
Peer reviewed version

Link to published version (if available): 10.1016/j.jnoncrysol.2016.06.034

Link to publication record in Explore Bristol Research

PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://dx.doi.org/10.1016/j.jnoncrysol.2016.06.034. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Structural Investigation of Gallate Glass Using L₃-Edge Extended X-ray Absorption Spectroscopy and Computer Simulation

Pinit Kidkhunthod¹*, Atipong Bootchanont² and Adrian C Barnes³

¹Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
²School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
³H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom

Abstract

L₃-edge Extended X-ray Absorption Fine Structure (EXAFS) studies have been carried out on a praseodymium gallate glass (Pr₃Ga₅O₁₂) prepared by aerodynamic levitation and laser heating. The short range ordering around the rare-earth has been obtained by combined technique including molecular dynamics simulation (MD). The results give an average Pr-O coordination number of 6.68(2) and a mean Ga-O coordination number of 4.29(2). A good agreement between the experimental data and the simple molecular dynamics simulations give rising a glass network of a Pr-O polyhedral structure and a predominant GaO₄ tetrahedral network in this glass.

* Corresponding author : Dr. Pinit Kidkhunthod

(Email: pinit@slri.or.th)
1. Introduction

These days there has been great interest in rare-earth gallate glasses primarily for their optical properties and applications as laser host materials, phosphors and other optical applications [1-6]. In particularly, gallate glasses have relatively low vibrational frequencies by comparison with their halide counterparts [4,7]. Consequently, these gallate glasses are of interest as the host glassy matrix for rare-earth atoms such as Pr, Nd, Ho, etc. [3,5,8]. Furthermore, the optical activity of the ions in the host glass is strongly influenced by local and intermediate rang order of glassy networks. Hence, in order to understand these glassy materials better and to control and design their properties it is very important that good structural models of the glasses can be obtained.

X-ray absorption spectroscopy (XAS) including extended X-ray absorption fine structure (EXAFS) is a powerful technique which can be used to provided the local-structural information around the probing elements in materials especially in glasses. To the best of our knowledge, several techniques such as Reverse Monte Carlo (RMC) [9] and Empirical Potential Structural Refinement (EPSR) [10] have been recently developed to obtain structural models of glasses from diffraction data. An alternative approach to the gallate glasses is to use Molecular Dynamics (MD) simulation techniques [11,12] to produce distribution function or diffraction patterns that can be compared directly with the experimental data.

In this paper we attempt to demonstrate, by using combinations of EXAFS and Molecular Dynamics techniques, that it is possible to obtain high quality information concerning the Pr-O and Ga-O coordinations in the praseodymium gallate glasses.

2. Experimental Methods

The praseodymium gallate glass samples were produced from high purity (99.99%) of Pr$_6$O$_{11}$ and Ga$_2$O$_3$ powders. Prior to use, these such starting powders had been calcined in air at 1200 °C for approximately 24 hours in order to remove water and any CO$_2$. Then, pellets of mixed powdered oxides were prepared before melting with a glass composition of Pr$_3$Ga$_5$O$_{12}$. Each pellet was melted by heating to approximately 2400 °C using an aerodynamic levitation and laser heating system with argon (99.999%) as the levitation gas [13]. Finally, glass spheres of Pr$_3$Ga$_5$O$_{12}$ with diameters of ~2 mm were obtained with their green colour. This green colour show an existence of Pr$^{3+}$ in produced glasses.

EXAFS spectra for the Pr L$_3$-edge and Ga K-edge were acquired at the SUT-NANOTEC-SLRI XAS Beamline (BL 5.2) and the BL8 (electron energy of 1.2 GeV; bending magnet; beam current 80 – 150 mA; 1.1 to 1.7 x 1011 photon s$^{-1}$) at the Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. To measure EXAFS spectra, the glass spheres will be ground and mixed with BN for a pellet prior to the measurement. The EXAFS spectra were collected in the transmission mode using a Ge (220) double crystal
monochromator with an energy resolution ($\Delta E/E$) of 2×10^{-4}. All measured EXAFS spectra were normalized, corrected and analyzed with the ATHENA program [14].

Molecular Dynamics (MD) simulations were carried out for praseodymium gallate glasses using the DL_POLY Molecular Dynamics simulation package with Buckingham potentials [15,16]. The used parameters for the Buckingham potential were shown in Table 1. The simulation box was a cube of 29.55 Å which contained 300 Pr, 500 Ga and 1,200 O atoms, corresponding to an atomic number density of 0.076 Å$^{-3}$ obtained from the measured sample density of 6.11 g cm$^{-3}$. The simulations carried out using an NVT Berendsen thermostat. The MD simulation run was started at 2400 K and ran with a time step of 0.001 ps. The system was equilibrated for 1000 steps and then run for an additional 50000 steps. After this, the simulation temperature was set to 298K and the process repeated. The final configuration was saved as the starting configuration for the MD-EXAFS calculation.

Table 1. Parameters used for the Buckingham potential

<table>
<thead>
<tr>
<th></th>
<th>A_{ij} (eV)</th>
<th>P_{ij} (\AA)</th>
<th>C_{ij} (eV\cdotÅ$^{-6}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr$^{3+}$ - O$^{2-}$</td>
<td>13431</td>
<td>0.256</td>
<td>0.0</td>
</tr>
<tr>
<td>O$^{2-}$ - O$^{2-}$</td>
<td>25.41</td>
<td>0.694</td>
<td>32.32</td>
</tr>
<tr>
<td>Ga$^{3+}$ - O$^{2-}$</td>
<td>2340</td>
<td>0.274</td>
<td>0.0</td>
</tr>
</tbody>
</table>
The MD-EXAFS calculations at Pr L_3-edge and Ga K-edge were calculated using FEFF 8.2 program [17] from the final MD configuration. Individual Pr and Ga clusters were extracted from the MD configuration with the cutoff distances determined by the observed minimum in pair distribution function, \(g_{\text{PrO}}(r) \) and \(g_{\text{GaO}}(r) \), respectively. The values of amplitude reduction, \(S_0^2 \), and the Debye-Waller factor were set to be 1 and 0, respectively. Unlike conventional EXAFS analysis with first shell fit e.g. crystalline system, the disorder in glass structure is typically calculated through the average of all EXAFS from each different cluster. In this calculation, an average of MD-EXAFS calculated using 300 Pr and 500 Ga clusters is employed in order to obtain a good convergence. Hence, a Debye-Waller term is not necessary in the calculation. Similarly, higher cumulant terms are not included in the MD-EXAFS calculations.

Fig.1. A flow chart of the programs employed in the EXAFS analysis
3. Results and Discussion

Figure 2 shows the pair distribution function, $g(r)$, of the Pr$_3$Ga$_5$O$_{12}$ glass sample obtained from the final MD simulations as described so far. From the $g(r)$, it can clearly see a first sharp peak with a tail contribution for each pair distribution function. This distribution pattern exhibits the signature of $g(r)$ of real glass sample.

![Graph showing partial distribution function of all pair atoms of Pr$_3$Ga$_5$O$_{12}$ glass sample obtained from the final MD simulations.]

Fig. 2. Partial distribution function of all pair atoms of the Pr$_3$Ga$_5$O$_{12}$ glass sample obtained from the final MD simulations

Figure 3 shows the measured transmission EXAFS spectra (black circles) obtained from the Pr L$_{3}$-edge EXAFS (top) and Ga K-edge EXAFS (bottom) of the Pr$_3$Ga$_5$O$_{12}$ glass sample. Again, figure 3 also shows a comparison of the calculated MD-EXAFS signal from the final MD configurations (red line) with the measured spectra. Regarding to the MD-EXAFS calculation as reported in the previous section, the cluster size incorporated all the oxygen atoms located within 3.10 Å and 2.30 Å for the Pr and Ga ions, respectively.
Fig. 3. The upper figure shows the comparison of Pr L$_3$-edge EXAFS signal of Pr$_3$Ga$_5$O$_{12}$ glasses between experiment (black circle) and MD-EXAFS calculation (red line). Likely, the lower figure shows comparison of Ga K-edge EXAFS Signal.

Fig. 4. The corresponding Fourier Transformation of Pr$_3$Ga$_5$O$_{12}$ glasses between experiment (black circle) and MD-EXAFS calculation (red line). Upper figure shows the comparison of Pr-O EXAFS signal and the lower figure shows comparison of Ga-O EXAFS signal.
From figure 3 and 4, by comparison, it can be seen that the EXAFS spectra calculated from the MD simulation are already in close agreement with the observed EXAFS pattern in both k-space and r-space. This suggests that despite the limitations of the MD simulation to two body potentials it appears that coordinations around the Pr and Ga ions are reasonably well determined by simulation. In addition, in figure 4, a non-symmetric distribution of FT of Pr-O and Ga-O in both MD-EXAFS calculation and measured data is notably seen and gives an information of different bonding distances in glass structure with a mean bonding distance of 2.45(2) Å and 1.80(1) Å for Pr-O and Ga-O, respectively. A precise analysis on coordination distributions of Pr-O and Ga-O will be discussed further in the next section.

Moving to calculation of coordination distribution, it therefore appears that the observation of MD configurations is associated with Pr-O and Ga-O glass-network structures. Calculation of the average coordination number of O around Pr gives 6.68(2) which shows a good quality of EXAFS spectra at Pr L$_3$-edge. Additionally, from the coordination number distribution, it may be noted that the most likely coordination number in the MD structure is 6 and 7. These atoms account for ~70% of Pr ions in the simulation as can be seen in Figure 5. Moving to the Ga-O coordinated network, a mean Ga-O coordination number is 4.29(2). This number implied a predominantly tetrahedral structure of Ga-O network which is consistent with the previous results obtained from an isomorphic substitution in neutron diffraction [18]. A Ga-O coordinated network distribution can be clearly seen from Figure 5 with approximately 45% and 34% for 4-fold and 5-fold coordinations. The coordination polyhedra of Pr-O and Ga-O obtained from the final MD configuration is shown in Fig. 6. It may see that the Pr-O and Ga-O network-structures are dominated by a corner sharing comparing with a small amount of edge sharing. By comparison these results with conventional EXAFS first shell fit method, as seen in table 2, a slight difference in mean bonding distances and oxygen-coordination numbers around Pr and Ga atoms is observed. Although this first shell fit method is much easier and more comfortable than our MD-EXAFS analysis, a oxygen coordinated network distribution including coordination polyhedra of Pr-O and Ga-O could not be obtained from this fit.
Fig. 5. The distribution of Pr-O (left) and Ga-O (right) coordination number obtained from MD simulation of Pr$_3$Ga$_5$O$_{12}$ glasses.

Fig. 6. The coordination polyhedra of Pr-O (left) and Ga-O (right) obtained from MD simulation of Pr$_3$Ga$_5$O$_{12}$ glass with the cut-off bond lengths of 3.0 Å and 2.3 Å, respectively.
Table 2. EXAFS results obtained from the first shell fit

<table>
<thead>
<tr>
<th>Paths</th>
<th>Mean coordination numbers</th>
<th>Mean R-distances (Å)</th>
<th>σ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr-O</td>
<td>6.75(2)</td>
<td>2.42(2)</td>
<td>0.003</td>
</tr>
<tr>
<td>Ga-O</td>
<td>4.31(2)</td>
<td>1.81(1)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
5. Conclusions

A combination of EXAFS and Molecular Dynamics study has been made for a Pr$_3$Ga$_5$O$_{12}$ glass. MD-EXAFS signal predicted from the MD configuration shows a good agreement with the experimental EXAFS data, suggesting that the simulation is producing a good model of the local structures around the Pr and Ga ions. Hence the combination of the Molecular Dynamics techniques and EXAFS appears to be necessary to obtain optimum atomistic models of the glass. The ability to simultaneously refine the EXAFS data (with multiple scattering terms if necessary) would improve the model further.

Acknowledgements

This work was supported by the Ministry of Science and Technology of Thailand (RD&E Funding contract no : SCH-NR2012-812). Many thanks to School of Physics, University of Bristol, United Kingdom and Suranaree University of Technology, Thailand for laboratory facilities. Also, many thanks to the Synchrotron Light Research Institute (SLRI) for awarding the XAS beamtime.

6. References

Table 1. Parameters used for the Buckingham potential

\[\phi_{ij} = A_{ij} \exp\left(-\frac{r_{ij}}{\rho_{ij}}\right) - \frac{C_{ij}}{r_{ij}^6} + \frac{q_i q_j}{4\pi\varepsilon_0 r} \]

<table>
<thead>
<tr>
<th></th>
<th>(A_{ij} (eV))</th>
<th>(P_{ij} (A^*))</th>
<th>(C_{ij} (eV\cdot A^{-6}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pr}^{3+} - \text{O}^{2-})</td>
<td>13431</td>
<td>0.256</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{O}^{2-} - \text{O}^{2-})</td>
<td>25.41</td>
<td>0.694</td>
<td>32.32</td>
</tr>
<tr>
<td>(\text{Ga}^{3+} - \text{O}^{2-})</td>
<td>2340</td>
<td>0.274</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 2. EXAFS results obtained from the first shell fit

<table>
<thead>
<tr>
<th>Paths</th>
<th>Mean coordination numbers</th>
<th>Mean R-distances (Å)</th>
<th>σ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr-O</td>
<td>6.75(2)</td>
<td>2.42(2)</td>
<td>0.003</td>
</tr>
<tr>
<td>Ga-O</td>
<td>4.31(2)</td>
<td>1.81(1)</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Figure Captions:

Fig. 2. A flow chart of the programs employed in the EXAFS analysis.

Fig. 2. Partial distribution function of all pair atoms of the Pr$_3$Ga$_5$O$_{12}$ glass sample obtained from the final MD simulations.

Fig. 3. The upper figure shows the comparison of Pr L$_3$-edge EXAFS signal of Pr$_3$Ga$_5$O$_{12}$ glasses between experiment (blue circle) and MD-EXAFS calculation (red line). Likely, the lower figure shows comparison of Ga K-edge EXAFS Signal.

Fig. 4. The corresponding Fourier Transformation of Pr$_3$Ga$_5$O$_{12}$ glasses between experiment (black circle) and MD-EXAFS calculation (red line). Upper figure shows the comparison of Pr-O EXAFS signal and the lower figure shows comparison of Ga-O EXAFS signal.

Fig. 5. The distribution of Pr-O (left) and Ga-O (right) coordination number obtained from MD simulation of Pr$_3$Ga$_5$O$_{12}$ glasses.

Fig. 6. The coordination polyhedra of Pr-O (left) and Ga-O (right) obtained from MD simulation of Pr$_3$Ga$_5$O$_{12}$ glass with the cut-off bond lengths of 3.0 Å and 2.3 Å, respectively.
Fig. 1

Experimental data

ATHENA

Corrected EXAFS

MD simulation

MD-EXAFS

Neighbour count

The distribution of coordination numbers

Comparison between Exp. data and MD-EXAFS calculation
Fig. 3

Pr-O

$\chi(k)$ vs. $k (\text{Å}^{-1})$

Ga-O

$\chi(k)$ vs. $k (\text{Å}^{-1})$
Fig. 5

- **Pr-O**
 - Distribution percentages for coordination numbers 5 to 9.
 - Peaks at coordination numbers 6 and 7.

- **Ga-O**
 - Distribution percentages for coordination numbers 3 to 6.
 - Peaks at coordination numbers 4 and 5.