
Peer reviewed version

Link to published version (if available): 10.1049/cp.2016.0313

Link to publication record in Explore Bristol Research

PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IET at http://digital-library.theiet.org/content/conferences/10.1049/cp.2016.0313

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Estimation of Equivalent Thermal Conductivity for Impregnated Electrical Windings Formed from Profiled Rectangular Conductors

S Ayat*, R Wrobel*, J Goss†, D Drury*
* Department of Electrical and Electronic Engineering, University of Bristol, Bristol, UK, s.ayat@bristol.ac.uk, r.wrobel@bristol.ac.uk, d.drury@bristol.ac.uk
† Motor Design Ltd, Ellesmere, UK, james.goss@motor-design.com

Keywords: Winding homogenisation techniques, equivalent thermal properties, thermal analysis, electrical machines.

Abstract

In order to improve accuracy and reduce model setting-up and solving time in thermal analysis of electrical machines, transformers and wound passive components, the multi-material winding region is frequently homogenised. The existing winding homogenization techniques are predominantly focused on winding constructions with round conductors, where thermal conductivity across conductors is usually assumed to be isotropic. However, for the profiled rectangular conductors that assumption is no longer valid, and anisotropy of the winding equivalent thermal conductivity needs to be considered.

This paper presents analytical methods for deriving equivalent thermal properties of impregnated windings with profiled rectangular conductors. The techniques allow for computationally efficient and accurate derivation of the composite thermal conductivity accounting for the material thermal anisotropy. Efficacy of the methods has been demonstrated on a number of hardware winding samples commonly used in low-voltage applications. The theoretical analysis has been supplemented with experimentally derived data showing close correlation.

1 Introduction

The winding region is frequently attributed with the dominant power loss source within an electrical machine assembly. A well-informed design process of the winding assembly is therefore prerequisite of compact, high-power-density and/or high-efficiency machine solutions. An electrical winding designed for the low-voltage applications is a composite structure formed from conductors coated with an appropriate grade of electrical insulation commonly referred to as enamel. The complete winding assembly is usually impregnated with varnish or epoxy resin to further improve the electrical insulation and provide ‘good’ heat transfer from the winding body into the machine periphery, and also assure mechanical rigidity and robustness.

The winding assembly is prone to numerous air pockets and/or cavities resulting from the winding arrangement, impregnating material and manufacture process used among others.

These manufacture and assembly imperfections/nuances have been shown to have a significant influence on the winding equivalent thermal conductivity making the accurate estimation of the winding thermal properties challenging for a machine designer [1, 2].

The computational methods employed in thermal analysis of electrical machines, transformers and wound passive components make use of various techniques for representing the winding region. The existing methods have been schematically shown in Fig. 1. The level of complexity for the winding model representation is usually chosen based on required fidelity for the temperature predictions within the machine assembly. This is driven by numerous factors, some of which include: the power loss sources and mechanisms accounted for, e.g. inhomogeneous loss distribution in the machine active regions [3]-[5]; higher resolution for the temperature predictions, e.g. accurate identification of the hot-spots [5]-[8]; reduced computational effort, e.g. thermal envelope mapping for a given operating envelope and/or cycle.

The physical representation of winding region with the individual winding conductors accounted for, Fig. 1a), is the most intuitive among the existing alternatives. However, the setting-up and solving time for such defined thermal model is frequently prohibitively high as all the individual material regions including conductor enamel and impregnation are represented in the model. Such model definition is usually realised by the use of finite element methods allowing for detailed representation of the machine complex geometrical features.
The layered winding representation, Fig. 1b), was developed to accelerate the thermal model setting-up and solving time while maintaining accuracy of the temperature predictions including the hot-spot identification [2, 8]. In this approach, the physical winding representation is transformed into the layered equivalent, such that the volumetric contribution of each of the individual winding materials remains unchanged. The number of model layers is chosen using an analytical formulae allowing for correct predictions for the hot-spot location [8]. The technique is well suited for the equivalent-circuit lumped-parameter thermal modelling approach with model complexity ranging from medium to high.

The equivalent material method for the winding region approximation, Fig. 1c), is intended for reduced-order equivalent-circuit lumped-parameter thermal analysis, where temperature distribution within the winding body is of lesser importance [9, 10]. As for the previous approach, the volumetric contribution of each of the individual winding material is identical to that from the physical winding. However, the individual materials form here distinctive homogenous regions arranged by combining smaller discrete sub-region present in the physical winding, Fig. 1c).

The homogenised winding representation, Fig. 1d), requires thermal data for the winding amalgam to be known prior to machine thermal model definition. The complete winding is represented here by a single region defined with composite material data [11]. The equivalent winding thermal data is derived using the existing methods, which include the analytical, numerical and experimental approaches [11]-[20]. Such winding representation is suitable for both the finite element and equivalent-circuit thermal analysis, significantly simplifying the model definition, and reducing solving time [11]-[13]. Also, the approach allows for the inhomogeneous/non-uniform winding loss distribution to be accounted for by simply subdividing the winding region into smaller sections, Fig. 1d), informed with appropriate winding loss share per section [3, 4].

It is important to note that a common issue associated with all the winding model representations discussed here, and thermal analysis in general, is the need for hardware calibration. This allows for various manufacture and assembly factors, which are frequently challenging or impossible to derive theoretically, to be experimentally informed. There are numerous experimental approaches used in calibration of the winding region discussed in the literature: starting from winding material samples [11]-[19], through stator-winding sub-assembly [3, 4, 11] and finishing with complete machine assembly testing [8]-[10]. The winding material sample testing is particularly useful when high fidelity thermal modelling is considered requiring more detailed and computationally efficient winding model definition, i.e. homogenised winding representation.

The existing theoretical homogenisation methods were initially developed in the context of two-component composite materials for the electromagnetic or optic applications [21]-[23], later adapted in the thermal analysis [24]. The two-component formulae neglect the conductor electrical insulation, which has been shown essential to account for, particularly for the winding constructions impregnated with high thermal conductivity encapsulants [12]. It is important to note that the existing analytical methods are focused on winding constructions utilising round conductors, where the equivalent thermal conductivity across the conductors is usually expected to be isotropic. This approximation however, is not valid for the windings formed with rectangular conductor or Litz wires, where the winding individual materials are distributed non-uniformly within the stator slot. The existing empirically derived data highlight the importance of accounting for the winding thermal anisotropy [13]-[18].

The other class of theoretical techniques used to estimate equivalent thermal properties for the homogenised winding region makes use of the finite element analysis. Here, to estimate the composite material properties a model representation emulating the winding material sample is employed [7, 12]. The technique has been shown suitable for winding constructions, where no lateral conductor transposition is present [7]. It is important to remind that all the homogenisation techniques discussed here refer to the equivalent thermal conductivity across the conductors only. The thermal conductivity along the conductors and specific heat capacitance can be derived from the volumetric share and thermal properties of the individual materials [12].

In this investigation two analytical methods for deriving equivalent thermal conductivity for the windings formed from rectangular conductors are proposed. The first one adapts the existing analytical homogenisation technique [12] by the use of a conductors stacking factor for both dimensional peripheries of the winding sample cross-section. The second method employs reduced-order equivalent-circuit lumped-parameters model representation for the winding amalgam. Both the proposed methods are informed by experimental data to account for the manufacture and assembly factors. The calibration approach used here is based on measured data from a single hardware material sample for a specific impregnation technique, conductor gauge, aspect ratio and fill factor to estimate the equivalent winding thermal conductivity for alternative conductor aspect ratios and fill factors. The proposed techniques have been discussed in details and demonstrated on a number of winding examples in successive sections of the paper. The theoretical predictions have been validated experimentally showing good correlation with the measured data.

2 Impregnated winding material samples

The manufacture and assembly nuances have a strong impact on the winding equivalent thermal conductivity [1, 2]. Consequently, the accurate estimation of the winding equivalent thermal conductivity requires a degree of hardware calibration. In this investigation a number of hardware samples of the impregnated windings have been manufactured using the techniques and materials commonly found in construction and assembly of electrical machines, Fig.2.
The former fully loaded with the conductors is then vacuum impregnated with an appropriate material. Here, two impregnating materials have been considered: solvent based varnish (Elmotherm 073-1010) and high thermal conductivity epoxy resin (Epoxylite EIP 4260). After the impregnation is cured, the former is removed, and the winding sample is machined to provide a ‘good’ surface finish required in measurements of the composite material thermal conductivity [11, 12]. The winding samples were selected here to differ in terms of conductor fill factor, material, aspect ratio, and impregnating material. All the conductors used in the sample manufacture are coated with the same grade of polyamide-imide enamel (class N) with thermal conductivity equal to 0.26 W/(mK) and measured thickness of 0.035 mm per conductor side.

![Figure 2: Impregnated winding samples with rectangular profiled conductors.](image)

Table 1: Basic data for the impregnated winding samples

<table>
<thead>
<tr>
<th>Winding sample</th>
<th>Conductor fill factor</th>
<th>Impregnating material</th>
<th>Conductor dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>75%</td>
<td>Varnish</td>
<td>(1.4×7.0=9.8) mm²</td>
</tr>
<tr>
<td>b</td>
<td>77%</td>
<td>Varnish</td>
<td>(1.4×7.0=9.8) mm²</td>
</tr>
<tr>
<td>c</td>
<td>27%</td>
<td>Epoxy</td>
<td>(1.5×3.0=4.5) mm²</td>
</tr>
<tr>
<td>d</td>
<td>73%</td>
<td>Epoxy</td>
<td>(1.5×3.0=4.5) mm²</td>
</tr>
<tr>
<td>e</td>
<td>77%</td>
<td>Varnish</td>
<td>(1.2×10.0=12.0) mm²</td>
</tr>
</tbody>
</table>

The variety of the analysed samples enables a more generic insight into the composite winding thermal properties and their dependence on the geometrical, material and manufacture factors. Table 1 lists basic construction information for the analysed samples.

3 Experimental measurements

There are several experimental methods applicable in measuring the equivalent thermal conductivity for composite materials. Some of which include the laser flash method [23] or the transient hot strip [24]. In this investigation the heat flux meter approach with cuboidal winding material samples has been employed [12]. The method emulates a unidirectional conductive heat transfer through a given axis of a winding material sample. It is assumed here that each of the sample axes is independent from each other. Due to conciseness, the theoretical fundamentals of the experimental method together with the testing procedure are not discussed in the paper. However, the authors’ previous works provide comprehensive information addressing all these issues [11]-[13].

Table 2: Measured set of thermal conductivities from tests on winding material samples together with conductors aspect ratio

<table>
<thead>
<tr>
<th>Winding sample</th>
<th>Thermal conductivity</th>
<th>Conductor aspect ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k₁ [W/(mK)]</td>
<td>k₂ [W/(mK)]</td>
</tr>
<tr>
<td>a</td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td>b</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>c</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>d</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td>e</td>
<td>1.9</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Fig. 3 presents an example close-up on gaps between impregnated conductors for Winding sample e, a) x-axis, b) y-axis

Figure 3: An example close-up on gaps between impregnated conductors for Winding sample e, a) x-axis, b) y-axis

Two methods of deriving equivalent thermal conductivity data for windings constructed with profiled rectangular conductors are discussed in this section. The first of the techniques adapts an existing analytical approach, whereas the second one makes use of reduced-order equivalent-circuit lumped parameter approach.

4 Mathematical models

Two methods of deriving equivalent thermal conductivity data for windings constructed with profiled rectangular conductors are discussed in this section. The first of the techniques adapts an existing analytical approach, whereas the second one makes use of reduced-order equivalent-circuit lumped parameter approach.
Fig. 4 presents a schematic representation of the winding sample together with reduced-order equivalent-circuit lumped-parameter network representation and the nomenclature used.

The anisotropy of the winding is approximated here by the use of individual stacking factors for each of the x- and y-axes,

\[
FF_x = \frac{x_c}{x_{ii} + x_{ci} + x_c}, \quad FF_y = \frac{y_c}{y_{ii} + y_{ci} + y_c}.
\]

The individual factors substitute FF when equivalent thermal conductivities \(k_x\) and \(k_y\) are estimated. However, this requires data regarding \(x_{ii}\) and \(y_{ii}\), which is relatively simple to derive from the winding samples. It has been found from the measurements that for the analysed winding arrangements \(x_{ii} = 0.48\ y_{ii}\) in average, further simplifying the proposed analytical method.

\subsection*{4.2 Proposed equivalent-circuit method}

The proposed equivalent-circuit lumped-parameter approach of deriving equivalent thermal conductivity emulates the experimental method with heat flux meter and corresponds with the finite element model discussed in [12]. Fig. 4 presents the complete equivalent-circuit network with each of the winding material regions represented by four thermal resistances aligned with x and y winding axes.

The common, central node for all the sets of resistors provides averaged temperature within the individual material regions. Such model definition stems from the fact of zero internal heat/power loss generation within the winding sample, i.e., heat is transferred across the winding sample only.

Further to these, the model representation adopted in the analysis has been reduced to one quarter of an individual conductor including the enamel and impregnation regions. The initial analysis using the proposed approach and finite element analysis with complete and reduced-order models for the winding material samples have shown insignificant discrepancy between the results. The thermal conductivity in particular winding axis is derived from the heat rate, temperature difference across winding sample and geometrical dimensions [12, 13] by setting the fixed heat source and temperature boundary conditions across the axis. The remaining peripheries of the model are adiabatically insulated.

\section*{5 Results and observations}

In order to demonstrate applicability and limitations of the proposed methods, the equivalent thermal conductivity for a number of winding topologies has been derived theoretically and experimentally. These have been supplemented with the finite element approach [12]. All the techniques: analytical, equivalent-circuit and finite element methods have been individually calibrated beforehand with experimental data from tests on the winding material samples.

Fig. 5 presents variation of the equivalent thermal conductivity in x- and y-axis, for the Winding sample e, versus conductor aspect ratio assuming fixed cross-section of an individual conductor and conductor fill factor. The results suggest an increase of \(k_x\) and decrease of \(k_x\) for the conductor profiles with ‘high’ aspect ratios. All the analysed methods for deriving the equivalent thermal conductivity show similar
trends with some discrepancies towards ‘small’ conductor aspect ratios. Here, maximum deviation of 8% has been observed for both the analytical and equivalent circuit methods.

Figure 5: Thermal conductivity vs. conductor aspect ratio for varnish impregnated winding sample with copper conductors and $FF = 77\%$ – Winding sample e

Figure 6: Thermal conductivity vs. conductor aspect ratio for varnish impregnated winding sample with copper conductors and different conductor cross-section.

Figure 7: Thermal conductivity vs. conductor fill factor for varnish impregnated winding sample with copper conductors and conductor aspect ratio equal to 8.3 – Winding sample e

Figure 8: Thermal conductivity vs. conductor fill factor for epoxy impregnated winding sample with copper conductors and conductor aspect ratio equal to 2.0 – Winding samples c and d

It is important to note that for an ideal and symmetrical winding construction k_x and k_y are equal for the conductor aspect ratio equal to 1, i.e. conductor with square cross-section. However as it has been discussed earlier, stacking factors for both axes of the winding material samples are dissimilar and need to be derived from measurements. This different gapping between conductors in x and y axes shifts the $k_x = k_y$ point towards higher conductor aspect ratios, here equal to approximately 5. The results comparison shown in Fig. 5 assumes constant x- and y-axis stacking factors from the winding samples measurements.

An important element of the proposed techniques is hardware calibration with the reduced number of required material samples. In Fig. 5 measured data points for Winding versions a and e are included showing close correlation with the theoretical predictions. Both the material samples are constructed using the same conductor and varnish materials and have approximately the same conductor fill factor. The only difference between the samples lies in the conductor aspect ratio and conductor cross-section area. This suggests that winding hardware samples with similar constructions as outlined can be used to calibrate models with different conductor aspect ratios and conductor cross-section. This has been clearly illustrated in Fig. 6 where a number of theoretical winding examples with the same materials as for the Winding versions a and e, but different conductor-cross sections and conductor aspect ratios are compared. The theoretical findings suggest that the result transferability is limited and for conductor cross section more than 25% a new winding sample is required to calibrate the model.

Fig. 7 compares variation of the equivalent thermal conductivity with conductor fill factor. The theoretical predictions from all the analysed techniques show similar trends with data from the analytical method deviating from other techniques beyond 80% of the conductor fill factor. In particular, thermal conductivity in y-axis is affected with maximum discrepancy of 36% as compared with data from other methods. This limitation for the analytical method stems from simplified character of the approach where various volumetric and material measures are used to estimate the equivalent thermal conductivity. However, conductor fill factor beyond 80% are difficult to achieve for practical applications with profiled rectangular conductors.

Fig. 8 illustrates the effect of model calibration with experimental data from tests on material samples with different conductor fill factor. Winding samples c and d. It is important to note that the remaining construction factors are here identical, i.e. impregnation and conductor cross-section and aspect ratio. The models have been calibrated from hardware sample c to predict the equivalent thermal conductivity for winding sample d and vice versa. The results suggests that the model calibration with data, where conductor fill factors are significantly different, here 27% and 73%, does not allow for accurate predictions of the equivalent thermal conductivity.

6 Conclusion

The paper includes a detailed description of the proposed methods for deriving the equivalent thermal conductivity for impregnated windings formed with profiled rectangular
conductors accounting for the material thermal anisotropy. The techniques provide a building block for the high fidelity, computationally and resource effective thermal analysis. The theoretical background and practical use of the methods have been discussed in detail and demonstrated on a number of hardware examples providing an insight into applicability and limitation of the techniques. The calculated results from both the methods: analytical and equivalent circuit have shown good agreement with the finite element predictions and measured data.

The use of limited number of hardware winding samples has also been investigated. The results have shown that in cases of the winding samples constructed with the same materials/processes and similar winding factors it is possible to accurately predict the equivalent thermal conductivity for alternative windings with different conductor cross-section and/or conductor aspect ratio. When the conductor fill factor for the hardware sample and intended in the model are significantly different the model calibration approach with reduced winding samples has been shown to be inadequate.

Acknowledgements

The authors wish to thank the European Union for the funding to this research project (FP7 ITN Project 607361 ADEPT).

References

