenario depicted in Figure 1A where the mafic magma is expected to carry some phenocrysts during the interaction with felsic crystal mushes. Oxides (SiO$_2$, Al$_2$O$_3$, Na$_2$SiO$_3$) and hydroxides (Al(OH)$_3$, K$_2$Si$_3$O$_7$$\cdot$3H$_2$O) were used for material preparation; hydroxides provide different amounts of structurally-bound H$_2$O to F (4 wt.% H$_2$O) and M (6 wt.% H$_2$O). The mafic (M) end-member was crystal-free. Crystal-free felsic starting material is designated F0. Aliquots of F were mixed with quartz particles to create additional starting materials of different crystallinity: F50 = 50 vol.% crystals; F60 = 60 vol.%; F70 = 70 vol.%; F80 = 80 vol.%. Quartz crystals (DORSILIT 2500: SiO$_2$ = 98.90 wt.%; Al$_2$O$_3$ = 0.41 wt.%; Fe$_2$O$_3$ = 0.02 wt.%; TiO$_2$ = 0.04 wt.%; Alberto Luisoni AG, Switzerland) were chosen as suspended particles (rough particles with aspect ratios between 1.0 and 3.5) for the preparation of the crystal mushes due to their advantageous properties at the temperature and pressure conditions of our experiments: they do not dissolve appreciably in the felsic melt (JM101 is already at quartz saturation), and inhibit further crystallisation of the residual melt (Pistone et al. 2012). The small amounts of Ti-Fe oxide impurities on the surface of the quartz grains facilitate wetting by the silicate melt during high-temperature and -pressure synthesis (Rutter et al. 2006). Crystals were fired for five hours in a one-atmosphere muffle furnace at 1000 °C to dry the surfaces and to remove any fluid inclusions. Their size was selected by sieving and checked by Malvern Laser Diffraction Grain Sizer at the Limno-Geology Laboratory of ETH-Zurich. The 3D grain size distribution shows a mean value of 68 μm with a sorting of 2.43 and a positive skewness of 0.37 (Pistone et al. 2012). To mix the powders with the appropriate amount of quartz particles, densities of the employed glasses were estimated from the equation of Lange and Carmichael (1987) at room conditions (298 K and 1 bar).
Following the approach of Pistone et al. (2012) and Pistone (2012), the starting material powders were cold-pressed into cylindrical stainless steel canisters (110 mm long, 35 mm inner diameter, 3 mm wall thickness) lined with a thin (25 µm) Mo foil to avoid chemical contamination. Filled canisters were stored at 100 °C to remove any adsorbed humidity and arc-welded shut. Tightness of the seal was checked under vacuum in a water bath and by weighing. The canisters were hot isostatically pressed (HIP) for 24 hours in a large capacity (170 mm in diameter; 500 mm high), industrial, internally-heated pressure vessel (Sinter-HIP-Kompaktanlage; ABRA Fluid AG, Switzerland) at 1.8 kbar and 1200 °C at the Rock Deformation Laboratory of ETH-Zurich. The temperature was nearly constant over the entire volume of the vessel (maximum difference of 18 °C along the length of a sample). A two-step cooling was applied: a rapid decrease of temperature (60 °C/minute) down to the inferred glass transition temperature (when the viscosity is considered equivalent to 10^{12} Pa·s) followed by slow cooling (0.6 °C/minute) to room temperature. The first cooling segment was designed to avoid crystallisation; the second segment produces thermally relaxed glasses (Webb and Dingwell 1990). During cooling the confining pressure decreased slightly with decreasing temperature (38 bar/minute in the first cooling stage; 1 bar/minute in the second one). A total of 6 hydrous samples were produced: M, F0, F50, F60, F70, F80. The weight of the canisters after the HIP run was compared with the initial weights and revealed no significant differences (less than 1 g over 200 g in total) suggesting that no H$_2$O was lost during synthesis.

Experiments

Cylinders of 3 mm diameter and variable length (Table 1) were cored from the synthesised glasses and polished on the top and bottom surfaces to ensure a perfect
initial contact between the interacting samples. The sandwiched samples were inserted into Au capsules (3-4 mm diameter), which, in turn, were inserted in larger Mo-lined Au capsules (6 mm diameter) filled with Al2O3 powder and deionised H2O (0.1-0.2 ml). Experiments were conducted under oxidised conditions (fO2 =NNO+1 to +2; see below). In contrast, the starting materials were synthesised at reduced conditions (log fO2 = -13.08 at 950 °C for MoMoO2 buffer, which is close to IW buffer; O’Neil 1986). The presence of Mo in the double capsule setup slowed down the oxidation of the starting materials by loss of H2 on the experimental timescale.

Experiments were carried out at the University of Bristol in an end-loaded Boyd and England (1960) type piston cylinder apparatus. Run conditions are given in Table 1. The chosen experimental temperature (950 °C) approximates a mafic magma emplaced at 1100 °C against a felsic host at 800 °C (Blundy and Sparks 1992). Since no latent heat of crystallisation or heat transfer can be experimentally reproduced, experiments simulated that mafic-felsic magma interaction after the interacting systems experienced heat transfer and achieved thermal equilibration. Experiments were carried out in a 19 mm talc-pyrex cell (manufactured by Ceramic Substrates and Components, Isle of Wight, UK), based upon the original design of Kushiro (1976). This type of cell uses a tapered furnace (with 3° taper), which minimises the thermal gradient to < 10 °C at 1000 °C over the central 10 mm of the cell (McDade et al. 2002). Based on the CsCl melting reactions the friction correction was 3.6 ±1.0 % at 10 kbar and 1000 °C (McDade et al. 2002) and 20 ±1.0 % at 5 kbar and 950 °C. Also, based on the H2O solubility conditions of the H2O-saturated sample M, the effective applied confining pressure to the run products was circa 4 kbar. Temperature was monitored by a D-type (W97Re3/W75Re25) thermocouple connected to a Eurotherm 800 series controller, with no correction for the pressure effect on the electromotive
force (Mao and Bell 1971). The hot piston-out technique (Johannes et al. 1971) was used in all experiments. Experiments ran for 24 hours (except for one that lasted for one week; Table 1) and were terminated by turning off the power. Recovered charges were impregnated in epoxy and polished.

Two different interaction setups were used in the experiments: i) classic two-layer Setup A with felsic overlying mafic, and ii) “intrusion-type” Setup B with mafic sandwiched between two felsic samples. The two approaches allowed us to simulate the mafic-felsic magma interaction at different mass ratios (mafic-felsic ratio of 1:1 in Setup A, and 1:2 in Setup B; Table 1), and potentially retrieve information on the volatile depletion of the mafic sample during the interaction with one or two felsic samples respectively. To better constrain the textures and chemistry generated during the interaction experiments we also performed simple equilibrium runs on felsic and mafic starting materials. Additionally, after 30 minute dwell time at 1000 °C, four isobaric (4 kbar) cooling experiments from 1000 to 950 °C, with two different cooling rates (slow cooling = 1 °C/minute, and fast cooling = 3.3 °C/second; Table 1), were conducted on crystal-free mafic samples to provide a textural comparison with the microstructures generated in the interaction experiments. A single 48-hour experiment (Table 1) was conducted in cold-seal, externally-heated vessel (with an intrinsic fO2 close to NNO+1; Rouse 2000) to simulate volatile exsolution from the mafic end-member during slow isothermal decompression at low pressure (from 2 to 1 kbar at 0.35 bar/minute) and relatively low temperature (870 °C). This test provided a comparison between conditions of volatile-saturation (cold-seal) and volatile-undersaturation (piston cylinder).

Analytical techniques
Glasses and minerals from the starting materials and experimental charges were analysed with a CAMECA SX-100 wavelength-dispersive electron probe microanalyser (EPMA). Glasses were analysed with a 15 kV acceleration voltage, 2-5 nA beam current and 10-20 µm diameter (defocused) beam. Minerals were analysed with a focused (1 µm) 10 nA beam current and an accelerating voltage of 20 kV. Natural and synthetic standards were used for calibration. Table 2 shows compositions of starting glass and minerals in representative experimental charges. Chemical profiles in the glass composition across the run products based on EPMA data are reported in Table 3. H₂O concentrations were estimated by the volatile-by-difference method (Devine et al. 1995; Humphreys et al. 2006) and by SIMS (see below).

Using the approach of Saunders et al. (2014) to analysing crystal zoning, lines of quantitative spot analyses to produce quantitative element profiles through quartz crystals and surrounding glass were conducted using a JEOL 8530F field emission gun electron probe micro-analyser (FEG-EPMA). Analyses were carried out with a 10 kV acceleration voltage, 1 nA beam current and 1 µm beam diameter. These analytical conditions allowed us to explore potential quartz dissolution in the silicate melt at run conditions. Primary calibrations for FEG-EPMA used the same mixture of synthetic and natural standards as were used with the conventional EPMA.

Supplementary material displays chemical data from the lines of quantitative spot analyses in quartz crystals and surrounding silicate glass. Backscattered (BSE) images of the experimental charges were acquired on a Hitachi S-3500N scanning electron microscope (SEM) with 15 to 25 kV accelerating voltage and 1 nA beam current. Images were used to estimate volume fraction and size of the different phases using the Java-based software JMicro-Vision v1.2.7.
Characteristic X-ray distribution maps for Si-, Ca- and Fe-Kα, acquired using EPMA and SEM, were used to evaluate the chemical diffusion in the interaction experiments.

Secondary ion mass spectrometry

Glassed starting materials and experimental charges were analysed by secondary ion mass spectrometry (SIMS) for dissolved H₂O and a number of trace elements, using a CAMECA ims-4f ion microprobe at the University of Edinburgh. Au-coated samples were analysed with a 1.5 nA, 10.8 kV ¹⁶O⁻ beam focussed to a 10 μm spot, with 15 keV net impact energy (i.e. 10.7 keV primary + 4.5 keV). Positive secondary ions were extracted at 4.5 keV with a 75 eV offset and a 40 eV energy window, to minimise molecular ion transmission. Prior to each analysis, a 7 μm² raster was applied for 2 minutes at the target glass areas in the sample to remove any surface contamination around the edge of the sputter pit. NIST-610 (Hinton 1999), hydrous silica-rich (SiO₂ > 52 wt.%) SISS-48, SISS-51, SISS-59, SISS-60 (H₂O content ranging from 2.48 to 4.91 wt.%; Sisson and Grove 1993), a natural obsidian glass from Lipari (0.72 wt.% H₂O; Humphreys et al. 2006), RB-480 (0.33 wt.% H₂O; Field et al. 2012), RB-497 (0.31 wt.% H₂O; Richard Brooker, unpublished data), SB21, SB23 (10.5 to 10.9 wt.% H₂O; Jenny Riker, unpublished data), and hydrous haplogranitic HGG0, HGG3, HGG4, HGG5 glasses (0 to 5.25 wt.% H₂O; Ardia et al. 2008) were used as standards to monitor the H/Si ion yield and background consistency at the start of each day. Ten cycles were counted, corresponding to a counting time of about 10 minutes. In addition to ¹H and ³⁰Si, ⁷Li, ¹¹B, ²⁶Mg, ⁴²Ca, ⁴⁷Ti and ⁵⁴Fe were measured. The heavier elements were measured to assess the consistency of the major element composition. The background H₂O correction (as
measured on NIST-610) was equivalent to $\leq 0.2\ \text{wt.}\%\ \text{H}_2\text{O}$. To remove the effects of small variations in beam current, data are presented Si-normalised and corrected using the NIST-610 standard of the GeoReM database (http://georem.mpch-mainz.gwdg.de/). The analytical results are characterised by a low standard deviation (Li = 1.01\ %, B = 0.45\ %, Mg = 0.93\ %, Ca = 1.30\ %, Ti = 1.20\ %, Fe = 2.25\ %). C species was not measured; however, Raman spectra and CO$_2$-intensity maps of the glasses of the run products (not presented here) did not reveal any presence of CO$_2$.

Table 4 reports the SIMS data.

Results

Run products are labelled with the abbreviations of the two or three separate components added (e.g. M-F0 is a couple made of andesite and crystal-free dacite; F0-M-F0 is a sandwich of andesite between two layers of crystal-free dacite, etc.). We present the microstructural and chemical results of the interaction experiments in three groups, each showing a specific sample-sample interaction:

1) andesite and crystal-free dacite (M-F0 = liquid-liquid interaction in absence of a pre-existing crystallinity in either sample)

2) andesite and crystal-bearing dacite (M-F50 to F80 = liquid-mush interaction)

3) chemically identical samples (M-M and F0-F50) for evaluating crystallisation kinetics in the absence of any difference in melt composition or H$_2$O content.

Microstructural and chemical results from additional tests simulating the isobaric cooling of a crystal-free andesite, and the interaction between a crystal-free andesite and a crystal-bearing dacite during isothermal decompression (M-F50) are also provided. The microstructural and chemical results of the phase equilibrium runs involving single samples (i.e. no interaction) show limited crystallisation in the...
crystal-free felsic sample (< 40 vol.% in F0; Table 1), and no crystallisation in the felsic crystal-bearing samples (see F80 in Table 1). The andesitic samples in the phase equilibrium experiments crystallise with the same phase volumetric proportions observed in the run product M-M (< 50 vol.%; Table 1).

Microstructures

Crystallisation of the crystal-free samples (F0 and M) observed in the phase equilibrium experiments (i.e. in absence of other interacting samples) is driven by a combination of H$_2$O-undersaturation conditions (i.e. materials were originally synthesised at 2 kbar, corresponding to H$_2$O-saturation conditions), which render the samples more undercooled, and absence of initial crystal phases (such as quartz in the crystal-bearing materials), which prevents from additional crystallisation during experiments. Thus, the textures of the crystal-free samples observed in the interaction experiments (e.g. M-F0 or M-FX, with FX as crystal mush, which does not crystallise and, thus, remains quartz-saturated at 4 kbar) are the result of two processes: phase equilibrium crystallisation, and H$_2$O migration from high to low concentration (see below).

Interaction between initially crystal-free andesite and crystal-free dacite

Two runs were conducted to simulate interaction between initially crystal-free andesite (M) and dacite glasses (F0): F0-M and F0-M-F0 (Figure 2A-B). The main difference between the two runs is the experimental duration (24 hours versus 1 week). The longer run (F0-M-F0) generated more extensive crystallisation in both end-members, particularly in the M domain (Table 1). In both run products, hornblende and plagioclase form a diktytaxitic texture (with less vesicular
groundmass than what observed in natural mafic enclaves) in M (Figures 2A-B).

Hornblende crystals in F0 domain in F0-M-F0 are arranged in two ways: perpendicular to the interfaces with M, and, beyond a distance of ~0.5 mm from the interface, with a diktytaxitic arrangement (Figure 2A-B). Along the interaction interfaces of both samples crystal size reduction of hornblende in F0 (from about 200 µm length at ~0.5 mm from the interface to 2 µm at the interface) and plagioclase and hornblende in M (from 40 µm at ~0.5 mm from the interface to 1 µm at the interface) are observed (Figures 2A-B and 4A). Fe-Ti oxides (1-5 µm) are ubiquitous in all domains with a mean number density of about 40 crystals per 0.01 mm². The largest number density is found at the interface between the two samples (Figures 2A-B and 4A). Vesicles are mainly located along the interfaces in F0-M and F0-M-F0; larger vesicles (up to 40 µm diameter) are found in F0 (Figures 2A-B).

Interaction between initially crystal-free andesite and dacitic crystal mush

Four runs were conducted to simulate the interaction of andesite (M) and dacitic crystal mush: F50-M, F60-M-F60, F70-M, and F80-M-F80 (Figure 2C-F). All run products are characterised by the following microstructural features:

i) Extensive crystallisation of M, which becomes more evident when Setup B is used (Table 1)

ii) Disseminated magnetite in M, whose number density increases towards the interaction interface (Figures 2C-F, 5)

iii) A marked decrease in plagioclase and hornblende crystals size towards the interface (from plagioclase length of 250 µm and hornblende length of 190 µm at ~0.5 mm from the interface to 2 µm plagioclase and hornblende size at the interface; Figures 2C-F, 5)
iv) Arrangement of plagioclase and hornblende crystals perpendicular (Figure 2C, E), or at high angle (circa 50-60°; Figure 2D, F), to the interface with F, up to distances of ~0.4 mm from the interaction interface.

v) Perpendicular arrangement of hornblende and plagioclase crystals in M and decrease of their size (up to a mean size of 2 µm) to the inner walls of the gold capsule when Setup A is used (Figure 2C-F).

vi) Increase of the local crystal fraction in M domain by about 70% to circa 95% (Figure 2C-F) from ~0.5 mm from the interface towards the interface.

vii) Crystal-free, glass layer (30 to 60 µm thick) in F along the interface with M (Figure 2C-F).

viii) Hornblende-rich layer located close to quartz crystal clusters (Figure 2C-F), and hornblende and/or magnetite crystallisation in glassy interstices between quartz crystals in F.

ix) Reaction rims on quartz crystals displaying smooth boundaries and crowns of tiny (1 to 3 µm) hornblende microlites (Figure 2C-F).

x) Presence of vesicles in M and along the interface in F, particularly in the glass and/or hornblende-rich layer (Figure 2C-F).

The crystal size reduction of plagioclase and hornblende towards the interface observed in both samples is also evidenced by X-ray maps of Si- and Ca-Kα (Figure 4B). X-ray map of Fe-Kα evidences the large presence of Fe-Ti oxides in the andesite sample, with high number densities in proximity to the interface (Figure 4B). The reported textural features of the andesitic sample during interaction experiments are dramatically different from those observed in the phase equilibrium experiments.

Specifically, phase equilibrium textures of M lack in: 1) more extensive crystallisation (> 50 vol.%; Table 1), with an increase in crystallinity (from 50 to 95 vol.%) towards
the interaction interface against the felsic, and 2) perpendicular arrangement of minerals, with size reduction towards the interaction interface against the felsic sample.

Interaction between chemically identical samples

The interaction of samples with identical chemical composition and H₂O content was tested with runs F50-F0 and M-M (Figure 2G-H). Run product F50-F0 shows extensive hornblende crystallisation in F0 (Table 1), with crystals arranged perpendicular or at high angle (45° to 60°) to the interface (Figure 2G). Hornblendes decrease in size (down to 2 µm) towards the interface (Figure 2G). In F50 quartz microlites (up 10 µm long) lie perpendicular to the interface, without any observable size reduction (Figure 3A). Hornblende and quartz microlites of 2-3 µm size are also found in isolated glass pockets within quartz crystal clusters (Figure 2G).

Run product M-M displays disseminated Fe-Ti oxides and vesicles in both sample domains (Figure 2H). The interface between the two samples is vague, but can be discerned by the presence of hornblende crystals in the lower domain. Large plagioclases (up to 100 x 10 µm wide) are found in the core of the two domains (at a distance of ≥ 0.5 mm from the interface). Plagioclases form a loose diktytaxitic texture and their size tends to decrease towards the interface (Figure 2H). Hornblende crystals in the lower domain also decrease in size towards the interface (Figure 2H).

Isobaric cooling of initially crystal-free andesite

Four runs at two different cooling rates (Table 1) were conducted in order to compare textures generated solely by cooling versus those generated by interaction (Figure 3). The fast-cooled (3.3 °C/s) run products show reduction in the size of
hornblende, but not plagioclase, towards the sample periphery (Figure 3A-B). Fe-Ti oxides are absent. The slow-cooled (1 °C/min) run products show extensive crystallisation (glass fraction < 0.06; Table 1), with no clear arrangement of plagioclase and hornblende (Figure 3C-D). Plagioclases are acicular, with constant size (10-15 µm length); hornblende crystals (2-30 µm length) are dendritic. Fe-Ti oxides are diffusely distributed. Similar crystal textures were generated in 1 kbar undercooling experiments on JM102 by Blundy and Sparks (1992; their Fig. 9b).

Interaction during isothermal decompression

One slow-decompression run at low pressure was conducted to simulate the interaction of initially crystal-free andesite and dacitic crystal mush (F50-M [CSV], where CSV means cold seal vessel; see Supplementary Material). Abundant vesicles are observed in both sample domains (Table 1). Vesicles (average diameter 15 µm) in M are concentrated in the core of the sample; larger vesicles (up to 100 µm) are found throughout F50. Overall, there are more vesicles in M than F50, which suggest that gas released from M during crystallisation rose into F50. Gaps between F50 and the capsule walls suggest the production of excess gas during the experiment. In M plagioclase and hornblende crystals lie perpendicular to the interface and, in the lower portion, to the capsule wall. Plagioclase and hornblende crystals decrease in size towards the periphery of M; in particular, tiny (1-2 µm size) plagioclase and hornblende crystals form a thin rim (3 to 10 µm) around M. The interior texture of M is diktytaxitic. In F50 a few hornblende crystals are found in glass-rich regions characterised by a high number density of vesicles. Fe-Ti oxides are observed throughout, often localised around the periphery of F50 (see Supplementary Material).
EPMA and SIMS analyses of run products F0-M and F0-M-F0 provide chemical profiles of essential molar ratios (Figures 5A-B, showing ASI = \(\frac{Al_2O_3}{[CaO+Na_2O+K_2O]} \), Al/Si, Al/Na, Al/K, Na/K; Acosta-Vigil et al. 2012), major and trace elements (Supplementary Material) and H\(_2\)O across the sample (Figures 6A-B; Tables 3-4). The molar ratio profiles of Al/Si and ASI appear rather constant along the entire domain of both run products, and close to the original values of the starting glasses (Figure 5A-B; Table 2). Particularly, the Al/Si suggests that Al\(_2O_3\) and SiO\(_2\) decrease and increase in the same proportion respectively (Supplementary Material). Conversely, the other molar ratio distributions appear variable (Na/K, and Al/K) or decrease from the andesite to the dacite (Al/K, and Al/Na) in run F0-M (Figure 5A). Neither in the long duration run F0-M-F0 the same molar ratios show a perfectly constant distribution in both dacite domains (Figure 5B). Overall, Al/K and Na/K are lower than the original molar ratios of the starting materials, and Al/Na is higher than the starting Al/Na in both andesite and dacite. These changes of the latter molar ratios are suggestive of an increase of K\(_2\)O and Al\(_2O_3\), and a decrease of Na\(_2O\) in the residual glass (Supplementary Material) as a consequence of crystallisation of the initially crystal-free dacite and andesite samples. Further details on the major and trace element concentrations in the glass phase of each interacting sample are reported in the Supplementary Material.

H\(_2\)O contents are similar in the two domains, with limited increase of H\(_2\)O in the glass from the dacite (4-5 wt.%) to the andesite (6-7 wt.%; Figure 7A), with H\(_2\)O content variations of up to 2 wt.% along the interface (Figure 6A-B). Based on the glass fractions found in the interacting samples (Table 1), the H\(_2\)O content in the bulk...
samples in run F0-M tends to increase from the dacite (2.5-3.1 wt.%) to the andesite (3.3-3.9 wt.%). However, the andesitic sample crystallises largely along the interface (up to circa 80 vol.%) whereas the dacite crystallisation along the interface reaches only about 60 vol.% (Figure 4A). There is no evident H$_2$O gradient between the two interacting domains after the 24-hour experiment. Conversely, in the longer run F0-M-F0, the H$_2$O content in the bulk samples clearly changes from the andesite (100 vol.% crystalline; Table 1) to the dacite (~70 vol.% residual glass content in both dacitic domains; Table 1). Indeed, all the H$_2$O is stored in the bulk dacite (2.8-3.5 wt.%), suggesting H$_2$O transfer from the andesite to the dacite. The latter is less crystalline than the equivalent domain in run F0-M (Table 1).

Interaction between andesite and dacitic crystal mush

EPMA and SIMS analysis profiles of run products from interaction experiments generally show a change in chemistry from the dacite to the andesite, particularly for the major oxides such as SiO$_2$ and Al$_2$O$_3$, which show larger variations in the dacite sample portions where the glass is surrounded by quartz crystals (Supplementary Material), suggestive of quartz dissolution at run conditions. Similarly to the crystal-free runs (F0-M and F0-M-F0), runs involving a crystal mush show constant profiles of Al/Si and ASI along the entire run product, and close to the original values of the starting glasses, suggestive of the potential limited chemical change induced by initial crystallisation (as observed in the phase equilibrium experiments) prior to or at the onset of H$_2$O diffusion during interaction experiments. Similarly to what observed in the crystal-free runs, the distributions of Na/K, Al/Na, and Al/K appear to decrease from the andesite to the dacite domain in all run products with crystallinities < 70 vol.% (Figures C-D). At higher crystallinity the molar ratio...
Al/K displays an inverse trend, with a slight decrease from andesite to dacite (Figures 5E-F), suggesting an increase of available Al$_2$O$_3$ (melt component with slow diffusion; e.g. Acosta-Vigil et al. 2012) in the residual glass during fast H$_2$O diffusion. Overall, the values of Na/K, Al/Na, and Al/K are lower than those reported in the starting glasses. For the same reasons reported in the interacting crystal-free samples above, the decrease of these molar ratio values are suggestive of an increase of K$_2$O and Al$_2$O$_3$, and a decrease of Na$_2$O in the residual glass (Supplementary Material) as a consequence of the H$_2$O diffusion-induced crystallisation of the andesite and H$_2$O diffusion-induced quartz dissolution in the dacite. Also, the same molar ratios of the run products with Setup B result lower by 20% than those observed in the run products with Setup A, suggestive of the different impact of the mafic-felsic mass ratio on Al$_2$O$_3$ and alkalis contents in the residual glass in the mafic end-member. Further details on the major and trace element concentrations in the glass phase of each interacting sample are reported in the Supplementary Material.

H$_2$O contents in the glass increase from the dacite (5-6 wt.% H$_2$O) to the andesite (7-8 wt.%) (Figure 6C-F). In the dacite H$_2$O contents are higher in proximity to the interface, and lower in glass pockets within quartz crystal clusters (see SIMS analysis spots in the Supplementary Material). More interestingly, H$_2$O contents in the bulk samples change dramatically from the andesite to the dacite, particularly along the interface (< 1 mm distance from the interface; Figure 6C-F) where the andesite is largely crystalline (> 90 vol.%), whereas the dacite is glassy or displays limited hornblende crystallisation (< 7 vol.%; Table 1) around the quartz crystals (Figure 4B). Bulk H$_2$O contents in the two bulk domains varies from < 0.7-0.8 wt.% in the upper portion of the andesite (< 1 mm from the interface) to 1.1-2.9 wt.% in the dacite. The greater the crystal content in the dacitic mush, the higher the H$_2$O content in the glass
(Figure 6C-E) and the lower the H$_2$O content in the bulk dacite. Run F80-M-F80 represents an exception since both H$_2$O contents in the glass (3-4 wt.%) and in the bulk dacite (0.36-0.63 wt.%) are lower than in the other run products (Figure 6C-F), suggestive of the combination of large crystal content in the mush and dissolution of quartz during the experiment.

Interaction between chemically identical samples

As expected, SIMS analysis of run products involving interaction between chemically identical samples show no evident change in major oxides, trace elements and H$_2$O contents in the residual glass from one sample domain to the other (Table 4; Supplementary Material). Thus the chemical features described in preceding sections result from interaction, rather than any artefact of the experimental design.

Discussion

The change of the liquidus temperature as a function of H$_2$O content

Microstructural and chemical changes that occur during interaction experiments are most readily interpreted in terms of the changes in liquidus temperature (T_L) that arise when magmas of contrasted chemistry are juxtaposed. Because T_L is strongly reduced by the addition of H$_2$O, up to the point of saturation, so the flux of H$_2$O from one domain to another has the greatest influence on T_L. In our experiments the values of local T_L were computed using the model of Makhluf et al. (2014) using the EPMA data of residual silicic glass (Table 3), including SIMS-based H$_2$O content (Table 4), in order to estimate the local H$_2$O contents in the bulk rock based on the local glass volume fractions (see Supplementary Material). In our experiments there is an H$_2$O gradient between the two interacting samples (andesite...
melt = 6 wt.% H₂O versus dacite melt = 4 wt.% H₂O; Table 2). The initial T_L results
different in each starting material: the andesite has $T_L = 816 \pm 1$ °C (Figure 8), and the
dacite displays a decrease of the initial T_L with increasing crystallinity in the felsic
mush, ranging from $T_L = 923 \pm 1$ °C at 3.69 ±0.02 wt.% H₂O in initial crystal-free
glass to 1109 ±1 °C at 0.74 ±0.02 wt.% H₂O in the most crystal-rich sample (Figures
6, 7). Given the chemical similarity of the interacting compositions (Table 2), the
lower andesite T_L than the dacite T_L is due to the initial high H₂O content in the
andesite (Table 2). The change of T_L is clearly evident in both interacting domains: T_L
drops in the dacite, to below the experimental temperature at some locations, and
increases markedly in the crystallising andesite (Figure 7). Such changes in T_L
become more pronounced with increasing crystallinity in the felsic mush and with
decreasing the mafic/felsic mass ratio (Figure 7).

One of the primary consequences of melt dehydration is isothermal
crystallisation, first recognised by Tuttle and Bowen (1958) and invoked as a cause of
crystallisation in hydrous magma by Blundy and Cashman (2001). This behaviour
arises because, compared to other compositional parameters, H₂O has a
disproportionate effect on the T_L of a magma (Yoder et al. 1957; Burnham and Jahns
1962; Merrill and Wyllie 1975). Thus, H₂O loss from any hydrous magma, whether
by degassing or diffusion, will drive large increase in T_L leading to effective
undercooling and consequent crystallisation.

During interaction of mafic and felsic magmas a number of simultaneous
chemical and physical changes occur. These may drive crystallisation or melting,
depending on the relationship between the interaction temperature and the T_L of each
domain. We will express the change in T_L as normalised temperature: $T_{\text{experimental}} / T_L$,
both of which are known from our experiments (Figure 8A). In the case of
undercooling, crystallisation will result, but the extent to which nucleation, giving rise
to many small crystals, is favoured over growth, giving rise to large crystals, depends
on the magnitude of the undercooling. In general, larger values of undercooling
favour crystal nucleation, while small values of undercooling favour crystal growth
(Figure 8A). Crystallisation serves to reduce T_L and hence reduce undercooling,
eventually reaching zero at the point of chemical equilibrium. Where the interaction
temperature is greater than T_L, melting will result (Figure 8A). We can better
understand this complex interplay of diffusion of heat, diffusion of mass, and
crystallisation kinetics in terms of three end-member scenarios.

First, consider juxtaposition of two crystal-free, anhydrous melts of different
composition at two different temperatures. In this example only heat crosses the
interface between the two domains (Figure 8B). The contact temperature at the
interface ($T_{\text{interface}}$) will lie between the T_L of the felsic ($T_{L(felsic)}$) and mafic ($T_{L(mafic)}$)
domains. The initial undercooling that occurs in the mafic domain is $\Delta T = T_{\text{interface}} - T_{L(mafic)}$ and will be greatest (i.e. most negative) at the interface. Thus, crystal
nucleation is favoured close to the interface and a so-called “chilled margin” results.
A crystallisation front propagates away from the interface into the mafic domain, with
progressively smaller ΔT and consequently larger, but fewer crystals. In the felsic
domain $\Delta T = T_{\text{interface}} - T_{L(felsic)}$ may be positive at the interface. In that case a fully
molten layer may result. Elsewhere in the felsic domain some evidence of partial
melting will be apparent, although temperatures are unlikely to be sufficient to cause
complete melting (Figure 8B).

Next, consider the case where two melts at different temperature are brought
into contact but the mafic magma is H$_2$O-saturated and the felsic magma is
anhydrous. In this case both heat and H$_2$O will pass from the mafic to the felsic
domain, complicating the textural consequences of interaction (Figure 8C). As before, thermal undercooling of the mafic domain at the interface will lead to crystallisation. However the loss of H$_2$O from the mafic domain to the felsic domain will drive up T_L(mafic), further increasing ΔT and leading to more pronounced nucleation. We call this “chemical undercooling”. The chemical and thermal undercooling fronts will propagate away from the interface at rates controlled by the relative diffusivities of H$_2$O and heat. The relative rates of migration will determine the extent to which nucleation is favoured over growth and vice versa. Although heat diffuses three orders of magnitude faster than H$_2$O, the effect of reducing the temperature on ΔT is much less than the effect of dehydration on T_L. An inverse consequence can be expected in the felsic domain, where both heat and H$_2$O are being supplied. Both of these will serve to reduce (or eliminate) the amount of undercooling, and increase the likelihood of a crystal-free melt layer forming at the interface (Figure 8C).

Last, consider the case of isothermal interaction between an H$_2$O-saturated mafic magma and a dry (or H$_2$O-undersaturated) felsic magma, such as that simulated by our experiments. In this case only H$_2$O passes from mafic to felsic domains and any undercooling is entirely chemical in origin (Figure 8D). As H$_2$O is lost to the felsic domain, a front of increasing T_L will propagate into the mafic domain. Crystallisation will tend to follow this front. Depending on the evolution of ΔT with time, i.e. the relative rates of H$_2$O loss (increasing ΔT) and crystallisation (reducing ΔT), the migration of the crystallisation front may be dominated either by nucleation or growth (Figure 8D).

The above discussion makes a distinction between thermal undercooling, due to heat loss, and chemical undercooling due to the loss of H$_2$O (or any other component that has a profound effect on T_L). Our experiments were designed to look
at both chemical undercooling (interaction experiments) and thermal undercooling (cooling-rate experiments) and to compare the results.

In our experiments diffusion of chemical components other than H$_2$O plays a minor role since the interacting compositions are chemically relatively similar (compare F and M composition reported in Table 2). In contrast to previous experiments on magma mixing between hydrous compositions (Johnston and Wyllie 1988; van der Laan and Wyllie 1993), no “uphill diffusion” of alkalis is noticed in our tests (Figure 5C-F), likely because of a lack of large K and Na gradients between F and M (Table 3). Additionally, since H$_2$O diffusivity between interacting silicic melts is much greater than the diffusivities of major elements (van der Laan and Wyllie 1993), at identical temperature and pressure conditions the flux of H$_2$O from andesite to dacite strongly affects the diffusivities of the major chemical elements, including the “fast” alkalis (Acosta-Vigil et al. 2005). As already observed by van der Laan and Wyllie (1993), both K$_2$O and Na$_2$O are uniformly distributed through the entire length of the capsule within 44 hours, suggesting transient two-liquid equilibrium partitioning when large H$_2$O contents (5 wt.%) are present. In our experiments the presence of > 5 wt.% H$_2$O in the silicic melt (Figure 6C-F) should allow a faster uniform distribution of alkalis within 24 hours (Table 1); however, the molar ratio profiles (i.e. Al/K, Al/Na, and Na/K; Figure 5) do not show perfectly constant distribution profiles of alkalis throughout the glass phase (i.e. no field diffusion of alkalis; Acosta-Vigil et al. 2002; 2006; 2012). This could mean that alkalis, in presence of limited chemical gradients (ΔNa$_2$O$_{\text{m-f}}$ < 0.25 wt.% and ΔK$_2$O$_{\text{m-f}}$ < 0.04 wt.%; Table 2) except for H$_2$O (> 2 wt.%), including that the H$_2$O gradient could be higher if the initial crystallisation of the mafic sample at equilibrium conditions is considered; Table 1), are characterised by a relatively “slow” diffusion
with respect to H\textsubscript{2}O within the timescale of our experiments (24 hours). Only after sufficient long timescale (1 week; see run product F0-M-F0 in Figure 5B) during which H\textsubscript{2}O was uniformly distributed in both interacting samples (Figure 6B), alkalis appear constantly distributed throughout the glass of the run products. In conclusion, we are confident that the microstructural features generated in our experiments received negligible contribution from diffusion of species other than H\textsubscript{2}O, which migrated from the mafic to the felsic end-member and the consequent change in T_L of the interacting magmas (Figures 6C-F, 7C-F).

Unidirectional solidification textures driven by chemical undercooling

The microstructural and chemical results of our experiments display a number of interesting features that can be related to the changes in T_L that result from the flux of H\textsubscript{2}O from initially crystal-free mafic domain into the felsic mush. These include:

i) Reduction of crystal size in the mafic end-member towards to the interface of the two samples (Figure 2C-F)

ii) Hornblende and plagioclase layering in the mafic end-member in which crystals grow from the interface towards the interior of the mafic melt (Figure 2C-F)

iii) Formation of a melt-rich “hybrid front” with hornblende-rich coronas around quartz crystals (Figure 2C-F)

As noted above, the “chilled margins” generated in the andesite during the isothermal experiments are not a consequence of thermal quenching, but they rather represent a chemical quenching due to H\textsubscript{2}O migration from the mafic to the felsic end-member at constant temperature and pressure. The linear arrangement of plagioclase and hornblende crystals in the andesite and their size reduction towards the interaction interface between dacite and andesite (Figures 2C-F, 4) is reminiscent of a number of
natural textures including “Willow Lake-type” layering (Poldervaart and Taubenek 1959), combed texture (Loomis 1963), comb layering (Moore and Lockwood 1973; Lofgren and Donaldson 1975; Donaldson 1977; Lowenstern and Sinclair 1996; Sinclair 2007), Stockscheider texture (Jackson and Power 1995; Breiter et al. 2005), line rock texture (Webber et al. 1997; Nabelek et al. 2010) or, more generally, unidirectional solidification texture (UST; Kormilitsyn and Manuilova 1957; Shannon et al. 1982; Balashov et al. 2000; Breiter 2002; Hönig et al. 2010). USTs often involve an alternation of coarse and fine crystals, leading some workers to invoke processes of crystal growth and dissolution to operate in tandem. For example, comb layering textures studied in pegmatitic systems (e.g. aplite-pegmatite transition; Webber et al. 1999; Baker and Freda 1999; 2001; London 2005; 2009) and orbicular rocks (Leveson 1966; Moore and Lockwood 1973; Ort 1992; Sylvester 2011), were explained as a consequence of an Ostwald ripening process, where smaller crystals become unstable relative to larger crystals of the same mineral composition (e.g. Boudreau and Mc Birney 1997).

Our experiments suggest, alternatively, that USTs can be generated isothermally simply due to volatile loss and the consequent change in \(\Delta T \), which drives melts locally towards nucleation-dominated and growth-dominated regimes (Figures 8A). In our experiments the loss of H\(_2\)O is a result of the H\(_2\)O-saturated nature of the mafic melt and the H\(_2\)O-undersaturated nature of the felsic melt at run conditions. The loss of H\(_2\)O from mafic to felsic domains drives undercooling in the former, promoting crystal growth. The tendency of crystals to grow perpendicular to the interface between the two domains suggests that following initial nucleation close to the interface, the migration of the undercooling front away from the interface serves to maintain \(\Delta T \) at an optimum value for growth (Figure 8A). Although our
experiments are isothermal and isobaric, they simulate many situations in nature where magmatic H₂O loss occurs. This could be, for example, when hydrous magma is exposed to fractures whereupon the pressure drops driving fluids outwards. Such features have been widely invoked in ore-forming or pegmatitic systems and may occur repeatedly if the magma keeps undergoing failure and pressure drop. In a magma the development of fractures requires a relatively high crystal content and/or a high strain-rate. More generally, we would anticipate that any process that leads to pressure drops that are transient on the same timescales as H₂O diffusion in silicate melts would be capable of generating USTs. Magma mixing between H₂O-rich and H₂O-poor magmas, as simulated in our experiments, is just one such scenario. Our proposal is consistent with explanations of rhythmic comb-quartz and/or comb-feldspar layers developed in aplite granite groundmass attributed to abrupt adiabatic drop in pressure (due to fracturing; Shannon et al. 1982) promoting gas escape ("swinging eutectic" of Balashov et al. 2000). Thus, cooling is not a pre-requisite to UST formation. Rather it is undercooling resulting from H₂O exsolution from a crystallising melt. In general, USTs are generated at supersaturated boundaries and during rapid and repeated undercooling of the magmatic system (Fenn 1977; Webber et al. 1997; Nabelek et al. 2010) induced by fluid release (London 1992).

Interaction experiments involving dacitic crystal mush show that the presence of quartz crystals also plays an important role in driving textural evolution. As the felsic sample equilibrates at the experimental conditions, the quartz crystals begin to dissolve supplying SiO₂ to the surrounding melt (see Supplementary Material). The consequent SiO₂ content increase in the residual melt increases the local volatile solubility (Johannes and Holtz 1996) and, thus, attracts more H₂O from the adjacent andesite. This might explain the formation of hornblende in proximity to quartz
clusters or around single quartz crystals (Figures 2C-F, 5B) where the silicate melt contains up to 6 wt.% H$_2$O (see H$_2$O profiles in Figure 6C-F; see analysis spot locations in Supplementary Material). H$_2$O destabilises plagioclase and leads to hornblende crystallisation (Yoder and Tilley 1962; Holloway and Burnham 1972; Anderson 1980). At even larger H$_2$O in the residual dacite melt all crystallisation is suppressed and glassy rims or interstices result (see H$_2$O profiles in Figure 6C-F; see analysis spot locations in Supplementary Material).

Conclusions

The results of our experiments designed to explore magma mixing in nature show a number of interesting microstructural features. The “quench textures” or "chilled margins” found in our run products arise for enhanced crystal nucleation rates driven by chemical diffusion (H$_2$O), rather than rapid cooling, showing that mafic-felsic interactions found in the field may not be simply thermal in origin. The interface, across which chemical diffusion occurs, may play a key role in textural and chemical development. Specifically, we have generated unidirectional solidification textures (USTs), or comb layering, in which crystals nucleate at the mafic-felsic interface and grow into the mafic end-member. Comb layering is not a common microstructural feature of mafic enclaves. However, it can be considered as a specific category of “chemical chilling” where crystals do not decrease only in size towards an interaction interface (against another magma composition and or a wall rock, as observed in numerous field studies; e.g. Frost and Mahood 1987; Gourgaud and Villemant 1992), but they are also arranged perpendicularly to the interface. Our experimental results indicate that USTs can be used as a textural criterion to indicate the direction of volatile transfer. This has been observed in several mafic and
ultramafic rocks displaying comb layering at the margins with juxtaposed silicic rocks (Sha 1995). Mafic rocks in contact with felsic rocks show a decrease in the volumetric proportion of hydrous minerals such as hornblende, biotite as well as apatite and titanite towards the centres of the mafic complexes. Furthermore, in the dehydration zones of mafic rocks, acicular apatite crystals are typically abundant, indicative of strong undercooling (e.g. Wyllie et al. 1962). Our experiments demonstrate the ability of chemical quenching driven by H₂O-loss to generate a diversity of textures found in hydrous magmatic systems, including those associated with ore deposits.

Acknowledgments

SNSF Grant EPM-PBEZP2_14922 and ERC Advanced Grant CRITMAG supported this research. We acknowledge: K. Stuart and B. Buse for supporting during the EPMA, FEG-EPMA, and SEM analyses (University of Bristol); R. Hinton for assisting during the SIMS analyses (EIMF, University of Edinburgh); C. Clapham and D. Hawley for technical support (University of Bristol); J. Riker for providing high H₂O content silicate glasses as standards for SIMS analysis; Alberto Luisoni AG (Switzerland), Nabaltec AG (Germany), and B. Tripoli (ETH-Zurich) for supplying quartz crystals, APYRAL 60CD, and wollastonite used in the starting materials; O. Müntener, A. Acosta-Vigil, and an anonymous reviewer for their helpful comments on an earlier version of the manuscript.

References

with H$_2$O in haplogranitic liquids and glasses at 200 MPa from hydration–diffusion experiments.

Bindeman IN, Davis AM (1999) Convection and redistribution of alkalis and trace elements during the mingling of basaltic and rhyolitic melts. Petrol 7:91-101

809 Contrib Mineral Petrol 140:631-650
deposits by gas–brine reaction in volcanic arcs. Nature Geosci. 8:235-240
812 Petrol 38:1003-1020
813 Boyd FR, England JL (1960) Apparatus for phase equilibrium measurements at pressures of up to 50
814 kbars and temperatures to 1750°C. J Geophys Res 65:741-748
815 Breiter K (2002) From explosive breccia to unidirectional solidification textures: magmatic evolution
816 of a phosphorus- and fluorine-rich granite system (Podlesí, Krušné hory Mts., Czech Republic). Bull
817 Czech Geol Survey 77:67–92
819 fractionated granitic system: the Podlesí stock, Czech Republic. Lithos 80:323-345
820 Bunsen R. (1851) Ueber die prozesse der vulkanischen Gesteinsbildungen Islands. Annalen der Physik
821 (Leipzig) 83:197–272
823 J Sci 260:721-745
825 inclusions in high-Mg basalts from central Mexico. Geology 31:235-238
827 in the genesis of the Bogacs ignimbrite suite, northern Hungary; an integrated geochemical
829 D’Lemos RS (1987) Relationships between the Cobo Granite and the Bordeaux Diorite Complex,
830 Guernsey. PhD Dissertation, University of Bristol
832 Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the
833 Black Mesa pluton, Henry Mountains, Utah. Tectonophys 428:1-31
835 methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319-328

Grasset O, Albarade F, Hybridization of mingling magmas with different densities. Earth Planet Sci Lett 121:327-332

Holloway J.R., Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13:1-29

Hort M (1998) Abrupt change in magma liquidus temperature because of volatile loss or magma mixing: effects on nucleation, crystal growth and thermal history of the magma. J Petrol 39:1063-1076

Humphreys MCS, Kearns SL, Blundy JD (2006), SIMS investigation of electron-beam damage to...
hydrous, rhyolitic glasses: implications for melt inclusion analysis. Am Mineral 91:667-679

Humphreys MCS, Edmonds M, Christopher T, Hards V (2010) Magma hybridisation and diffusive exchange recorded in heterogeneous glasses from Soufrière Hills Volcano, Montserrat. Geophys Res Lett 37:L00E06

Lesher CE (1994) Kinetics of Sr and Nd exchange in silicate liquids: Theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas. J Geophys

Merrill RB, Wyllie PJ (1975) Kaersutite and kaersutite eclogite from Kakanui, New Zealand: water excess and water deficient melting to 30 kilobars. Geol Soc Am Bull 86:555-570

Morgan GB VI, Acosta-Vigil A, London D (2008) Diffusive equilibration between hydrous metaluminous-peraluminous haplogranite liquid couples at 200 MPa (H2O) and alkali transport in
glasses and melts: effects of temperature, crystals and dissolved water. Bull Volcanol 74:2273-2287
Figure 1: Examples of textures produced by hydrous mafic magmas from the Tertiary Adamello Batholith, (Alps, Italy). A) Polished section from the Val Fredda Complex (Blundy and Sparks 1992) showing interaction between hornblende-rich gabbro (lower dark portion) and tonalite host (upper lighter portion). The interaction between the two rocks is marked by a fine-grained “chilled margin” to the gabbro. Wisps of solidified mafic magma can be seen rising from the interface and permeating the tonalite, which is rendered anomalously darker as a consequence. Rounded, grey quartz phenocrysts in the tonalite have developed hornblende-bearing coronas as a consequence of interaction with mafic magma. B) Example of comb layering (a variant of unidirectional solidification texture - UST) from the north-west flanks of Cornone di Blumone (John and Blundy 1993). Black hornblende grows upwards from the curved interface in the centre of the photograph. A second comb layer lies above the main layer, separated from the first by banded, fine-grained rock. The comb layers cut equigranular gabbro host rock. C) Another example of comb layering from the same locality as (B). In this case the comb texture is defined by elongate white plagioclase crystals growing perpendicular to an interface (near coin). Mafic rock below the interface is uniformly fine-grained and banded. A second comb layer lies beneath the fine-grained layer. In the main comb layered region plagioclase grain size increases upwards away from the interface, while the number density of plagioclase grains decreases. The comb layer is asymmetric and abuts medium-grained host diorite at the top of the photograph.

Figure 2: BSE images of key textural features associated with interfaces in the different run products: A) F0-M, B) F0-M-F0, C) F50-M, D) F60-M-F60, E) F70-M, F) F80-M-F80, G) F50-M, H) M-M. Run details given in Table 1. The phases present: vesicles (black circles), hornblende (very light grey objects in M and light grey objects in F0), plagioclase (light grey objects), oxides (white objects), quartz (very dark grey objects), and silicic glass (dark grey matrix). The black and white scale bars are: 500 µm in A, 200 µm in C-F, H, and 100 µm in G.

Figure 3: BSE images of textures of cooling experiments on starting material M: A-B) fast cooling (1000 to 950 °C; 3.3 °C/second; 4 kbar), and C-D) slow cooling (1000 to 950 °C; 1 °C/minute; 4 kbar). The phases present have the same grey-scale characteristics as Figure 2. Images are arranged with the
sample periphery on the right hand side and sample core on the left hand side. The black scale bar is 300 µm in \textit{A-B} and 100 µm in \textit{C-D}.

Figure 4: \textit{A)} Representative EPMA-based characteristic X-ray distribution maps of run product F0-M. \textit{B)} Representative SEM-based false-colour characteristic X-ray distribution maps of run product F70-M. Both grey (\textit{A}) and colour scales (\textit{B}) of the X-ray distribution maps are expressed in wt.%.

Figure 5: EPMA- and SIMS-based molar ratio (ASI = Al₂O₃/[CaO+Na₂O+K₂O], Al/Si, Al/Na, Al/K, and Na/K) profiles across the interaction interface in different run products. EPMA- and SIMS-based concentration profiles of major oxides and trace elements are reported in the Supplementary Material. Data are displayed according to the distance of the analysis spots from the interface(s) (see Supplementary Material).

Figure 6: SIMS- and EPMA-based H₂O contents along the different run products (except run products F50-F0 and M-M, which are reported in the Supplementary Material). Data are displayed according to the distance of the analysis spots from the interface(s) (see Supplementary Material).

Figure 7: Calculated local liquidus temperatures (T_L), computed using the model of Makhluf et al. 2014, based on EPMA and SIMS data; standard error of ±4 °C) across the different run products. A few computed values of T_L in the dacite of run products F50-M, F60-M-F60, and F70-M are < 800 °C, and therefore not displayed.

Figure 8: \textit{A)} Normalised temperature ($T' = T_{\text{experimental}} / T_L$) versus dimensionless crystal nucleation and growth rate (after Hort 1998). The grey line (at $T' = 1$) separates the field of supercooling ($T' > 1$) from that of undercooling ($T' < 1$). Black and brown lines indicate the Gaussian trends of crystal growth and nucleation rate respectively. Red and blue areas indicate the nucleation and growth of crystals in the dacite and andesite respectively. The orange area indicates common conditions of nucleation and growth of crystals in the two interacting domains. Two inset schematics indicate the H₂O content conditions under which crystal nucleation rate is favoured (low H₂O content) or crystal growth rate is supported (high H₂O content). \textit{B-D)} Conceptual diagrams showing the effect of...
undercooling (i.e. temperature difference, ΔT, between the contact temperature at the interface, $T_{\text{interface}}$, and the liquidus temperature of the felsic (blue), $T_{L(felsic)}$, or the liquidus temperature of the mafic magma (red), $T_{L(mafic)}$) in three end-member scenarios: B) heat diffusion from anhydrous mafic to anhydrous felsic magma, which generates chilled margins at the interface of the mafic domain and limited partial melting of the felsic domain; C) both heat and H_2O diffusion from H_2O-saturated mafic to anhydrous felsic magma, which causes dramatic crystallisation of the mafic domain, including the formation of chilled margins at the interface, and diffuse partial melting of the felsic domain; D) isothermal (i.e. $T_{\text{interface}} = \text{actual temperature of the interacting magmas}, T_{\text{actual}}$) H_2O diffusion from H_2O-saturated mafic to anhydrous (or H_2O-undersaturated) felsic magma, which promotes the generation of comb layering in the mafic domain and super-liquidus melt at the interface in the felsic domain. The H_2O diffusion promotes a drop of the $T_{L(felsic)}$ with enrichment of H_2O in the residual melt. Conversely, H_2O release from the mafic melt favours an increase of the $T_{L(mafic)}$ with an inward crystallisation (from the mafic-felsic interface to the mafic core), which is initially nucleation-driven (evidenced by the presence of microlites at the interface; Figures 1A-B), then growth-driven (characterised by elongate crystals arranged in a comb layering structure towards the mafic-felsic interface; Figures 1B-C). The diagram shows the schematics of textures generated during the experiments. Different crystals are: quartz (red hexagons) with orange SiO_2-dissolution rims, hornblende (black rectangles), plagioclase (light brown rectangles) and Fe-Ti oxides (yellow squares).

Table 1: Summary of the high-temperature and high-pressure experiments from this study.

Abbreviations: o = sample diameter; l = sample length; V = sample volume; m = sample mass; ρ = sample density at room conditions; V_{felsic}/V_{mafic} = total volume ratio between felsic and mafic sample; m_{felsic}/m_{mafic} = total mass ratio between felsic and mafic sample; $\rho_{felsic}/\rho_{mafic}$ = total density ratio between felsic and mafic sample; T = temperature; P = pressure; $Glass$ = residual silicic glass; Hbl = hornblende; $Plag$ = plagioclase; Ox = Fe-Ti oxide; Qz = quartz; $Bubble$ = gas bubble. The values of volumetric proportions of the different phases within the single samples in the run products are reported in vol.%. Runs M_cooling_01 and M_cooling_02 were conducted with cooling rates of 3.3 °C/second (fast cooling); runs M_cooling_03 and M_cooling_04 were conducted with cooling rates of
1 °C/minute (slow cooling). Underlined = experiment conducted by using a cold seal vessel; (*) = experiment performed with Pt capsule.

Table 2: Representative EPMA analyses of the bulk matrix glass from starting materials and mineral compositions from selected experimental charges from this study. Chemical analyses are volatile-free basis. H₂O contents here reported are from SIMS analyses (*); H₂O contents are also calculated using the by-difference method (see Figure 6). Uncertainties based on counting statistics of the reported concentrations are in the range of 0.5-1.5% for SiO₂, Al₂O₃, and CaO, 1-7% for Na₂O and K₂O, 3-22% for TiO₂, FeO, MgO and MnO. The maximum uncertainties for reported molar ratios, calculated via error propagation, are: 31% for ASI ([Al₂O₃]/[CaO+Na₂O+K₂O]), 3% for Na/K, 1% for Al/K, 2% for Al/Na, and 10% for Al/Si. In italics = selected hornblende mineral located at a distance of ~50 µm far from the closest quartz crystal; the analysis of the other hornblendes display higher SiO₂ content (~50-55 wt.%) due to larger SiO₂ content in the glass surrounding quartz crystals, as evidenced by FEG-probe analyses (Supplementary Material).

Table 3: EPMA-based chemical profiles within the glass phase in the experimental charges simulating sample-sample interaction from this study (see also Figure 5). Chemical analyses are volatile-free basis; H₂O contents are calculated using the by-difference method. Locations of the EPMA and H₂O-SIMS analysis spots are displayed in the Supplementary Material.

Table 4: SIMS analyses of the silicic glass in the run products simulating sample-sample interaction (see also Figure 6). All data are Si-normalised and corrected following the Geological and Environmental Reference Materials (GeoReM) database. Locations of the analysis spots are displayed in the Supplementary Material.

SUPPLEMENTARY MATERIAL

Figure SM1: A-D) SEM-based BSE images detailing the sample-sample interaction interface of the run products: A) F0-M; B) F0-M-F0; C) F50-M; D) F60-M-F60; E) F70-M; F) F80-M-F80; G) F50-F0; H) M-M; J) F50-M (CSV). The phases present: vesicles (black circles), hornblende (very light grey objects in M and light grey objects in F0), plagioclase (light grey objects), oxides (white objects),
quartz (very dark grey objects), and silicic glass (dark grey matrix). Red and brown dots indicate
EPMA analysis spots; blue and purple dots indicate SIMS analysis spots in the felsic and mafic domain
respectively (and, felsic mush and felsic crystal-free sample of the run product F50-F0 respectively);
yellow and orange dots indicate SIMS analysis spots in the upper mafic and lower mafic domain
respectively. Black arrows indicate the location of the interfaces between samples. The black scale bar
is 1 mm in all images.

Figure SM2: BSE image showing representative FEG-EPMA-based analysis spots reporting the SiO$_2$
content across quartz crystal and surrounding silicic glass in the run product F70-M. Black circles of
Profile 1 (A) and Profile 2 (B) (see analysis spots data reported in Table SM1).

Figure SM3: EPMA- and SIMS-based concentration profiles of major elements across the interaction
interface in different run products. Data are displayed according to the distance of the analysis spots
from the interface(s) (see Figure SM1).

Figure SM4: SIMS-based concentration profiles of trace elements and SIMS- and EPMA-based H$_2$O
contents along the different run products (including F50-F0 and M-M). Data are displayed according to
the distance of the analysis spots from the interface(s) (see Figure SM1).

Table SM1: Representative FEG-EPMA data from analysis spots of the quartz crystals and
surrounding silicic glass in the experimental charge F70-M. All presented data are affected by 1 to 5%
standard error. Locations of the analysis spots are displayed in Figure SM2.
Figure 6

(A) F0-M vs. H₂O (wt.%)

(B) F0-M-F0 vs. H₂O (wt.%)

(C) F50-M vs. H₂O (wt.%)

(D) F60-M-F60 vs. H₂O (wt.%)

(E) F70-M vs. H₂O (wt.%)

(F) F80-M-F80 vs. H₂O (wt.%)

Distance from interface (μm)

Dacite

Upper Dacite

Lower Dacite

Andesite

EPMA

SIMS

H₂O in starting glass
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Sample</th>
<th>(a) (mm)</th>
<th>(l) (mm)</th>
<th>(V) ((\text{mm}^3))</th>
<th>(m) (g)</th>
<th>(\rho) ((\text{kg/m}^3))</th>
<th>(V_{\text{tcl}is} / V_{\text{mcl}ic})</th>
<th>(m_{\text{tcl}is} / m_{\text{mcl}ic})</th>
<th>(\rho_{\text{tcl}is} / \rho_{\text{mcl}ic})</th>
<th>(T) (^{\circ}C)</th>
<th>(P) (kbar)</th>
<th>Duration (hours)</th>
<th>Glass</th>
<th>Hbl</th>
<th>Plag</th>
<th>Ox</th>
<th>Qz</th>
<th>Bubbles</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0 01(*)</td>
<td>F0</td>
<td>2.99</td>
<td>2.48</td>
<td>17.41</td>
<td>0.0416</td>
<td>2389</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>F0 02</td>
<td>F0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>60</td>
<td>38</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F0 03</td>
<td>F0</td>
<td>-</td>
<td>-</td>
<td>0.0190</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>68</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F0 04</td>
<td>F0</td>
<td>4.20</td>
<td>3.88</td>
<td>11.89</td>
<td>0.0253</td>
<td>2321</td>
<td>1.21</td>
<td>1.09</td>
<td>0.90</td>
<td>827</td>
<td>2 to 1</td>
<td>48</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>F0 05</td>
<td>F0</td>
<td>2.92</td>
<td>2.95</td>
<td>19.5</td>
<td>0.0391</td>
<td>2934</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>50</td>
<td>19</td>
<td>30</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F0 06</td>
<td>F0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0144</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>55</td>
<td>10</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M cooling 01</td>
<td>M</td>
<td>2.91</td>
<td>6.16</td>
<td>40.97</td>
<td>0.1553</td>
<td>2570</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000 to 950</td>
<td>4</td>
<td>0.004</td>
<td>70</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M cooling 02</td>
<td>M</td>
<td>2.92</td>
<td>6.16</td>
<td>40.97</td>
<td>0.1553</td>
<td>2570</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000 to 950</td>
<td>4</td>
<td>0.004</td>
<td>70</td>
<td>18</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M cooling 03</td>
<td>M</td>
<td>2.94</td>
<td>5.20</td>
<td>35.30</td>
<td>0.0858</td>
<td>2431</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000 to 950</td>
<td>4</td>
<td>0.83</td>
<td>5</td>
<td>20</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M cooling 04</td>
<td>M</td>
<td>2.95</td>
<td>5.80</td>
<td>39.64</td>
<td>0.0954</td>
<td>2407</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000 to 950</td>
<td>4</td>
<td>0.83</td>
<td>6</td>
<td>24</td>
<td>65</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F0-M</td>
<td>F0</td>
<td>3.01</td>
<td>2.05</td>
<td>14.59</td>
<td>0.0348</td>
<td>2386</td>
<td>0.68</td>
<td>0.63</td>
<td>0.93</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>62</td>
<td>34</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M-F0</td>
<td>F0</td>
<td>2.90</td>
<td>3.10</td>
<td>20.48</td>
<td>0.0530</td>
<td>2588</td>
<td>1.45</td>
<td>1.38</td>
<td>0.95</td>
<td>650</td>
<td>4</td>
<td>0.5</td>
<td>0</td>
<td>35</td>
<td>50</td>
<td>5</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>F50-M</td>
<td>F50</td>
<td>2.99</td>
<td>2.01</td>
<td>8.43</td>
<td>0.0187</td>
<td>2219</td>
<td>0.33</td>
<td>0.32</td>
<td>0.85</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>54</td>
<td>20</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>F60-M-F60</td>
<td>F60</td>
<td>2.94</td>
<td>2.09</td>
<td>14.19</td>
<td>0.0333</td>
<td>2347</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1000 to 950</td>
<td>4</td>
<td>1.16</td>
<td>35</td>
<td>23</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>F70-M</td>
<td>F70</td>
<td>2.97</td>
<td>2.06</td>
<td>14.27</td>
<td>0.0342</td>
<td>2396</td>
<td>0.58</td>
<td>0.54</td>
<td>0.93</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>70</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F80-M-F80</td>
<td>F80</td>
<td>3.00</td>
<td>2.22</td>
<td>15.69</td>
<td>0.0385</td>
<td>2453</td>
<td>-</td>
<td>-</td>
<td>0.93</td>
<td>950</td>
<td>4</td>
<td>24</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>F0-M-F0</td>
<td>F0</td>
<td>3.00</td>
<td>2.52</td>
<td>17.81</td>
<td>0.0435</td>
<td>2442</td>
<td>-</td>
<td>-</td>
<td>0.93</td>
<td>950</td>
<td>4</td>
<td>168</td>
<td>29</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F50-F0</td>
<td>F50</td>
<td>4.20</td>
<td>3.88</td>
<td>40.45</td>
<td>0.0864</td>
<td>2444</td>
<td>1.14</td>
<td>-</td>
<td>-</td>
<td>950</td>
<td>4</td>
<td>22</td>
<td>41</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>M-M</td>
<td>M</td>
<td>4.02</td>
<td>3.01</td>
<td>38.39</td>
<td>0.0956</td>
<td>2490</td>
<td>1.01</td>
<td>1.00</td>
<td>0.99</td>
<td>950</td>
<td>4</td>
<td>25</td>
<td>55</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F50-M</td>
<td>F50</td>
<td>2.95</td>
<td>1.74</td>
<td>11.89</td>
<td>0.0276</td>
<td>2321</td>
<td>1.21</td>
<td>1.09</td>
<td>0.90</td>
<td>827</td>
<td>2 to 1</td>
<td>48</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Sample Type</td>
<td>Sample Name</td>
<td>SiO₂</td>
<td>TiO₂</td>
<td>Al₂O₃</td>
<td>FeO₅₂</td>
<td>MnO</td>
<td>MgO</td>
<td>CaO</td>
<td>Na₂O</td>
<td>K₂O</td>
<td>H₂O</td>
<td>ASI</td>
<td>Na/K</td>
<td>AI/K</td>
<td>AI/Na</td>
<td>AI/Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting Materials</td>
<td>M</td>
<td>60.96 (0.92)</td>
<td>0.84 (0.12)</td>
<td>22.11 (0.17)</td>
<td>2.94 (0.59)</td>
<td>0.22 (0.04)</td>
<td>0.18 (0.07)</td>
<td>6.59 (0.14)</td>
<td>6.54 (0.27)</td>
<td>1.62 (0.11)</td>
<td>6.03 (0.02)*</td>
<td>1.04 [0.32]</td>
<td>4.26 [0.09]</td>
<td>12.61 [0.07]</td>
<td>2.96 [0.06]</td>
<td>0.21 [0.02]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F0</td>
<td>64.54 (0.33)</td>
<td>0.50 (0.04)</td>
<td>18.12 (0.20)</td>
<td>3.79 (0.12)</td>
<td>0.26 (0.02)</td>
<td>1.56 (0.08)</td>
<td>5.28 (0.08)</td>
<td>4.29 (0.06)</td>
<td>1.66 (0.04)</td>
<td>3.69 (0.02)*</td>
<td>0.98 [0.11]</td>
<td>3.93 [0.03]</td>
<td>10.08 [0.03]</td>
<td>2.57 [0.02]</td>
<td>0.17 [0.01]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F9 / M</td>
<td>Plag in M</td>
<td>52.17 (0.16)</td>
<td>-</td>
<td>28.90 (0.35)</td>
<td>0.82 (0.25)</td>
<td>-</td>
<td>0.13 (0.04)</td>
<td>13.75 (0.07)</td>
<td>4.00 (0.15)</td>
<td>0.25 (0.01)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl in M</td>
<td>43.14 (0.10)</td>
<td>2.37 (0.16)</td>
<td>12.92 (0.62)</td>
<td>12.43 (0.51)</td>
<td>0.60 (0.51)</td>
<td>14.28 (0.71)</td>
<td>11.48 (0.07)</td>
<td>2.29 (0.11)</td>
<td>0.49 (0.03)</td>
<td>2.86 (0.07)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxide in M</td>
<td>-</td>
<td>3.21 (0.57)</td>
<td>4.91 (0.02)</td>
<td>85.23 (0.79)</td>
<td>1.60 (0.04)</td>
<td>5.85 (0.71)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F50 / M</td>
<td>Plag in M</td>
<td>53.43 (1.08)</td>
<td>0.18 (0.09)</td>
<td>28.49 (0.45)</td>
<td>1.65 (0.31)</td>
<td>0.04 (0.02)</td>
<td>0.23 (0.06)</td>
<td>11.54 (0.14)</td>
<td>4.12 (0.22)</td>
<td>0.27 (0.01)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hbl in M</td>
<td>43.00 (0.08)</td>
<td>2.15 (0.20)</td>
<td>13.79 (0.65)</td>
<td>13.14 (0.53)</td>
<td>0.60 (0.45)</td>
<td>13.27 (0.94)</td>
<td>11.38 (0.18)</td>
<td>2.12 (0.23)</td>
<td>0.55 (0.14)</td>
<td>2.76 (0.19)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxide in M</td>
<td>-</td>
<td>5.21 (0.21)</td>
<td>1.81 (0.02)</td>
<td>87.46 (0.88)</td>
<td>1.45 (0.04)</td>
<td>4.07 (0.45)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quartz in F50</td>
<td>99.87 (0.01)</td>
<td>-</td>
<td>0.04 (0.01)</td>
<td>0.09 (0.01)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HM in F50</td>
<td>46.55 (0.51)</td>
<td>2.51 (0.02)</td>
<td>21.46 (0.00)</td>
<td>10.46 (0.04)</td>
<td>0.77 (0.08)</td>
<td>10.22 (0.78)</td>
<td>13.48 (0.63)</td>
<td>3.87 (0.47)</td>
<td>0.78 (0.04)</td>
<td>2.74 (0.24)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis Spot</td>
<td>Al/Na</td>
<td>FeO</td>
<td>MgO</td>
<td>CaO</td>
<td>Al/Si</td>
<td>TiO</td>
<td>Al/K</td>
<td>K</td>
<td>Na/K</td>
<td>Distance (µm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F80</td>
<td>77.54</td>
<td>78.24</td>
<td>72.40</td>
<td>10.09</td>
<td>80.91</td>
<td>2.17</td>
<td>2.42</td>
<td>0.27</td>
<td>0.08</td>
<td>4.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F70</td>
<td>77.49</td>
<td>78.19</td>
<td>72.37</td>
<td>10.08</td>
<td>80.90</td>
<td>2.15</td>
<td>2.42</td>
<td>0.27</td>
<td>0.08</td>
<td>4.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F60</td>
<td>77.44</td>
<td>78.13</td>
<td>72.35</td>
<td>10.07</td>
<td>80.89</td>
<td>2.14</td>
<td>2.41</td>
<td>0.26</td>
<td>0.07</td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F50</td>
<td>77.40</td>
<td>78.07</td>
<td>72.33</td>
<td>10.06</td>
<td>80.88</td>
<td>2.13</td>
<td>2.40</td>
<td>0.26</td>
<td>0.06</td>
<td>4.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F40</td>
<td>77.36</td>
<td>78.01</td>
<td>72.31</td>
<td>10.05</td>
<td>80.87</td>
<td>2.12</td>
<td>2.39</td>
<td>0.25</td>
<td>0.05</td>
<td>4.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F30</td>
<td>77.31</td>
<td>77.95</td>
<td>72.29</td>
<td>10.04</td>
<td>80.86</td>
<td>2.11</td>
<td>2.38</td>
<td>0.24</td>
<td>0.04</td>
<td>4.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F20</td>
<td>77.27</td>
<td>77.89</td>
<td>72.27</td>
<td>10.03</td>
<td>80.85</td>
<td>2.10</td>
<td>2.38</td>
<td>0.24</td>
<td>0.03</td>
<td>4.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F10</td>
<td>77.22</td>
<td>77.83</td>
<td>72.25</td>
<td>10.02</td>
<td>80.84</td>
<td>2.09</td>
<td>2.37</td>
<td>0.23</td>
<td>0.02</td>
<td>4.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3
<table>
<thead>
<tr>
<th>X</th>
<th>F60-M</th>
<th>F60</th>
<th>F0-M</th>
<th>FeO</th>
<th>MgO</th>
<th>H</th>
<th>Li</th>
<th>O</th>
<th>T</th>
<th>LiO</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>2.4</td>
<td>10.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 4
<table>
<thead>
<tr>
<th>Element Profile 1</th>
<th>Element Profile 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO</td>
<td>10.12</td>
</tr>
<tr>
<td>Al</td>
<td>10.35</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
</tr>
<tr>
<td>FeO</td>
<td>7.25</td>
</tr>
<tr>
<td>MgO</td>
<td>9.88</td>
</tr>
<tr>
<td>Na2O</td>
<td>9.31</td>
</tr>
<tr>
<td>K2O</td>
<td>8.92</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.13</td>
</tr>
<tr>
<td>MnO</td>
<td>0.13</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.13</td>
</tr>
<tr>
<td>CoO</td>
<td>0.13</td>
</tr>
<tr>
<td>NiO</td>
<td>0.13</td>
</tr>
<tr>
<td>CuO</td>
<td>0.13</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.13</td>
</tr>
<tr>
<td>PbO</td>
<td>0.13</td>
</tr>
<tr>
<td>As2O3</td>
<td>0.13</td>
</tr>
<tr>
<td>Sb2O3</td>
<td>0.13</td>
</tr>
<tr>
<td>TeO3</td>
<td>0.13</td>
</tr>
<tr>
<td>SnO2</td>
<td>0.13</td>
</tr>
<tr>
<td>I2</td>
<td>0.13</td>
</tr>
<tr>
<td>Bi2O3</td>
<td>0.13</td>
</tr>
<tr>
<td>Po2O5</td>
<td>0.13</td>
</tr>
<tr>
<td>UO2</td>
<td>0.13</td>
</tr>
<tr>
<td>ThO2</td>
<td>0.13</td>
</tr>
<tr>
<td>PaO</td>
<td>0.13</td>
</tr>
<tr>
<td>RaO</td>
<td>0.13</td>
</tr>
<tr>
<td>Element Profile 1</td>
<td>Element Profile 2</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>SiO</td>
<td>10.46</td>
</tr>
<tr>
<td>Al</td>
<td>10.79</td>
</tr>
<tr>
<td>CaO</td>
<td>1.15</td>
</tr>
<tr>
<td>FeO</td>
<td>1.37</td>
</tr>
<tr>
<td>MgO</td>
<td>1.09</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.10</td>
</tr>
<tr>
<td>K2O</td>
<td>1.11</td>
</tr>
<tr>
<td>TiO2</td>
<td>1.13</td>
</tr>
<tr>
<td>MnO</td>
<td>1.13</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>1.13</td>
</tr>
<tr>
<td>CoO</td>
<td>1.13</td>
</tr>
<tr>
<td>NiO</td>
<td>1.13</td>
</tr>
<tr>
<td>CuO</td>
<td>1.13</td>
</tr>
<tr>
<td>ZnO</td>
<td>1.13</td>
</tr>
<tr>
<td>PbO</td>
<td>1.13</td>
</tr>
<tr>
<td>As2O3</td>
<td>1.13</td>
</tr>
<tr>
<td>Sb2O3</td>
<td>1.13</td>
</tr>
<tr>
<td>TeO3</td>
<td>1.13</td>
</tr>
<tr>
<td>SnO2</td>
<td>1.13</td>
</tr>
<tr>
<td>I2</td>
<td>1.13</td>
</tr>
<tr>
<td>Bi2O3</td>
<td>1.13</td>
</tr>
<tr>
<td>Po2O5</td>
<td>1.13</td>
</tr>
<tr>
<td>UO2</td>
<td>1.13</td>
</tr>
<tr>
<td>ThO2</td>
<td>1.13</td>
</tr>
<tr>
<td>PaO</td>
<td>1.13</td>
</tr>
<tr>
<td>RaO</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Table SM 1
Figure SM 1 cont'

Setup A

- **Felsic**
- **Mafic**

Gold Capsule

Dacite (50 vol.% Qz)

Andesite

Scale: 25.0 kV, 1 mm
Figure SM 3 cont.

Oxide in starting material

Major Oxides (wt.%)
Figure SM 3 cont'

Major Oxides (wt.%)

- MnO
- TiO₂
- MgO
- K₂O
- FeO
- Na₂O
- CaO
- Al₂O₃
- SiO₂

Distance from interface (μm)

- F70-M
- F80-M-F80

Oxide in starting material