
Peer reviewed version
License (if available):
Unspecified
Link to published version (if available):
10.2110/palo.2015.095

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Society for Sedimentary Geology at http://palaios.geoscienceworld.org/content/31/5/259.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms
FRAMBOIDAL PYRITE SHROUD CONFIRMS THE ‘DEATH MASK’ MODEL FOR MOLDIC PRESERVATION OF EDIACARAN SOFT-BODIED ORGANISMS

ALEXANDER G. LIU

School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K. Email: alex.liu@bristol.ac.uk

RRH: EDIACARAN TAPHONOMY

LLH: LIU

Keywords: Taphonomy, Newfoundland, Oxygen, Neoproterozoic, Bacterial Sulfate Reduction.

ABSTRACT

The mechanisms by which soft-bodied organisms were preserved in late Ediacaran deep-marine environments are revealed by petrographic and geochemical investigation of fossil-bearing surfaces from the Conception and St. John’s groups (Newfoundland, Canada). Framboidal pyrite veneers are documented on fossil-bearing horizons at multiple localities. The pyrite is interpreted to have formed via microbial processes in the hours to weeks following burial of benthic communities. This finding extends the ‘death mask’ model for Ediacaran soft-tissue preservation (cf. Gehling, 1999) to deep-marine settings. Remineralization and oxidation of pyrite to iron oxides and oxyhydroxides is recognized to result from recent oxidation by meteoric fluids in the shallow subsurface. Consideration of other global Ediacaran macrofossil occurrences
reveals that pyrite has now been found in association with Ediacaran macrofossils preserved in all four previously described styles of moldic preservation (Flinders-, Conception-, Fermeuse- and Nama-type). This suggests that replication of external morphology by framboidal pyrite was a widespread mechanism by which soft-bodied organisms and associated organic surfaces were preserved in multiple facies and depositional environments 580–541 million years ago. The extensive global burial of pyrite in medium- to coarse-grained clastics and carbonates is a previously unrecognized yet potentially significant sink of iron and sulfur, and may have contributed to rising atmospheric and ocean oxygen concentrations across the late Ediacaran interval.

AN INTRODUCTION TO EDIACARAN TAPHONOMY

Late Ediacaran (~580–541 Ma) sedimentary successions host some of the oldest fossils of macroscopic soft-bodied organisms (Narbonne et al., 2012). Such macrofossils can occur in abundances of hundreds to thousands of individuals per square meter (Clapham et al., 2003; Zakrevskaya, 2014; Droser and Gehling, 2015), and are known from over 40 localities worldwide (Fedonkin et al., 2007). The biological affinities and paleoecology of this Ediacaran macrobiota are areas of intense study, but it is widely recognized that many observed morphological and paleoecological signatures may result from taphonomic processes (e.g., Clapham et al., 2003; Droser et al., 2006; Darroch et al., 2013; Liu et al., 2015). Obtaining a comprehensive understanding of the taphonomic history of Ediacaran macrofossils is therefore essential if we are to correctly identify morphological and evolutionary patterns and processes in latest Neoproterozoic marine ecosystems.
The taphonomic history of an organism is influenced by multiple biological, physical, chemical, ecological and sedimentological factors (Fedonkin, 1985), all of which must be considered when interpreting fossil material. In the Phanerozoic, preservation of non-mineralized organisms is largely confined to konservat Lagerstätten of limited spatial extent (e.g., Seilacher et al., 1985; Allison and Briggs, 1993), and typically requires exceptional ambient chemical, physical, or environmental conditions to facilitate soft-tissue preservation (e.g., low oxygen concentrations to exclude metazoan activity, suppress aerobic microbial decay, and provide favourable chemical conditions for soft tissue mineralization and/or casting within the sediment, cf. the Burgess Shale; Allison and Bottjer, 2011; Gaines et al., 2012a; Wilson and Butterfield, 2014).

In contrast, the late Ediacaran Period appears to have been a remarkable interval for the preservation of non-mineralized organisms, which are found globally in a wide range of facies (Seilacher et al., 1985; Butterfield, 2003; Schiffbauer and Laflamme, 2012; Kenchington and Wilby, 2015). Ediacaran macrofossils of soft-bodied organisms have now been described from shelf carbonates (e.g., Siberia and South China; Grazhdankin et al., 2008; Jiang et al., 2011; Chen et al., 2014) and black shales (Grazhdankin et al., 2008; Zhu et al., 2008; Yuan et al., 2011; Wang et al., 2014), in addition to occurrences in siliciclastic successions representing deep-marine basins and slopes (e.g., England, Newfoundland and NW Canada; Narbonne, 2005; Wilby et al., 2011; Narbonne et al., 2014), storm-influenced shoreface environments (Australia and Namibia; Gehling, 1999; Droser et al., 2006; Vickers-Rich et al., 2013), and marginal marine channels and prodeltas (the White Sea of Russia; Grazhdankin, 2004). Intertidal and fluvial settings of this age are generally devoid of macrofossils, with sedimentary structures indicative of microbial activity (e.g., MISS, ‘Arumberia’, or pit-and-mound structures) being the primary biogenic impressions in such facies (Grazhdankin, 2004; McIlroy et al., 2005; Droser et al., 2006; Menon et al., 2016).
Fossil preservation at Ediacaran macrofossil localities has been suggested to fall within three dominant styles: moldic preservation, carbonaceous compressions, and replication by diagenetic minerals (Kenchington and Wilby, 2015). This manuscript focuses on moldic preservation, the taphonomic style responsible for the preservation of macrofossils at classic Ediacaran localities in South Australia, the White Sea, the U.K. and eastern Newfoundland, where it has been known to replicate morphological features <100 µm in dimension (e.g., Narbonne, 2004; Liu et al., 2016). Although moldic impressions can be hosted in carbonates (Grazhdankin et al., 2008; Chen et al., 2014), most Ediacaran examples occur in siliciclastic settings, where four different styles of moldic soft-tissue preservation are recognized by Narbonne (2005). These styles are essentially defined by differences in the casting medium, dependant on whether fossils are preserved on the soles of turbidites (Fermeuse-style preservation), beneath volcanic tuffs (Conception-type preservation), in association with cyanobacterial mats (Flinders-style preservation), or interstratally within siliciclastic sediments (Nama-type preservation; see also Narbonne et al., 2014).

When found on bedding surfaces, organisms can be preserved as positive and/or negative hyporeliefs and/or epireliefs (Glaessner and Wade, 1966), with certain taxa and localities often associated with a particular combination of these (e.g., Fractofusus in Newfoundland is typically a negative epirelief impression, whereas Dickinsonia in Australia is usually preserved in negative hyporelief; Gehling, 1999; Gehling and Narbonne, 2007). In addition to simple external molds and casts, rare internal molds (Narbonne, 2004), composite molds, and three-dimensional preservation of specimens within beds are also reported (Droser et al., 2006). These taphonomic variants have been ascribed to factors including variability in decay resistance of biological tissues in individual organisms, differential rates of decay relative to rates of sediment compaction, and the presence and type of microbial mats on the original seafloor (e.g., Wade, 1968; Gehling, 1999; Narbonne, 2005). However,
the primary controls on late Ediacaran preservation of soft-bodied organisms have remained elusive.

Explanations for the profligacy and high-quality preservation of late Ediacaran macrofossils focus on evidence for widespread benthic microbial mats, and a perceived absence of scavengers, predators, and pervasive bioturbating organisms (Fedonkin, 1985; Allison and Briggs, 1993; Callow and Brasier, 2009; Liu et al., 2011). The favoured explanation for late Ediacaran moldic preservation in siliciclastic sediments involves the smothering of paleocommunities on microbe-covered seafloors by event beds (e.g., volcanic ash, or storm sands; Narbonne, 2005), followed by microbi ally-induced precipitation of pyrite around the organisms (Gehling, 1999; though see Serezhnikova, 2011 for an alternative view). Bacterial sulfate reduction (BSR) is considered to have broken down organic matter in and on buried microbial mats and macro-organisms, producing bisulfide (HS⁻) and hydrogen sulfide (H₂S). These compounds then reacted with iron in the sediment (either already present in the pore waters, or generated by microbial Fe-reduction; Berner, 1969; Goldhaber and Kaplan, 1974) to form iron monosulfides on the surface of organic matter, creating a mineralized ‘death mask’ of its exterior (Berner, 1984; Gehling, 1999; see also Gehling et al., 2005; Droser et al., 2006). Later reaction of these monosulfides with further sulfur led to pyrite formation (Berner, 1984; Gehling, 1999). For pyrite to form within sediments around organic matter, the activity of sulfate reducing bacteria and sources of iron and sulfate are required (Briggs et al., 1996). Even if there is sufficient iron present in the sediment for pyritization to proceed (cf., Farrell et al., 2009, 2013), the activity of iron reducing microorganisms is often also important to transform that iron from solid Fe(III) to an aqueous Fe(II) phase. Importantly, for pyrite formation to be concentrated around organisms and not diffused throughout the sediment, organic carbon concentrations in the surrounding sediments need to be low, thus restricting microbial reactions solely to the vicinity of the
organisms (e.g., Canfield and Raiswell, 1991; Briggs et al., 1991). Binding and sealing of the sediment-water interface above buried organisms by further microbial mat development would have prevented oxidation of the newly formed sulfides by oxygen-bearing pore fluids (Gehling et al., 2005), enabling preservation of a mineralized moldic replica of the biological tissues. The amount of time a carcass spent within particular microbial zones (dependent on the depth of burial and thus sedimentation rate), may have influenced both the extent of pyritization and the degree of later mineralization or stabilization by other means (e.g., kerogenization; Schiffbauer et al., 2014).

The ‘death mask’ model outlined above was developed to explain mold and cast preservation in coarse-grained quartzites in South Australia (e.g., Flinders-type preservation of Narbonne, 2005). Sands rarely possess pyritized fossils, since their relatively high porosity and permeability favour oxic respiration, permitting organic carbon to be removed from the system before anoxic conditions (required for pyrite formation) can develop. The ‘death mask’ model circumvents this issue by proposing that conditions in the sediment shortly after burial were essentially ‘closed’, due to rapid growth of microbial communities on the seafloor above the buried surfaces forming a barrier to pore water flow from the water column (Gehling, 1999). Despite the apparent success of the model in explaining Ediacaran taphonomic processes, a deep-weathering profile in South Australia prevents examination of primary mineralogy (Gehling et al., 2005), such that primary pyrite sole veneers have yet to be documented from that region. However, support for the ‘death mask’ model has been offered by mineralogical evidence for an oxidation pathway from pyrite to iron oxides in Australian strata (Mapstone and McIlroy, 2006); red iron oxide staining of many fossil-bearing surfaces (e.g., Wade, 1968); and the casting of negative hyporelief fossil impressions by sediment from layers beneath (Droser et al., 2006). The high quality replication of external morphology in Ediacaran impressions would imply that pyritic ‘death masks’, or at least their
monosulfide precursors, formed over very short intervals of time (on the order of days to weeks) prior to the decay of the organisms; timescales that we should be able to replicate experimentally. Early experimental attempts to replicate Ediacaran preservational processes largely focused on coarse-grained siliciclastic settings and sediments (Norris, 1989; Bruton, 1991). However, those studies assessed only a limited number of phyla, tissue types, and substrates, and left many important variables unconstrained (most notably by not including microbial mats in the experimental protocol; Kenchington and Wilby, 2015). More recent attempts to re-create a pyritic ‘death mask’ observed high localized concentrations of Fe and S, assumed to reflect the presence of iron sulfides, and elevated concentrations of aluminosilicate elements, in a black precipitate formed in the vicinity of organic matter undergoing decay on freshwater cyanobacterial mats (Darroch et al., 2012). Those findings are broadly consistent with the early stages of the ‘death mask’ model, and recognise the importance of sedimentary organic matter in facilitating rapid decay, but failed to generate pyritic ‘death masks’ of external morphology over short timescales. Pyrite framboids have been recognized in natural systems to form in association with microbial activity (e.g., Popa et al., 2004; MacLean et al., 2008), and have been produced in the laboratory both in \textit{in vitro} cultures enriched with sulfur reducing bacteria (SRB) (Donald and Southam, 1999), and abiotically (e.g., Butler and Rickard, 2000). In the few experimental studies to have produced actual pyrite framboids around buried organic matter (which involved pyritization of plant material), framboids formed over timescales on the order of a few weeks (Grimes et al., 2001; Brock et al., 2006).

In Avalonian deep-marine localities (eastern Newfoundland and the southern UK; Cocks et al., 1997) there have been only rare incidental reports of pyrite on fossil and trace fossil surfaces (Gehling et al., 2005; Liu et al., 2010; Laflamme et al., 2011; Liu et al., 2014a). Consequently, the ‘death mask’ model has not been widely discussed with respect to
the Fermeuse-type and Conception-type preservation (cf., Narbonne, 2005) typical of the
region. Much of the previously observed pyrite is clearly late stage authigenic mineralization,
with pyrite cubes several centimetres in dimension found in certain sections (e.g., O'Brien
and King, 2005). Microbial surface fabrics have been noted in Newfoundland and the U.K.
(e.g., Droser et al., 2006; Brasier et al., 2010), but in the absence of documented mineralized
veneers, alternative processes invoking rapid cementation of volcanic ash, or authigenic
silicate precipitation, have been considered integral to the Avalonian preservation process
(Narbonne, 2005; Callow and Brasier, 2009).

Here, a detailed petrological study recognises widespread pyrite-associated mineral
veneers on fossil-bearing bedding planes from Newfoundland, confirming the applicability of
the ‘death mask’ model (Gehling, 1999) to Ediacaran macrofossil preservation in Avalonian
marine siliciclastic settings. This finding implies that moldic preservation of late Ediacaran
soft-bodied organisms may have been governed by a common global mechanism; a
suggestion that has implications for our understanding of late Ediacaran
taphonomic processes, and the nature of early burial environments.

MATERIALS AND METHODS

Sedimentary samples were collected from fossil-bearing bedding planes on the Avalon and
Bonavista peninsulas, Newfoundland, Canada (Fig. 1). All studied sites are protected by
provincial legislation, and lie under the jurisdiction of either the Parks and Natural Areas
Division of the Department of Environment and Conservation (for Mistaken Point Ecological
Reserve; MPER), or the Department of Business, Tourism, Culture and Rural Development
(elsewhere in the Province, as outlined in Regulation 67/11 of the Historic Resources Act,
Collection of sedimentary samples may only be undertaken under permits issued by the bodies above, while collection of Ediacaran fossil material is strictly prohibited.

Sedimentary samples were chosen to include both the green-weathering siltstone (interpreted as hemipelagites; cf., Liu et al., 2014b) upon which fossil assemblages are impressed, and the ash or smothering sediment that covered them. Standard polished, uncovered thin sections were made through sedimentary samples perpendicular to the bedding surfaces. Since the smothering sediments in the collected samples have not weathered off to reveal their underlying surfaces, it is not possible to know whether macrofossils lie in the investigated planes of section. For the purposes of this manuscript, it is assumed that they do not, and all observations are considered to be indicative of conditions across the entire bedding surface. A selection of thin sections were carbon-coated and underwent imaging, energy dispersive spectrometer (EDS) mineral characterization, and quantitative elemental mapping on a Hitachi S-3500N variable pressure Scanning Electron Microscope (SEM) equipped with Thermo Noran EDS x-ray detector, and Cameca SX-100 electron microprobe, at the School of Earth Sciences, University of Bristol. All raw files relating to the elemental maps, SEM images, and EDS point analyses are stored in the Bristol Data Repository: http://data-bris.acrc.bris.ac.uk/deposits/1rdlayqk8sje91lk0iq1mdnzib

Thin sections from nine localities are presented here to demonstrate the variation inherent within the study area (Fig. 1). The nine sites are the Brasier (aka BR5) Surface, the Pigeon Cove ‘pizza disc’ surface, and the ‘E’ Surface from Mistaken Point Ecological Reserve; the ‘3D’ rangeomorph surface at Spaniard’s Bay (SB); and the H14, LC6, LC13, MEL7 and MUN surfaces on the Bonavista Peninsula (Fig. 1; names of surfaces follow field notebook terminology). Taken together, these surfaces span the Drook to Fermeuse Formations of the Conception and St. John’s groups (following the lithostratigraphic correlation of Ichaso et al., 2007, and Hofmann et al., 2008), and exhibit a broad range of
preservational quality. The BR5 and ‘E’ Surfaces were sampled at multiple locations along each bedding plane, at distances of up to 20 m (on ‘E’) and 100 m (BR5) apart, to determine the lateral continuity of sedimentary characteristics across individual surfaces. Further sedimentological and stratigraphic information regarding these surfaces can be found in the Supplementary Information file. All studied thin sections reside at the Department of Earth Sciences, University of Cambridge.

Geological Context

Eastern Newfoundland hosts some of the world’s oldest Ediacara-type macrofossils (Narbonne and Gehling, 2003), with hundreds of fossil-bearing surfaces spanning a ~20 million year interval ~579–560 Ma (dating after Benus, 1988; Van Kranendonk et al., 2008). Fossils are preserved beneath volcanic tuffs, volcaniclastic sediments, or sandy turbidites, largely as positive or negative epirelief impressions of the exterior surfaces of the organisms (cf., Liu et al., 2011 and references therein). Strata of the Conception and St. John’s groups are predominantly turbiditic, deposited in marine basin and slope environments offshore from an active volcanic arc (Wood et al., 2003). Importantly, there is no evidence of shallow water (above wave base) deposition throughout the entire fossil-bearing succession from the Drook to lower Fermeuse Formations (Wood et al., 2003); where shallow-water indicators do appear in the upper Fermeuse Fm. and the Signal Hill Group, non-discoidal macrofossils are not observed. The entire volcaniclastic succession has been interpreted as a flysch-molasse transition (Myrow, 1995). Fossils occur within turbidite successions on thin, green-weathering, siltstone beds interpreted as contourites or hemipelagites (Supp. Fig. 2A; Wood et al., 2003). Detailed accounts of the sedimentology and facies associations in the Ediacaran strata of the Avalon and Bonavista peninsulas have been published in recent years (Wood et
al., 2003; Ichaso et al., 2007; Mason et al., 2013). Folding and faulting is pervasive within the Avalon region, and some units have undergone prehnite-pumpellyite low-grade metamorphism (Papezik, 1974). The paleobiological and paleoecological attributes of the fossil assemblages have been recently reviewed by Liu et al. (2015).

RESULTS

For ease of interpretation, it is useful to define descriptive terms to permit direct comparison of sedimentary samples from different sites:

Under-bed: the sedimentary substrate upon which the organisms were living. In the Conception Group of Newfoundland, this is usually a green-weathering hemipelagite (Supp. Fig. 2A), the top surface of which is often stained red (Supp. Fig. 1) and bears positive and negative epirelief fossil impressions (e.g., Supp. Fig. 2B).

Over-bed: the event bed that smothered a given Ediacaran community. Typically this is a volcanic tuff, a volcaniclastic sediment, or more rarely, the base of a sandy or silty turbidite.

Veneer: a thin (typically <1 mm thick), laterally continuous layer present at the interface between the under-bed and over-bed, predominantly composed of iron-bearing minerals. The veneer is typically situated within the base of the over-bed.

Petrology and SEM Analysis

Under-bed.—Fossils generally occur on green-weathering siltstone layers of up to 7 cm in thickness. These siltstone layers lie above the T₀ unit of the underlying turbidite, with which they possess a sharp contact (Supp. Fig. 2A). Under-bed siltstones are relatively consistent in
mineralogy and sedimentology in all studied sections (Fig. 2), being siliciclastic with grain size typically <30 μm, and composed of feldspars, quartz, clay minerals and phyllosilicates. The siltstones often bear a mottled appearance due to the presence of millimetric lenses of coarser quartz-rich silt (Landing et al., 1988), although the abundance of these clusters within the under-bed can be quite variable between localities (Fig. 2). Such siltstones are inferred to represent either sedimentation of pelagic material accumulated in the intervals between turbidity current flows, or contourite deposits (the latter interpretation informed by frequent alignment of many frondose fossils on the surfaces perpendicular to the downslope direction indicated by ripples in underlying turbidites; Narbonne et al., 2005; Narbonne et al., 2014). Baffling of coarser grains by microbial mats, or biological processing of the sediment, may offer alternative explanations for the mottled textures.

Over-bed.—The most obvious difference in petrology between the studied fossil-bearing surfaces is the mineralogy and grain size of the over-bed. This varies considerably from fine silt-sized grains of volcaniclastic material (e.g., on the MUN Surface; Fig. 2A) that have undergone little alteration or metamorphic overprint, to coarse sand-sized clasts of altered volcanic origin within a pervasive chlorite matrix (e.g., the ash fraction directly above the Mistaken Point ‘E’ Surface; Fig. 2D). Many of the tuffs in the Conception Group possess mineralogies consistent with dacitic and andesitic compositions (Retallack, 2014). However, later alteration has almost certainly affected both the observed mineralogy and grain size of the matrix in several cases (e.g., via dissolution of volcanic glass and increase in the clay mineral component; Kiipli et al., 2007; Page et al., 2008).
Mineralized veneer.—A thin (15 µm to 1.5 mm) veneer of opaque minerals is commonly observed at the interface between the under-bed and over-bed on fossil-bearing surfaces (Fig. 2). Veneers can vary in thickness quite substantially over small distances, and constituent minerals are typically spherical (2–25 µm diameter), and confined to the over-bed side of the interface (Supp. Figs S3A–E, 4–6). Mineralogy of the veneer varies between and even within individual samples, with iron oxides and oxyhydroxides being the dominant phases (as confirmed by SEM EDS; Supp. Figs 7–10). Importantly, some beds (e.g., BR5) have veneers composed of framboidal, microcrystalline pyrite (see also the Elemental Mapping section below; Figs 3–5; Supp. Figs 6–7, 9). Sedimentary grains can be caught up within the veneer, but these comprise <50% of the material within the veneer margins. On bed BR5 (Briscal Formation of Mistaken Point Ecological Reserve), sedimentary samples taken ~100 m apart reveal that the mineralized veneer is broadly consistent in thickness and general appearance across that surface (compare Figs 4A–B with 4C–D, see also Supp. Fig. 5). However, the BR5 veneer has a different mineralogy in the two studied thin sections, being entirely pyritic in one sample (BR5 2013), and composed of iron oxide with minor pyrite regions in the other (BR5 2014) (Figs 4A–D; Supp. Figs 5–7). These observations demonstrate that the veneer is a consistent and continuous feature across the fossil-bearing surfaces, but that its mineralogy can vary.

Bed BR5 reveals that framboid morphology within a veneer can also vary. In region II of sample BR5 2013, closest to the interface with the under-bed, all pyrite is in the form of discrete pyrite framboids, or ‘exploded’ microcrystalline pyrite patches (Fig. 3E). In contrast, in region III of the veneer, which is separated from region II by a ~100 µm thick layer of framboid-poor sediment (Fig. 3C), all pyrite framboids have an outer rim of blocky, coarser crystalline pyrite (Fig. 3D). This rim extends only one crystal width (2–6 µm) around the exterior of the framboid, and can often be seen in SEM images as an empty ‘ring’, where the
original framboid has been plucked out during the polishing process, leaving the blocky pyrite rim behind (Fig. 3D, centre-right).

A thin section from bed LC6 (Trepassey Formation of the Bonavista Peninsula), reveals interesting variation in veneer mineralogy over a very small distance (Fig. 4E). The veneer minerals here can be pyritic in one area of a thin section, but progressively more blocky and oxidised in other regions of the over-bed just a few hundred microns away (Fig. 4E; Supp. Figs 3E, 9). Furthermore, oxidation of individual grains appears to progress from the outside of the framboid towards its centre (Fig. 4E).

In outcrop, veneers can occasionally be recognized as ‘rusty’ mineralized layers on bedding plane surfaces (e.g., Fig. 3A–B; Liu et al., 2016 supp. fig. 3A). Such rusty layers can also be found quite abundantly at the interfaces between turbidites in certain sections (e.g., the upper Drook Formation, Supp. Fig. 2C–D), demonstrating that volcanic tuffs are not required for their formation. Horizontally aligned and laterally discontinuous ‘wisps’ of spherical minerals are also occasionally observed within the under-bed, at depths of a few millimeters to several centimeters beneath the main veneer (e.g., Fig. 2F). These wisps are typically only a few tens of microns thick and a few millimeters in length (e.g., the Spaniard’s Bay Surface, Fig. 2F), with individual grains possessing identical mineralogies and morphologies to those forming veneers at higher levels within the thin section.

The only major fossil horizons where a clear mineralized veneer was not observed are the Mistaken Point ‘D’ and ‘E’ Surfaces. The ‘D’ and ‘E’ Surface over-bed tuffs show clear evidence of chloritization and replacement of several mineral phases (e.g., Fig. 2D), which results from low-grade metamorphism and later weathering (Papezik, 1974). Occasional crystals of rutile and haematite are also observed at the base of the ‘E’ Surface tuff (Fig. 2D). It is possible that the iron now bound within these minerals, and in the abundant chlorite in the over-bed matrix, originated from primary pyrite framboids located along the sedimentary
interface. The lack of a mineralized veneer on this horizon is consistent across the exposed bedding plane (confirmed by study of thin sections taken from areas 20 m apart). However, it must be noted that it was not possible to obtain a pristine, unweathered sample from either of these surfaces.

Elemental Mapping

Elemental maps were made of small regions of the mineralized veneer in three thin sections (BR5 2013, MUN, and LC6; Fig. 5). These maps permitted distinction between the main mineral phases present in the sections. Spherical grains within the mineralized veneers are confirmed to be either pyrite (bed BR5), iron oxide (MUN), or a combination of the two (LC6), with iron oxide replacing pyrite grains in higher levels of the veneer in the latter section. An iron-rich, subtly layered mineralized crust is observed above the main veneer on bed BR5, and is considered to result from modern weathering and secondary precipitation of abundant iron oxides over the exposed surface (Fig. 5).

DISCUSSION

Thin sections through fossil-bearing horizons in Newfoundland reveal a close association between mineral veneers and fossil-bearing surfaces throughout the late Ediacaran marine succession. The majority of studied fossil-bearing surfaces possess a mineralized veneer immediately above them (Fig. 2). Where present, the veneer is variously composed of framboidal pyrite, spherical clusters of blocky pyrite, or a mixture of spherical iron oxides and hydroxides of similar shape and dimension to pyrite framboids (Figs 4–5). On beds where multiple samples were taken from different locations on the same surface, mineralogical characteristics and relative thickness of sedimentary layers and veneers were consistent, apart from on bed BR5 where spherical mineral aggregates were pyritic in one
thin section, but oxidised in the other (Fig. 4A–D; Supp. Figs 5–7). Further evidence from bed BR5 demonstrates that framboidal pyrite within veneers has in places undergone secondary ‘coating’ by overgrowths of blocky pyrite (Fig. 3D, consistent with recent and ancient observations of pyrite overgrowth; Wacey et al., 2015). Meanwhile, bed LC6 documents oxidation of pyrite framboids to iron oxides within an individual thin section (Fig. 4E), with oxidation proceeding from upper to lower levels within the veneer, and from rim to core in individual framboids. Together, these observations suggest that the observed oxidation is occurring due to modern weathering processes involving meteoritic water.

The similarities in diameter, morphology, and fabric of the spherical mineral aggregates comprising the veneers in non-pyrite-bearing thin sections suggest they are likely to have originally been pyrite framboids. It is therefore proposed that the entire surfaces on which Ediacaran fossils are preserved in Newfoundland were coated with a thin pyritic veneer soon after burial. In some cases, this veneer has subsequently oxidized to iron oxides and other iron species, consistent with widespread red-staining of fossil surfaces at many sites in both Newfoundland and Australia (Supp. Fig. 1; Droser et al., 2006), and with the ‘death mask’ model (Gehling, 1999). The veneers represent the first direct evidence for the presence of laterally continuous pyritic veneers on Ediacaran fossil-bearing surfaces.

Formation of the veneers.

Many authors have attempted to explain the formation of framboidal pyrite, and multiple biological and abiological pathways are now recognized (Schallreuter, 1984; Wilkin and Barnes, 1997; Butler and Rickard, 2000; Rickard, 2012; Wacey et al., 2015). Key steps in the bacterially-mediated biological production pathway are: (1) breakdown of organic matter to smaller particles in the presence of dissolved sulfate, which is reduced to H$_2$S; (2) reaction of
H$_2$S with reactive iron ions in pore fluids to produce iron monosulfides; and (3) reaction of these monosulfides (e.g., FeS) with sulfur ions to form pyrite (Berner, 1970, 1984).

Formation of framboidal pyrite in enriched cultures of SRB reveals that biogenically-produced FeS precipitates as a nano-scale film on the external surfaces of individual bacteria. Additional H$_2$S released by cell autolysis is then immobilized at the cell surface and reacts to form microcrystalline pyrite (Donald and Southam, 1999). Subsequent pyrite growth extends out from the cell exterior. The microbial breakdown of organic matter from both the surfaces of Ediacaran macro-organisms, and from contemporaneous benthic microbial mats (the only way the lateral extent of the observed veneers can be explained), is predicted to have begun in similar fashion before extending out into the adjacent sediment (cf., Steiner and Reitner, 2001; Wang et al., 2014).

Fossil evidence for microbial consortia within the Conception Group of Newfoundland includes surficial microbial mats (e.g., Brasier et al., 2010 fig. 6a), and rare microfossil remains of bacterial organisms (Hofmann et al., 1979). Recently acquired sulfur isotope data present independent evidence for the activity of sulfate reducing microorganisms associated with the observed mineralized veneers. Un-oxidised pyrite framboids from the MEL 7 fossil surface veneer (Fig. 2E) yield δ^{34}S values ranging from -15.2‰ to -24.3‰ (mean = -21.5‰; n = 33; data presented in Wacey et al., 2015), indicating fractionation of sulfur isotopes (Δ^{34}S) of up to -50‰ with respect to estimated contemporaneous seawater sulfate isotopic compositions (+25‰; Fike et al., 2006). The magnitude of these fractionations suggests the sulfur in veneer framboids underwent biological processing by microbial sulfate reduction (perhaps in conjunction with limited electron donor supply; cf., Leavitt et al., 2013), prior to incorporation within pyrite framboids (Wacey et al., 2015). Distinct CN$_{org}$ enrichments around framboid microcrystals within the
MEL7 mineral veneer, indicative of formation within a biofilm (Wacey et al., 2015), further support the suggestion that veneer pyrite results from microbial sulfate reduction.

In order for the external morphology of Ediacaran macro-organisms to be coated and cast by framboidal pyrite, the tissues must have remained intact for long enough that SRB could produce sufficient pyrite, or at least precursor iron sulfides (e.g., Sweeney and Kaplan, 1973), to cast them. However, mineralization must have been completed before decay proceeded far enough to efface morphological detail (Briggs, 2003). The timescale over which BSR and mineralization occurred is thus dependent on the rate at which H$_2$S is produced by microbial activity; the quantity of available organic carbon; the rate of bacterial decay; and the flux of sulfate and dissolved iron to the site of microbial activity (Jørgensen, 1977; Boudreau and Westrich, 1984; Westrich and Berner, 1984). All of these factors are in turn dependent on the depth of the redox zone (controlled in part by the degree of microbial sealing; Gehling et al., 2005; Droser et al., 2006; Callow and Brasier, 2009; Menon et al., 2016), and the mineralogy of the surrounding sediments. The absence of bioturbators and scavengers, which would have disturbed and irrigated the sediment, oxidizing any sulfides, appears to have been significant to the ‘death mask’ process, enabling sulfides to remain stable and undisturbed. The observation that pyrite framboids are largely confined to the over-bed in Newfoundland may result from a combination of the sediment within the under-bed being separated from the decaying carcasses by a microbial biofilm/mat, and the over-bed typically having a higher porosity due to its coarser grain size.

Oxidation of the pyrite framboids within veneers is likely to result from modern processes, as evidenced by examples of pyrite and iron oxides within the same surface veneer, separated on a variety of scales from microns to meters (Fig. 4). Pyrite oxidation is discussed in an extensive literature on acid rock drainage (e.g., INAP, 2014). Although multiple steps are involved in this process (Stumm and Morgan, 1981; Lowson, 1982;
Rimstidt and Vaughan, 2003), the chemical reaction in natural environments can be simplified to:

$$4\text{FeS}_2 + 13\text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{FeSO}_4 + 2\text{H}_2\text{SO}_4 + 2\text{SO}_2$$

In aqueous systems (such as those typically found on the coastline of Newfoundland where water commonly flows along bedding interfaces), the oxidation of pyrite by ferric iron can also occur:

$$\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+$$

The production of sulfuric acid via these processes may be relevant to studies of observed variation in preservational quality of Ediacaran fossils on many surfaces, and is an area of active research. In addition to common iron-bearing oxides, more exotic oxidation products can also be observed. Laser Raman analysis identified the iron sulfate mineral bukovskyite ($\text{Fe}_2(\text{AsO}_4)(\text{SO}_4)\text{OH}.7\text{H}_2\text{O}$) forming remineralized rims around pyrite wisps at the Spaniard’s Bay fossil locality (Brasier et al., 2013, fig. S3). Bukovskyite is a common alteration product of arsenopyrite (FeAsS), which may have formed as a result of enhanced heavy metal dissolution related to acid rock drainage (Saria et al., 2006).

The global ubiquity of the pyritic ‘death mask’

Volcanic ash has often been cited as the primary agent of preservation in Newfoundland (Narbonne, 2005), but the observed variation in over-bed substrate demonstrated in this study (Fig. 2) suggests that this is not the case. Previous suggestions that pyrite might have played a role in macrofossil preservation in Newfoundland are limited to elevated Fe and S concentrations in sediments surrounding *Aspidella* fossils in the Fermeuse Formation (Laflamme et al., 2011), and rare pyrite in bedding-parallel wisps and euhedral blocky
crystals associated with macrofossil-bearing horizons at Spaniard’s Bay (Brasier et al., 2013 fig. 3C–F) and Back Cove (Liu et al., 2014a; Wacey et al., 2015). The results presented herein demonstrate that microbially-formed pyrite veneers are ubiquitous immediately above fossil-bearing surfaces in Newfoundland, revealing that Gehling’s ‘death mask’ model is applicable to deep-marine settings. The findings also raise the possibility that unfigured structures historically assigned to the microfossil taxon Bavlinella from the St. John’s Group (Timofeyev et al., 1980; Anderson et al., 1982) may actually record pyrite framboids.

Consideration of other global Ediacaran macrofossil localities reveals abundant evidence for the involvement of pyrite in fossil preservation in a variety of facies. Pristine pyritized microfossils, bed soles, and mat fabrics have been reported from the White Sea of Russia (Steiner and Reitner, 2001; Dzik, 2003; Grazhdankin, 2003; Grazhdankin and Gerdes, 2007), and potentially from Ukraine (Dzik and Martyshyn, 2015). Pyrite framboids are present on the surfaces of carbonaceous compression macrofossils of the Miaohe and Lantian biotas of China (Wang et al., 2014); on pyritized members of the Gaojiashan biota (Cai and Hua, 2007; Cai et al., 2012); and preserving three-dimensional fronds (Steiner and Reitner, 2001; Ivantsov, 2016) and other taxa preserved as impressions (Fedonkin and Waggoner, 1997; Serezhnikova, 2011) in siliciclastic sediments from the White Sea. Framboidal pyrite is also associated with Ediacaran Sabelliditids from the East European Platform (Moczydłowska et al., 2014). Meanwhile, acritarchs and filamentous microfossils from siliciclastic settings in the Australian Centralian Superbasin (Grey and Willman, 2009), and from siltstones, dolostones and mudstones of the Chinese Yangtze Gorges (Anderson et al., 2011), are preserved in close association with framboidal pyrite. The latter region additionally sees the growth of centripetal pyrite around microbial mat fragments, forming pyrite rims around the silica cortices of chert nodules in Doushantuo Formation shales (Xiao et al., 2010).
Iron oxide veneers considered to result from the secondary oxidation of pyrite are frequently seen coating bedding planes, bed soles, and fossils in the Australian Flinders Ranges (Gehling, 1999) and Amadeus Basin (haematite and clay veneers; Mapstone and McIlroy, 2006), as well as in Newfoundland (Supp. Fig. 1). A paucity of published data on the petrography of the June Beds in NW Canada (Narbonne et al., 2014) precludes determination of whether pyrite mineralization is also responsible for the interstratal preservation of Ediacaran macrofossils there. Oxidation products of pyrite (e.g., jarosite, limonite and goethite) have been observed alongside rare authigenic pyrite encrusting three-dimensionally preserved macrofossil specimens in Namibia (Hall et al., 2013; Vickers-Rich et al., 2013; Meyer et al., 2014a). It is worth noting that the oxidation of pyrite to jarosite involves a 115% increase in molar volume (Lowson, 1982 and references therein), potentially explaining how Ediacaran fossil impressions preserved within beds can become naturally dissociated from the surrounding bedrock upon exhumation, despite there being only limited lithological contrast between the specimen and substrate.

These numerous examples demonstrate that framboidal pyrite and its oxidation products are found in close association with Ediacaran macrofossils preserved as molds and casts throughout the late Ediacaran Period, occurring across entire microbial surfaces in disparate facies, multiple geographic locations, and in both shallow- and deep-marine environments between 579–541 Ma. Although evidence for pyrite has not yet been documented at every late Ediacaran fossil locality (e.g., Rowland and Rodriguez, 2014), it does seem that early diagenetic pyritization played a significant role in the moldic preservation of Ediacaran soft-bodied macro-organisms. This has important implications for previous views on Ediacaran taphonomy, since fossils preserved in Nama-, Fermeuse-, Flinders-, and Conception-styles (cf., Narbonne, 2005) have all now been recognized in association with pyrite or its modern oxidation products, implying that the distinctions
between these taphonomic modes are largely lithological, and that the first-order biological
and chemical processes responsible for Ediacaran macrofossil preservation are globally
uniform. The alternative suggestion that different preservation pathways result from the
activities of different microbial communities (cf., Narbonne, 2005) does not seem
parsimonious, but could in future be tackled via experimental investigation. SRB are likely to
have been responsible for sulfide generation in all recognized cases, and while other microbes
present on the seafloor may not have engaged in sulfate reduction themselves, their organic
matter would have contributed organic carbon for SRB to metabolise. Furthermore, it is clear
that association of macrofossils with pyrite is not restricted to fine grained facies as in the
Phanerozoic, but is commonly seen in Ediacaran coarse-grained clastics and even carbonates.
Furthermore, Ediacaran carbonaceous compressions and environments hosting microfossils
also exhibit pyritic material.

In Namibia and Australia, Ediacaran macrofossils preserved as three-dimensional
external moulds within sandstones (Wade, 1968; Pflug, 1972) have been interpreted as either
endobenthic organisms (cf., Seilacher, 1992; Grazhdankin and Seilacher, 2005), or epibenthic
organisms incorporated within the sediment during transport and burial (Jenkins, 1992). Such
specimens imply that microbial growth coated the entire organisms within the sediment, and
the presence of a surficial microbial mat was thus not essential to the preservation process
(cf., Callow and Brasier, 2009). Similarly in Newfoundland, preservation of the upper
surfaces of fronds and stems (e.g., Charniodiscus; Laflamme et al., 2004), and of
rangeomorphs in sediment scours beneath the level of the contemporaneous seafloor and its
microbial surfaces (Brasier et al., 2013), also indicate that contact of the organisms with a pre-
existing mat was not a pre-requisite for pyrite formation.

In combination with distinct marine chemical conditions (summarised in Narbonne et
al., 2012; Sperling et al., 2015), the absence of burrowers, scavengers and predators is
considered to have favoured *in situ* preservation of non-mineralized biological structures, including soft-bodied organisms, in the Ediacaran (e.g., Callow and Brasier, 2009). The globally extensive onset of vertical burrowing in the Cambrian (e.g., Seilacher and Pflüger, 1994; Bottjer et al., 2000; Máñago and Buatois, 2014) has thus been considered to have disrupted benthic microbial communities (Buatois et al., 2014; Carbone and Narbonne, 2014) and oxidised sediments to greater depths, bringing an end to ‘closed system’ conditions. Several studies have proposed that disturbance of microbial mats by motile organisms could have initiated the closure of the Ediacaran taphonomic window, marginalizing soft-tissue preservation towards sites with atypical ambient conditions (cf., Allison and Briggs, 1993; Orr et al., 2003; Brasier, 2009; Laflamme et al., 2013; though see Tarhan et al., 2015).

However, microbially-bound substrates with no evidence for associated Ediacara-type macrofossils are now recognised to persist into the Cambrian in several locations (e.g., Dornbos et al., 2004), including in association with abundant pyrite and microbially induced sedimentary structures in the basal Cambrian strata of the Burin Peninsula of Newfoundland (Buatois et al., 2014). If this pyrite formed from original framboidal precursors via similar pathways to those described from the Conception and St. John’s groups, it may imply that the ‘death mask’ taphonomic window extended beyond the Ediacaran Period. The apparent absence of Ediacara-type macrofossils in Member 2 of the Chapel Island Formation could thus be interpreted as evidence for the original absence of such organisms, at least in the specific Cambrian facies represented by those sections (cf., Buatois et al., 2014, though see also Laflamme et al., 2013, and Darroch et al., 2015). Reports of potential examples of predation and bioturbation in deposits coincident with Ediacara-type fossils ≤553 Ma (Bengtson and Zhao, 1992; Rogov et al., 2012; Chen et al., 2013; Meyer et al., 2014b) also raise questions regarding the confounding influence of these activities on latest Ediacaran taphonomy. When coupled with paleoecological data, these observations suggest that the
disappearance of the Ediacaran macrobiota is not simply an artefact of taphonomy (Darroch et al., 2015).

Since the size of authigenic mineral crystals may limit preservational quality in soft tissue replication (Martill, 1998; Briggs, 2003), the preservation of Ediacaran macrofossils beneath coatings of pyrite framboids may impose a limit on the smallest morphological features that can be preserved: the smallest pyrite crystals observed in association with fossils elsewhere in the geological record are \(~0.25\mu m\) (Grimes et al., 2002). The ‘death mask’ style of moldic preservation would also only record internal morphology if BSR took place internally within the organism (for example within specific organs or tissues, or in punctured or collapsed specimens); if the external morphology draped topographic high-points of internal structures (as proposed for example by Dzik, 2003); or if early diagenetic conditions facilitated continued BSR and pyritization for significant periods of time (Raiswell et al., 1993; Schiffbauer et al., 2014). As with Phanerozoic assemblages of similarly preserved pyritized fossils, a lack of evidence for internal tissues in Ediacaran moldic macrofossils cannot be taken to imply that they were not present.

INSIGHTS INTO EDIACARAN MARINE CONDITIONS

Pyritization of soft tissues via formation of framboidal pyrite veneers is not unique to the Ediacaran Period, and insights into the preservation process can be gleaned from Phanerozoic studies. The primary difference is that in the Phanerozoic, pyritization is usually spatially restricted to only the area immediately surrounding organisms, and is typically documented in fine-grained clastic successions, whereas in the Ediacaran, pyritization often extends across entire bedding surfaces, in a range of different lithologies. Early diagenetic, bacterially-mediated framboidal pyrite has been demonstrated to play a role in the
preservation of soft tissues in Cambrian arthropods (e.g., Gabbott et al., 2004; Moore and Lieberman, 2009); in localities such as the Ordovician Beechers Trilobite Bed (Briggs et al., 1991); and the Devonian Hunrück Slates (Briggs et al., 1996; Bartels et al., 1998). Framboidal pyrite has also been found associated with ammonites from the Lias (Hudson, 1982). In such instances it has been suggested that four factors are critical in facilitating this taphonomic mode: rapid burial, a sizeable source of organic matter but minimal organic material in surrounding sediments, and sufficient concentrations of sulfate and iron (Briggs et al., 1996; Farrell et al., 2009; Schiffbauer et al., 2014). The following discussion briefly outlines how these four criteria were achieved over the 40 million year duration of the late Ediacaran moldic taphonomic window.

Rapid burial and anoxia.—Many Ediacaran cast-and-mold-type fossil localities occur in facies that clearly record rapid burial of organisms beneath, or occasionally within, episodic event beds such as storm deposits, turbidites, volcaniclastic events or ash falls (Narbonne, 2005). Oxygen from the water column would not have penetrated the substrate to any great depth following burial due to the thickness of overlying sediment, subsequent sealing of that sediment by microbial growth on the seafloor above (Jørgensen, 1977; Gehling, 1999; Droser et al., 2006), and a general absence of bioturbating organisms (though note Rogov et al., 2012). Consumption of any available oxygen by decomposition would therefore have led to the rapid development of low oxygen conditions beneath the sediment-water interface following burial of organic matter. However, for framboidal pyrite to form, sediments must be in contact with the water column if seawater sulfate is to be exchanged (Raiswell, 1982). It is possible that the rapid burial at Ediacaran sites played a dual role, on the one hand limiting oxygen availability and providing the low oxygen conditions (facilitating sulfide formation via BSR), but on the other, hindering ion exchange and ultimately limiting the time interval
over which decay and BSR could operate, constraining the spatial extent of pyritization. The
formation of oxygen-poor conditions by rapid burial may also have limited the activity of
sulfur oxidizing bacteria, which may otherwise have oxidised sulfides and prevented pyrite
formation.

Organic matter.—The distribution of labile organic matter has long been recognized as
critical in the pyritization of soft-tissues (e.g., Berner, 1969, 1970; Briggs et al., 1996). In
modern sulfate-rich environments, organic matter is typically the rate-limiting factor
governing BSR and thus pyrite formation (Berner, 1984). In the geological record,
pyritization of macrofossils is favoured in sediments where ambient organic matter is scarce,
permitting microbial activity to be focused around carcasses (Briggs et al., 1996; Farrell et
al., 2013). Extremely low total organic carbon values reported from bulk sampling through
the Conception and St. John’s groups in Newfoundland (Canfield et al., 2007) are consistent
with this scenario. The organic matter sourced from extensive microbial mats, coupled with
the decaying Ediacaran macrobiota (comprising some of the first large, discrete carcasses in
the geological record, which may have played a role in driving the evolution of bilaterians;
Budd and Jensen, 2015), would therefore have provided a significant organic resource that
would have been confined to discrete sedimentary levels within otherwise organic-poor
event-beds.

Reactive Iron.—Iron is fundamental to the ‘death mask’ process, and high dissolved iron
concentrations are required to pyritize large carcasses (Raiswell et al., 1993). In modern
settings, iron availability is typically the limiting factor on pyrite formation only in euxinic
conditions (Berner, 1984), but it is worth considering reactive iron abundance in the latest Neoproterozoic.

The Ediacaran deep oceans are widely considered to have been ferruginous (and anoxic) throughout much of the Proterozoic (Canfield et al., 2008; Halverson et al., 2009; Lyons et al., 2009; Guilbaud et al., 2015; Sperling et al., 2015), with ferruginous conditions persisting in some deep basins into the late Ediacaran (e.g., Li et al., 2010), albeit with increasingly dynamic variation in redox conditions (Wood et al., 2015). However, the surface and mid-depth environments in which the majority of Ediacaran macrofossils were preserved are considered to have been oxygenated by the late Ediacaran (Canfield et al., 2007; Lyons et al., 2014). Bulk sampling of the Conception Group in Newfoundland yielded high levels of highly-reactive (i.e., unsulfidized) iron (Fe_{HR}) within the sediment (Canfield et al., 2007), implying that the original pore waters of these sediments possessed a plentiful source of iron, which could migrate to react with microbially-produced H_2S at bed interfaces. It is possible that these high iron concentrations in the pore waters could have trapped sulfate at the site of decay (cf., Beecher’s Trilobite Bed, Raiswell et al., 1993), facilitating localized soft tissue preservation.

Although a source of iron is easy to envisage in Ediacaran volcaniclastic settings such as Newfoundland with abundant volcanic glass that can be readily dissolved to liberate Fe (cf., Duggen et al., 2010; Gaines et al., 2012b), in sediments with few potential iron-bearing minerals, such as the quartzites of South Australia, an iron source is less obvious. Assuming these were oxic environments, dissolved iron is unlikely to have been present in the water column in appreciable amounts. It is possible that iron may have been sourced from the interbedded siltstones within the fossil-bearing facies assemblage of the Ediacara Member, rather than from the quartz-rich sands (Gehling, 2000), but further investigation of their mineralogy is required to confirm this. The Ediacara Member was deposited near to the
shore, and a local terrestrial freshwater input could feasibly have provided dissolved iron in such environments (e.g., Aller et al., 1986). However in other shallow marine settings (for example the rest of the Rawnsley Quartzite), it is possible that iron availability could have restricted the ‘death mask’ taphonomic window.

Marine sulfate concentrations.—Marine sulfate concentrations are often stated to have risen throughout the Neoproterozoic, as evidenced by carbon and sulfur isotopic data from South China (McFadden et al., 2008), perhaps due to melting and weathering following the ‘Snowball’ glaciations increasing the sulfate flux to the oceans (Hurtgen et al., 2005; Hurtgen, 2012). Fike and colleagues (2006) record a gradual increase in $\Delta^{34}S$ values from Oman following the Marinoan glacial, indicating a late Neoproterozoic rise in marine sulfate concentrations to levels permitting full expression of bacterial sulfate reduction; a finding corroborated by data from China (Sahoo et al., 2012). In Newfoundland, a notable increase in sulfur isotopic fractionation in sulfides between the Mall Bay and the succeeding Gaskiers and Drook formations has been suggested to indicate an increase in marine sulfate concentrations (Canfield et al., 2007) broadly coincident with the first appearance of macrofossils (upper Drook Formation; Narbonne and Gehling, 2003). However, it remains to be determined whether such increased fractionations are a feature of all Neoproterozoic post-glacial successions (Gorjan et al., 2000).

In terms of absolute values, low carbonate associated sulfur (CAS) concentrations, high C_{org}/S_{py} ratios, pyrite values enriched in ^{34}S, and ferruginous deep ocean conditions (Halverson and Hurtgen, 2007; Canfield et al., 2008; Ries et al., 2009), would all appear to suggest that absolute sulfate concentrations in the Ediacaran oceans were lower than those in the Phanerozoic. Direct measurement of sulfate concentrations from late Ediacaran evaporite
deposits (e.g., Brennan et al., 2004) is hampered by inconsistency and variability in CAS, barite and phosphate data (summarised in Narbonne et al., 2012). Although Δ^{34}S values through the Omani Shuram and Buah formations (deposited ~580–550 Ma) appear to reveal evidence for BSR under sulfate limited conditions (Fike et al., 2006), preliminary sulfur isotope data from Newfoundland exhibit values that do not suggest pore-water sulfate became limited at any point in the BSR process (Wacey et al., 2015).

In summary, the widespread presence of benthic biofilms on Avalonian seafloors, combined with a terrigenous sedimentation regime characterised by rapid burial of organic matter within densely populated biotic ecosystems, would have created optimal conditions for the microbial breakdown of organic matter by SRB and the production of sulfide ions (cf., Berner, 1984; Borkow and Babcock, 2003). An increasingly oxic water column, sufficient seawater sulfate to permit BSR, and favourable iron availability in many settings provided suitable chemical conditions to facilitate widespread BSR during this interval, while rapid growth of microbial communities above event beds offered closed-system conditions to limit oxic respiration and support the development of anoxia around buried communities.

Implications for Global Oxygenation

Oxygen concentrations in the deep oceans are considered to have undergone a significant increase during the Neoproterozoic (cf., Canfield, 2005; Sahoo et al., 2012; Lyons et al., 2014; Planavsky et al., 2014), the causes of which include elevated burial of organic carbon, increased sedimentation rates, and continental break-up (Knoll et al., 1986; Derry et al., 1992; Kaufman et al., 1997). The timing of this increase, and its relationship to evolutionary events, are widely debated (e.g., Lenton et al., 2014; Sperling et al., 2015). However, it is becoming
increasingly clear that marine redox conditions were not globally stable, and could vary both
spatially and temporally during the latest Ediacaran (Li et al., 2015; Wood et al., 2015).

Pyrite burial in sediments can lead to an increase in marine and atmospheric oxygen
levels (e.g., Garrells and Perry, 1974), and may also influence nutrient cycling and global
climate (Hurtgen, 2012). During the formation of pyrite by sulfate reduction of organic
matter, oxygen is liberated via the following pathway (Canfield, 2005):

\[16H^+ + 8SO_4^{2-} + 2Fe_2O_3 \leftrightarrow 8H_2O + 4FeS_2 + 15O_2 \]

In contrast to the Phanerozoic, where oxygen production is dominated by organic carbon
burial, it has been calculated that pyrite burial may have been at least as significant a source
of oxygen during much of the Proterozoic (Canfield, 2005), although there is uncertainty
surrounding the Neoproterozoic due to difficulties in calculating the sulfate flux to the oceans
at this time (Canfield, 2004). The observed mineralized veneers in Newfoundland were
formed and buried during the late Ediacaran Period, and have only been exposed and
oxidised at the surface much more recently. The presence of iron sulfides or their oxidised
products on all studied Ediacaran surfaces, sometimes every few centimetres within a
stratigraphic section (Supp. Fig. 2C–D), suggests that significant volumes of pyrite were
buried globally, in a variety of facies, over the ~40 Myr interval between the first appearance
of rangeomorphs at ~580 Ma (Narbonne and Gehling, 2003; Van Kranendonk et al., 2008)
and their apparent final occurrence in Namibia close to the Cambrian boundary (Narbonne et
al., 1997). Such sedimentary pyrite would be removed from the Earth’s surface until its
constituent elements were recycled by subduction and hydrothermal circulation or volcanic
outgassing, or exhumed and oxidized, all processes that proceed over tens to hundreds of
millions of years.

Sedimentary pyrite burial is not widely considered to be a major sink of pyrite in oxic
water columns (cf., Canfield, 2004), but the ‘closed system’ Ediacaran conditions outlined in
this study, whereby laterally extensive pyritization of organic surfaces can occur beneath oxygenated water columns, offer a hitherto unrecognized potential sink of pyrite (with biologically fractionated sulfur isotope compositions) during the latest Neoproterozoic. When coupled with pyrite burial on productive continental margins (i.e., in environments we expect to see pyrite burial), for example in organic rich mudstones from South China where pyrite can reach up to 12% pyrite by weight (McFadden et al., 2008), this ‘death mask’ pyrite reservoir may have contributed to an increase in marine oxygen concentrations, and thus the gradual oxygenation of the global oceans. This pyrite sink must also be considered in mass balance models of sulfur reservoir volume through geological time, and may help to explain the previously observed imbalance in the Neoproterozoic sulfur cycle (cf., Canfield, 2004). Disruption of matgrounds by motile metazoans may have brought an end to microbially-sealed ‘closed-system’ conditions in the shallow sub-surface (cf., Seilacher and Pflüger, 1994), and thus to widespread sedimentary pyrite burial in oxic marine settings.

SUMMARY

Framboidal pyrite, and evidence for its oxidation products, is described in association with multiple bedding planes hosting Ediacaran macrofossils in Newfoundland, Canada. Iron sulfides appear to have formed on all surfaces during early diagenesis as a continuous ‘veneer’, covering the buried seafloors and playing a key role in the replication of fossil morphology. The resultant pyrite is now being oxidized on modern timescales. The presence of pyrite in Newfoundland confirms the applicability of the ‘death mask’ model of Ediacaran taphonomy (cf., Gehling, 1999) to what has formerly been termed Conception-type preservation (cf., Narbonne, 2005), although it is noted that it is the presence of sulfate reducing micro-organisms, and not their formation of laterally continuous microbial mats, which is essential to the process.
Framboidal pyrite veneers at bedding interfaces in Newfoundland supplement observations of pyrite associated with Ediacaran fossils from numerous global localities and disparate facies and lithologies, including carbonates, shales, sandstones and siltstones. The ‘death mask’ hypothesis may thus be a widely applicable model for soft tissue preservation in the late Ediacaran, importantly explaining the preservation of soft-bodied organisms in coarse-grained sediment. Further experimental work is now required to confirm the precise timescales over which BSR operates, and the types of biological tissue that can be preserved in this way. Finally, the global and persistent burial of sulfides in oxic, siliciclastic basin, shelf and slope settings during the late Ediacaran Period may have contributed to marine oxygenation and ventilation of the oceans prior to the Cambrian Explosion of metazoan diversity.

ACKNOWLEDGEMENTS

The author would like to thank I. Buisman, S. Kearns and B. Buse for SEM and EPMA assistance, J. Stewart and J. Matthews for field assistance, and E. Liu for data processing advice. Discussions with S. Gabbott, R. Gilbaud, A. Page, N. Butterfield, R. Thomas, M. Brasier, D. McIlroy and C. Kenchington have been valuable in preparing this manuscript, and the insightful and constructive reviews and comments of S. Xiao, one anonymous reviewer, and particularly R. Gaines greatly improved the text. This study was supported by a Henslow Junior Research Fellowship from the Cambridge Philosophical Society, and a NERC Independent Research Fellowship [grant number NE/L011409/1]. Sedimentary samples were collected under permits issued by the Government of Newfoundland and Labrador’s Parks and Natural Areas Division (for MPER), and Department of Business, Tourism, Culture and Rural Development (for other sites). Readers are advised that access to the MPER Fossil
Protection Zone for research is by scientific permit only – contact the Reserve Manager for further information.

REFERENCES

ALLER, R.C., MACKIN, J.E., AND COX, R.T., 1986, Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones: Continental Shelf Research, v. 6, p. 263-289.

BENUS, A.P., 1988, Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland), in Landing, E., Narbonne, G.M., and Myrow, P.M., eds., Trace Fossils, Small Shelly Fossils and the Precambrian-

GEHLING, J.G., 2000, Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia: Precambrian Research, v. 100, p. 65-95.

HUDSON, J.D., 1982, Pyrite in ammonite-bearing shales from the Jurassic of England and

isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide

ICHASO, A.A., DALRYMPLE, R.W., AND NARBONNE, G.M., 2007, Paleoenvironmental and
basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's
groups, west Conception Bay, Newfoundland: Canadian Journal of Earth Sciences, v.
44, p. 25-41.

INTERNATIONAL NETWORK FOR ACID PREVENTION, 2014, Global Acid Rock Drainage Guide:

IVANTSOV, A. YU., 2016, Reconstruction of Charniodiscus yorgensis (Macrobiota from the

JENKINS, R.J.F., 1992, Functional and ecological aspects of Ediacaran assemblages, in Lipps,
J.H., and Signor, P.W., eds., Origin and Early Evolution of the Metazoa: Plenum,

JIANG, G., SHI, X., ZHANG, S., WANG, Y., AND XIAO, S., 2011, Stratigraphy and
paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in south

JØRGENSEN, B.B., 1977, Bacterial sulfate reduction within reduced microniches of oxidized

LANDING, E., NARBONNE, G.M., MYROW, P.M., AND MATTHEW, G.F., 1988, Trace fossils, small shelly fossils and the Precambrian-Cambrian boundary: University of the State

LIU, A.G., McILROY, D., MATTHEWS, J.J., AND BRASIER, M.D., 2014b, Confirming the
metazoan character of a 565 Ma trace-fossil assemblage from Mistaken Point,
Newfoundland: PALAIOS, v. 29, p. 420-430.

LIU, A.G., KENCHINGTON, C.G., AND MITCHELL, E.G., 2015, Remarkable insights into the

LIU, A.G., MATTHEWS, J.J., AND McILROY, D., 2016, The Beothukis/Culmofrons problem and
its bearing on Ediacaran macrofossil taxonomy: evidence from an exceptional new

LOWSON, R.T., 1982, Aqueous oxidation of pyrite by molecular oxygen: Chemical Reviews,
v. 82, p. 461-497, doi: 10.1021/cr00051a001.

LYONS, T.W., ANBAR, A.D., SEVERMANN, S., SCOTT, C., AND GILL, B.C., 2009, Tracking
euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study:

MACLEAN, L.C.W., TYLISZCZAK, T., GILBERT, P.U.P.A., ZHOU, D., PRAY, T.J., ONSTOTT,
T.C., AND SOUTHAM, G., 2008, A high-resolution chemical and structural study of
framboidal pyrite formed within a low-temperature bacterial biofilm: Geobiology, v.
6, p. 471-480.

MÁNGANO, M.G., AND BUATOIS, L.A., 2014, Decoupling of body-plan diversification and
ecological structuring during the Ediacaran–Cambrian transition: evolutionary and

PFLUG, H.D., 1972, Systematik der jung-präkambrischen Petalonamae Pflug 1970:

RIES, J.B., FIKE, D.A., PRATT, L.M., LYONS, T.W., AND GROTZINGER, J.P., 2009, Superheavy pyrite ($\delta^{34}S_{\text{pyr}} > \delta^{34}S_{\text{CAS}}$) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life: Geology, v. 37, p. 743-746, doi: 10.1130/g25775a.1.

SEILACHER, A., REIF, W.-E., WESTPHAL, F., RIDING, R., CLARKSON, E.N.K., AND WHITTINGTON, H.B., 1985, Sedimentological, ecological and temporal patterns of

SPERLING, E.A., 2013, Tackling the 99%; Can we begin to understand the paleoecology of the small and soft-bodied animal majority: The Paleontological Society Papers, v. 19, p. 77-86.

WILLIAMS, H., AND KING, A.F., 1979, Trepassey Map Area, Newfoundland: Map Memoir of
the Canada Geological Survey, 24 p.

Shale-type compression fossils: PALAIOS, v. 29, p. 145-154, doi:

WOOD, D.A., DALRYMPLE, R.W., NARBONNE, G.M., GEHLING, J.G., AND CLAPHAM, M.E.,
2003, Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and
Trepassey formations, southeastern Newfoundland: Canadian Journal of Earth

WOOD, R.A., POULTON, S.W., PRAVE, A.R., HOFFMANN, K.H., CLARKSON, M.O., GUILBAUD,
KASEMANN, S.A., 2015, Dynamic redox conditions control late Ediacaran metazoan
ecosystems in the Nama Group, Namibia: Precambrian Research, v. 261, p. 252-271,
doi: 10.1016/j.precamres.2015.02.004.

XIAO, S., SCHIFFBAUER, J.D., McFADDEN, K.A., AND HUNTER, J., 2010, Petrographic and
SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for
microbial processes in pyrite rim formation, silicification, and exceptional fossil
10.1016/j.epsl.2010.07.001.

of macroscopic and morphologically differentiated eukaryotes: Nature, v. 470, p. 390-
393.

ZAKREVSKAYA, M., 2014, Paleoecological reconstruction of the Ediacaran benthic
macroscopic communities of the White Sea (Russia): Palaeogeography,
FIGURES AND CAPTIONS

FIGURE 2—Thin section images through selected fossil-bearing interfaces from the late Ediacaran of Newfoundland. See Supplementary Text for full locality and stratigraphic information regarding these surfaces. A) The MUN Surface, with a thin but continuous mineralized veneer beneath a normally graded tuff. B) Bed BR5, with a mineralized veneer almost 1mm thick within the lowermost portion of the over-bed. C) Bed H14, with a thin but continuous mineralized veneer. D) The E Surface, with a coarse-grained, chloritized tuff, and no mineralized veneer. E) Bed MEL 7, with a thin but continuous mineral veneer. F) A ‘wisp’ of frambooidal pyrite within an under-bed, ~0.5mm beneath the fossil-bearing surface at Spaniard’s Bay (SB).

FIGURE 3—Preservation of Ediacaran macrofossils on the BR5 fossil surface, Briscal Formation, Mistaken Point Ecological Reserve, Newfoundland. In each instance, Roman
numerals refer to specific sedimentary levels: (I) siltstone of the under-bed; (II) lower thin pyrite veneer; (III) upper thicker pyrite veneer separated from (II) by a thin (~100 µm) layer of sediment. A–B) Views of the bedding plane showing Fractofusus specimens coated by two distinct layers of iron oxide present. C–E) SEM BSE image of the pyritic veneer at the interface between under-bed and over-bed. C) Correspondence between the rusted levels in A and B and the original pyrite. D) Pyrite framboids with blocky pyrite overgrowths in level (III). E) Pristine pyrite framboids with no blocky overgrowths in level (II).

FIGURE 4—Progressive oxidation of framboidal pyrite within thin sections through bedding surfaces yielding Ediacaran macrofossils from Newfoundland, as revealed by SEM BSE images. A) Unweathered pyrite framboids from a fresh section through the BR5 surface (veneer level II of Fig. 3). B) Pyrite framboids with blocky pyrite overgrowths from the BR5 surface (veneer level III of Fig. 3). C) Iron oxide spheroids (replacing pyrite framboids) within a thin section from a section of the BR5 surface that has been exposed for several years (compare with A and B). D) Close up of iron oxide replacement of framboids within the BR5 surface veneer. Original framboidal textures are still visible, but EDS confirms that no original pyrite remains (Supp. Fig. 7). E) Blocky pyrite framboids (white) being replaced by iron oxide (light grey) within a single thin section field of view, LC6 surface. F) Relict framboids with blocky pyrite overgrowths from the LC13 surface. G) Zoned iron oxide spheroids at the interface between substrate and tuff on the MUN Surface. H) Spheroidal structures at the interface between substrate and tuff on the H14 (= LC5) bedding plane, preserved as unidentified aluminium-rich silicates (Supp. Fig. 8). Details of surface stratigraphic positions and paleontological attributes can be found in the Supplementary Text.
FIGURE 5—Electron microprobe elemental maps of three Newfoundland fossil-bearing surfaces, showing (from left) the mapped region, and elemental weight percent values for silicon (Si), iron (Fe), and sulfur (S). Maps reveal the distribution of spherical minerals, which are either composed of pyrite (bed BR5), iron oxides (MUN), or both (LC6) amongst a siliciclastic matrix. Note that the BR5 map displays only the upper levels of the over-bed pyritic veneer and a discrete layered iron oxide crust that appears to have formed as a result of modern weathering over the exposed surface. In sample LC6, frambooids at higher levels within the veneer have been oxidised (upper right of image), while those closer to the under-bed remain pyritic.
Table D: Formation Member Age

<table>
<thead>
<tr>
<th>Group</th>
<th>Formation</th>
<th>Member</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. John's</td>
<td>Fermeuse</td>
<td>Port Union</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Trepassey</td>
<td>Catalina</td>
<td>565 ± 3 Ma</td>
</tr>
<tr>
<td></td>
<td>Mistaken Point</td>
<td>Murphy's Cove</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepherd Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodland Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Briscal</td>
<td>578.8 ± 0.5 Ma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drook</td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. John's Conception</td>
<td>Fermeuse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trepassey</td>
<td>Port Union</td>
<td>100 m</td>
</tr>
<tr>
<td></td>
<td>Mistaken Point</td>
<td>Murphy's Cove</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepherd Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Goodland Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Briscal</td>
<td>578.8 ± 0.5 Ma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drook</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- **Diagram A**: Locations of key geological features such as Bonavista Peninsula, Avalon Peninsula, Bonavista Dome, and St. John's.
- **Diagram B**: Map of the Avalon Peninsula with distance scales and labels for St. John's, Conception, Fermeuse, and Trepassey.
- **Diagram C**: Detailed map of the area around Trepassey with labels for key locations such as Little Catalina, Catalina, and MUN.
- **Diagram D**: Diagram showing the stratigraphy with formation members labeled:
 - Renews Head
 - Fermeuse
 - Trepassey
 - Port Union
 - Mistaken Point

- **Diagram E**: Map showing the area around Cape Race with labels for Trepassay Bay, Little Catalina, and MUN.
- **Diagram F**: Diagram showing the stratigraphy with formation members labeled:
 - Fermeuse
 - Trepassey
 - Mistaken Point
 - Briscal
 - Drook

- **Diagram G**: Diagram showing fault lines and geological layers with labels for key locations such as Bonavista Dome, Avalon Peninsula, and St. John's.

- **Diagram H**: Diagram showing the depth and age of geological layers with labels for key locations such as Bonavista Dome, Avalon Peninsula, and St. John's.

- **Diagram I**: Diagram showing the thickness of geological layers with labels for key locations such as Bonavista Dome, Avalon Peninsula, and St. John's.