
Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Centre for Combinatorics at http://ajc.maths.uq.edu.au/?page=get_volumes&volume=52. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
A note on balanced independent sets in the cube

Ben Barber

Department of Pure Mathematics and Mathematical Statistics
Centre for Mathematical Sciences
Wilberforce Road, Cambridge, CB3 0WB
U.K.
b.a.barber@dpmms.cam.ac.uk

Abstract

Ramras conjectured that the maximum size of an independent set in the discrete cube Q_n containing equal numbers of sets of even and odd size is $2^{n-1} - \binom{n-1}{(n-1)/2}$ when n is odd. We prove this conjecture, and find the analogous bound when n is even. The result follows from an isoperimetric inequality in the cube.

The discrete hypercube Q_n is the graph with vertices the subsets of $[n] = \{1, \ldots, n\}$ and edges between sets whose symmetric difference contains a single element. The cube Q_n is bipartite, with classes X_0 and X_1 consisting of the sets of even and odd size respectively. The maximum-sized independent sets in Q_n are precisely X_0 and X_1. Ramras [3] asked: how large an independent set can we find with half its elements in X_0 and half in X_1? Call such an independent set balanced. The following result verifies the conjecture made by Ramras for the case where n is odd.

Theorem 1. The largest balanced independent set in Q_n has size

$$2^{n-1} - \frac{2}{(n-2)/2} \quad \text{if } n \text{ is even,}$$

$$2^{n-1} - \frac{2}{(n-1)/2} \quad \text{if } n \text{ is odd.}$$

For a set A of vertices of Q_n, write $N(A)$ for the set of vertices adjacent to an element of A. The maximal independent sets in Q_n all have the form $A \cup (X_1 \setminus N(A))$ for some $A \subseteq X_0$. So for a maximum-sized balanced independent set we seek the largest $A \subseteq X_0$ for which

$$|A| \leq |X_1 \setminus N(A)|.$$
We use the following isoperimetric theorem for even-sized sets, due independently to Bezrukov [1] and Körner and Wei [2] (see also Tiersma [4]). Recall that \(x < y \) in the simplicial order on \(Q_n \) if either \(|x| < |y| \), or \(|x| = |y| \) and \(x < y \) lexicographically.

Theorem 2 ([1], [2]). Let \(A \subseteq X_0 \), and let \(B \) be the initial segment of the simplicial order restricted to \(X_0 \) with \(|B| = |A| \). Then \(|N(B)| \leq |N(A)| \), and \(X_1 \setminus B \) is a terminal segment of the simplicial order restricted to \(X_1 \).

Proof of Theorem 1. We will exhibit an initial segment \(A \) of the simplicial order restricted to \(X_0 \), and a terminal segment \(B \) of the simplicial order restricted to \(X_1 \), with \(N(A) \cap B = \emptyset \) and \(|A| = |B| \) as large as possible. It follows from Theorem 2 that \(A \cup B \) will be a maximum-sized balanced independent set.

The form of \(A \) and \(B \) depends on the residue of \(n \) mod 4. For \(n = 4k \) we take
\[
A = [n]^{(0)} \cup [n]^{(2)} \cup \cdots \cup [n]^{(2k-2)} \cup (12 + [3, n]^{(2k-2)})
\]
\[
B = (1 + [3, n]^{(2k)}) \cup [2, n]^{(2k+1)} \cup [n]^{(2k+3)} \cup \cdots \cup [n]^{(n-3)} \cup [n]^{(n-1)},
\]
where, for instance,
\[
12 + [3, n]^{(2k-2)} = \{\{1, 2\} \cup x : x \subseteq \{3, 4, \ldots, n\}, |x| = 2k - 2\}.
\]

For \(n = 4k + 1 \) we take
\[
A = [n]^{(0)} \cup [n]^{(2)} \cup \cdots \cup [n]^{(2k-2)} \cup (1 + [2, n]^{(2k-1)})
\]
\[
B = [2, n]^{(2k+1)} \cup [n]^{(2k+3)} \cup \cdots \cup [n]^{(n-2)} \cup [n]^{(n)}.
\]

For \(n = 4k + 2 \) we take
\[
A = [n]^{(0)} \cup [n]^{(2)} \cup \cdots \cup [n]^{(2k-2)} \cup (1 + [2, n]^{(2k-1)}) \cup (2 + [3, n]^{(2k-1)})
\]
\[
B = [3, n]^{(2k+1)} \cup [n]^{(2k+3)} \cup \cdots \cup [n]^{(n-3)} \cup [n]^{(n-1)}.
\]

Finally, for \(n = 4k + 3 \) we take
\[
A = [n]^{(0)} \cup [n]^{(2)} \cup \cdots \cup [n]^{(2k)}
\]
\[
B = [n]^{(2k+3)} \cup \cdots \cup [n]^{(n-2)} \cup [n]^{(n)}.
\]

Verifying that these sets have the claimed sizes, and that \(|A| = |B| \) in each case, is a simple application of the identities \(\binom{m}{r} = \binom{m-1}{r-1} + \binom{m-1}{r} \), \(\binom{m}{m} = \binom{m}{m-r} = 2^m \) and \(\sum_{r=0}^{m} \binom{m}{r} = 2^m \). □

The maximum-sized balanced independent sets constructed above are also maximal independent sets. For example, if \(n = 4k + 3 \), then any set not in the family is adjacent to a complete layer; the other cases are similar, with slight complications in the middle layers of the cube.
References

(Received 16 June 2011)