
Peer reviewed version

Link to published version (if available):
10.1080/10448632.2016.1197592

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Taylor & Francis at http://www.tandfonline.com/doi/abs/10.1080/10448632.2016.1197592. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www(bristol.ac.uk/pure/about/ebr-terms
Neutron diffraction as a probe of liquid and glass structures under extreme conditions

Philip S Salmon¹, James W E Drewitt², and Anita Zeidler¹

¹Department of Physics, University of Bath, Bath BA2 7AY, UK

²School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK

Neutrons provide a unique tool for probing the structure of liquid and glassy matter, and deliver information that cannot be obtained from other experimental techniques. Advances in neutron diffraction instrumentation and measurement protocols now make it possible to measure the structure of these disordered materials under extremes of high temperatures or high pressures. Here, we consider the use of aerodynamic levitation with laser heating to explore the structure of glass-forming oxide melts at high temperatures, and the use of a Paris-Edinburgh press to investigate the mechanisms of density-driven network collapse for glassy materials in the gigapascal (GPa) pressure regime.

Introduction

The structural complexity of liquid and glassy materials makes for a challenging field of research to which neutron diffraction has made seminal contributions, especially when it has been combined with the isotope substitution method [1, 2]. The atomic-scale disorder of these materials leads to diffuse scattering, such that experiments requiring small samples and complex sample environments must be carefully designed if the sample scattering is to be distinguished from the container and background scattering. Aerodynamic levitation with laser heating offers a container-less method for investigating the structure of a wide variety of high-temperature liquids [3], but the small levitated sample is partially obscured from an incident neutron beam by the material of the levitator’s nozzle (Fig. 1). The Paris-Edinburgh press provides a means for accessing pressures in the GPa regime [4], but a small sample must be contained within a gasket such that scattering from the gasket and anvils of the press cannot be avoided [5]. However, as will be illustrated in the following, it is possible to circumvent these experimental challenges. Indeed, it is even possible to apply the method of neutron diffraction with isotope substitution (NDIS) to provide site-specific information on a material’s structure under extreme conditions [1, 2]. Here, diffraction patterns are measured for two or more samples that are identical in every respect, except for the isotopic enrichment of one or more of the chemical species. These patterns are then subtracted, thus reducing the number of overlapping pair-correlation functions that contribute towards a single diffraction pattern.

Structure of high-temperature liquids by neutron diffraction with isotope substitution

CaAl₂O₄ is one of a family of glass-forming materials that are widely studied because of their geological and technological relevance. The laser-heated aerodynamic-levitation technique has been combined with the NDIS method using Ca isotopes in order to measure the structure of a single levitated liquid droplet of CaAl₂O₄ at a temperature of 1973 K [6]. The NDIS method has also been applied to measure the glass structure at ambient temperature [6]. The experiments employed the diffractometer D4c at the Institut Laue-Langevin (ILL), and the measured real-space difference functions ΔG_{Ca}(r) and ΔG_{μμ}(r) are shown in Fig. 2. ΔG_{Ca}(r) involves only the Ca-Ca and
Ca-µ pair-correlation functions, where µ denotes either an Al or O atom, whereas ∆G_{µµ}(r) involves only the µ-µ pair-correlation functions. The first peaks in ∆G_{Ca}(r) and ∆G_{µµ}(r) correspond to the Ca-O and Al-O nearest-neighbours, respectively. The diffraction results are compared to those obtained by using molecular dynamics with a polarisable ion model. It is found that significant structural changes occur on vitrification of this fragile glass-forming material on both the local and intermediate length scales. For instance, edge-sharing Ca-centred polyhedra occur in the liquid phase and become far more numerous as the system is quenched to form a glass (Fig. 3). Thus, although glass is often used as a proxy for the corresponding liquid in order to explore possible structural configurations at extreme conditions, these configurations may not be representative of the liquid phase in so-called ‘fragile’ glass-forming systems, a taxonomy that includes CaAl2O4 and a range of magma-related materials [6].

Structure of silica glass by in situ high-pressure neutron diffraction
Silica is the canonical network glass, whose pressure-dependent behaviour is often used as a reference for silicate materials that have geophysical relevance. Figure 4 shows the pressure dependence of the total structure factor S(Q) as measured by neutron and x-ray diffraction, where the information provided by these techniques is complementary: The relative values of the coherent neutron scattering lengths and x-ray form factors for Si and O ensure that the neutron and x-ray S(Q) functions are more sensitive to the O and Si atom pair-correlation functions, respectively [7]. For example, at ambient pressure the neutron S(Q) function has a peak at a scattering vector \(Q \sim 2.9 \ \text{Å}^{-1} \) that is absent from the x-ray S(Q) function. The neutron diffraction experiments were performed using a Paris-Edinburgh press with (i) an in-plane scattering geometry and neutron absorbing BN anvils on the diffractometer D4c (ILL) at pressures up to 8.2 GPa [8], or (ii) a transverse scattering geometry and sintered diamond anvils on the diffractometer PEARL (ISIS) at pressures up to 17.5 GPa [9]. The sample volumes in these diffraction experiments were about 91 and 34 mm³, respectively [5]. The diffraction data are compared to those obtained from molecular dynamics simulations using the Tangney-Scandolo interaction model which incorporates anion polarisation terms.

The results show that the transformation from a network of SiO₄ tetrahedra to a network of SiO₆ octahedra proceeds via the formation of five-fold coordinated Si atoms. In particular, the application of pressure leads to a reduction in size of the primitive rings that are formed by linked Si-centred motifs, a reduction that can be understood quantitatively in terms of a newly developed ‘zipper’ mechanism for ring closure [7]. The ring in Fig. 5 is deemed to be ‘primitive’ because it cannot be decomposed into smaller rings. When pressure is applied, the ring closes when silicon atom Siˡ forms an additional bond with an intra-ring oxygen atom O₁, thus increasing the Siˡ coordination number from four to five and the O₁ coordination number from two to three. With increasing density, a further ring closure event then takes place at an adjacent site to create another over-coordinated silicon atom Si^{I I} along with another over-coordinated oxygen atom O^{I I}. The close proximity of these ring closure events helps to preserve locally the glass stoichiometry and, because the Si and O atoms are charged, this acts in a direction that helps to conserve local charge neutrality.

Structure of high-pressure glasses by neutron diffraction with isotope substitution
GeSe₂ is a prototypical chalcogenide glass-forming system in which the topological and chemical ordering contrasts to that found in typical amorphous oxides. The structural information obtained on this system from conventional neutron and x-ray diffraction experiments is almost identical
because of the similarity between the coherent neutron scattering lengths of Ge and Se of natural isotopic abundance, and the similarity between the x-ray form factors for these elements. It is therefore desirable to obtain site-specific structural information, where the NDIS method with Ge and/or Se isotopes offers an excellent way forward [10]. This method has been used to explore the structure of GeSe₂ glass at pressures up to 8.2 GPa, and the resultant difference functions ∆F_{Ge}(Q) and ∆F_{Se}(Q) are shown in Fig. 6 [11]. These functions contain information solely on the Ge and Se pair-correlation functions, respectively, and were measured by using the diffractometer D4c (ILL) following the methodology developed in Ref. [12]. Conventional neutron diffraction has also been used to measure the structure of GeSe₂ glass at pressures up to 16.1 GPa, and the pressure-dependent structure of this material has been modelled by using first-principles molecular dynamics [11].

The results give an ambient pressure network that is built predominantly from corner and edge sharing Ge-centred tetrahedra, where Ge and Se are four-fold and two-fold coordinated, respectively, and the chemical ordering is broken by the appearance of Ge-Ge and Se-Se homopolar bonds [10, 11]. As the pressure is increased to ~8.5 GPa, the edge-sharing tetrahedra persist in substantial numbers and the mean coordination numbers of Ge and Se remain unchanged. At larger pressures, a mediating role is found for homopolar bonds in the appearance of higher-coordinated Ge and Se atoms. The persistence of edge-sharing configurations and role played by homopolar bonds are likely to be generic features of the densification processes in other chalcogenide glasses.

Conclusions

The results presented above highlight the quality of information that can now be gained on the structure of liquid and glassy materials under extreme conditions from *in situ* neutron diffraction experiments. There is much to look forward to as the methodology is improved to enable the structure and properties of disordered materials to be explored over a broader range of state conditions.

Acknowledgements

It is a pleasure to thank Louis Hennet, Stefan Klotz, Henry Fischer, Craig Bull and Matthew Tucker for their valuable assistance and advice. The high-pressure work would not have been possible without the help of Keiron Pizzey, Annalisa Polidori, Ruth Rowlands, Dean Whittaker and Kamil Wezka. AZ is supported by a Royal Society-EPSRC Dorothy Hodgkin Research Fellowship.

References

Fig. 1. Schematic of an aerodynamic levitation experiment as performed using the D4c diffractometer at the ILL. A small spherical sample of diameter 2-3 mm is levitated by the gas flow through a conical nozzle, and is heated by CO$_2$ lasers, where the laser beams enter the diffractometer bell jar via NaCl windows. The images to the left show a molten sample as viewed from both its top and its side. In the latter, the bottom of the sample is obscured by the nozzle material. (Figure courtesy of Louis Hennet, Orléans).
Fig. 2. The difference functions (a) $\Delta G_{\text{Ca}}(r)$ and (b) $\Delta G_{\mu\mu}(r)$ as (i) measured for a single droplet of liquid CaAl$_2$O$_4$ of diameter 2.54 mm at a temperature of 1973 K or for a single bead of glassy CaAl$_2$O$_4$ of diameter 3.18 mm at room temperature (solid curves); and (ii) modelled by using molecular dynamics (chained curves) [6]. $\Delta G_{\text{Ca}}(r)$ has contributions from the Ca-Ca and Ca-\(\mu\) pair-correlation functions, where \(\mu\) denotes either an Al or O atom, whereas $\Delta G_{\mu\mu}(r)$ has contributions from the \(\mu-\mu\) pair-correlation functions alone.

Fig. 3. Snapshots illustrating the largest clusters of edge-sharing Ca-centred polyhedra in molecular dynamics simulations of liquid and glassy CaAl$_2$O$_4$ at temperatures of 2500 K and 350 K, respectively [6].
Fig. 4. The pressure dependence of the (a) neutron and (b) x-ray total structure factors $S(Q)$ as measured in diffraction experiments on SiO$_2$ glass under compression at room temperature [7]. The solid light (green) curves give the results obtained from molecular dynamics simulations, and the other curves give the experimental results.
Fig. 5. Schematic of a series of ring closure events in SiO$_2$ glass where the Si atoms are small (yellow) circles and the O atoms are large (red) circles [7]. The initial ring shown in (a) is closed by the formation of a bond between the SiI and OI atoms in (b), and is then closed again by the formation of a bond between the SiII and OII atoms in (c). At each stage in this ring-closure process, the existing Si-O bonds within a ring are shown by solid thick lines and the new Si-O bond is shown by a broken line. The remainder of the Si-O bonds are indicated by solid thin lines.
Fig. 6. The pressure dependence of the difference functions (a) $\Delta F_{\text{Ge}}(Q)$ and (b) $\Delta F_{\text{Se}}(Q)$ for GeSe$_2$ glass, as measured by using NDIS (dark curves with vertical error bars) or simulated by using first-principles molecular dynamics (light (green) curves) [11].