
Early version, also known as pre-print

[Link to publication record in Explore Bristol Research](http://www.bristol.ac.uk/pure/about/ebr-terms)

PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
IDENTIFICATION OF THE STRAIN RATE DEPENDENCE OF THE ELASTIC PROPERTIES OF CFRP USING DIGITAL IMAGE CORRELATION

Marco L. Longana¹, Janice M. Dulieu-Barton² and Fabrice Pierron²

¹ACCIS (Advanced Composites Centre for Innovation & Science)
University of Bristol, Queen's Building, University Walk, BS8 1TR, Bristol, UK
Email: m.l.longana@bristol.ac.uk, web page: http://www.bristol.ac.uk/composites/

²Faculty of Engineering and the Environment, Engineering Sciences
University of Southampton, Highfield, Southampton, SO17 1BJ
Email: janice@soton.ac.uk, web page: http://www.soton.ac.uk

Keywords: Strain rate, elastic properties, Digital Image Correlation (DIC)

ABSTRACT

A methodology for the full-field study of the strain rate dependent constitutive behaviour of FRP materials with the aid of Digital Image Correlation has been devised, applied and validated. In this work, a high-speed servo-hydraulic tensile test machine is used to impart an intermediate strain rate loading. A methodology that identifies the Young’s moduli, E_{11} and E_{22}, and the Poisson’s ratio at strain rates up to 100 s$^{-1}$ using high-speed imaging and full-field strain measurement techniques has been presented in [1]. An example of the evolution of the strain and strain rate maps, obtained from a unidirectional lay-up of glass reinforced epoxy specimen at nominal strain rate of 80 s$^{-1}$, for the identification of E_{11} and ν_{12} is shown in Figure 1. It is clear from the strain rate plots that there is a region where a constant strain rate can be obtained from which the elastic properties can be derived. However, an additional specimen configuration is required to determine the shear modulus, G_{12}.

There are various techniques available to identify the shear modulus (G_{12}) at quasi-static strain rates, such as rail shear test, Iosipescu double V-notched beam test and the thin tube subject to torsion. However these specimens would prove extremely difficult to set up in a high speed servo-hydraulic test machine, as to minimise inertial effects the actuator has to accelerate to a ‘constant’ velocity prior to clamping the specimen. Therefore, to obtain G_{12} the off-axis tensile test on specimens manufactured from unidirectional material is used [2], as this allows the use of the same specimen geometry and experimental set-up as used in [1]. The specimens incorporate oblique end-tab to mitigate the effect of stress concentration in the proximity of the end-tabs [3]. Furthermore, the specimen geometry enables a large area to be imaged to perform DIC with sufficient images to characterise the material. Figure 2 shows the test specimen geometry and nomenclature.
The methodology used here to achieve a precise material characterisation involves initial tensile tests on specimens with 0° fibre orientation to identify E_{11} and ν_{12} and 90° fibre orientation to identify E_{22}, as well as an off-axis test with square end-tabs to estimate G_{12}. The preliminary results are used to define the end-tab and the optimal off-axis angle to identify G_{12}. The benefits of oblique end-tabs, i.e. parallel displacement contours and reduction of stress concentration at the specimen ends, are shown in Figure 3.

This methodology has been used to characterise a CFRP material, MTM58FRB/HS(24K)-450-38%RW, and to inform a model of the stiffness-strain rate dependency, as shown in Figure 4.

REFERENCES