Supplementary Material

for

Diversely Halogenated Spiropyrans - Useful Synthetic Building Blocks for a Versatile Class of Molecular Switches
Mathias Schulz-Senft¹, Paul J. Gates², Frank D. Sönnichsen¹, and Anne Staubitz*¹,³,⁴

¹ Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, 24098 Kiel (Germany)
² School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS (UK)
³ Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. NW2 C, 28359 Bremen (Germany).
⁴ MAPEX Center for Materials and Processes, University of Bremen Bibliothekstraße 1, 28359 Bremen (Germany)

* astaubitz@oc.uni-kiel.de and staubitz@uni-bremen.de

Abbreviations... 2
Analytical Equipment and Equipment for Syntheses .. 2
Reagents .. 3
Solvents .. 4
References ... 5
Experimental Procedures ... 6
UV/vis Measurements and Determination of Attenuation Coefficients by ¹H NMR Spectroscopy ... 28
UV/vis Spectra and Corresponding ¹H NMR Spectra ... 33
¹H NMR and ¹³C{¹H} NMR Spectra... 46
Abbreviations
The use of abbreviations follows the conventions from the ACS Style guide.[1] In addition, the following abbreviations are used.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Long form</th>
</tr>
</thead>
<tbody>
<tr>
<td>at (NMR)</td>
<td>Apparent triplet</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflection (IR)</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionization</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>dd (NMR)</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>EI</td>
<td>Electron ionization</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple bond correlation</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear Overhauser enhancement spectroscopy</td>
</tr>
<tr>
<td>PSS</td>
<td>Photostationary state</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TOF</td>
<td>Time-of-flight mass detector</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume concentration (volume/volume)</td>
</tr>
</tbody>
</table>

Analytical Equipment and Equipment for Syntheses
NMR spectra were either recorded on a Bruker DRX 500 (1H NMR: 500 MHz) or on a Bruker Advance 600 (1H NMR: 600 MHz) FT-NMR spectrometer. 1H NMR and 13C{1H} NMR spectra were referenced against the solvent residual proton signals (1H) or the solvent itself (13C). 19F NMR spectra were referenced internally against CCl3F. The exact assignment of the peaks was performed by two-dimensional NMR spectroscopy such as 1H COSY, 1H NOESY, 1H/13C HSQC or 1H/13C HMBC if possible.

1H NMR spectra for the determination of the ratio between spiropyran and merocyanine form were recorded on a Bruker Advance 600 MHz FT-NMR spectrometer. Due to the low concentration of the samples (ca. 50 µmol/L), excitation sculpting was used to suppress residual solvent lines and 1024 scans were recorded. Mass spectrometric measurements were performed in the positive ion mode using a JEOL-Accu TOF 4GGCV EI mass spectrometer, a Bruker Daltonics micrOTOF II ESI mass spectrometer or a VG Analytical Autospec apparatus for CI. Electron ionization (EI) and Chemical ionization (CI) were performed using an ionization potential of 70 eV. In the case of CI ionization, methane was used as the reagent gas.

IR spectra were measured using a Perkin Elmer Paragon 1000 FT-IR spectrometer equipped with an A531-G Golden-Gate-ATR-unit.
UV spectra were recorded at 25 °C using a Perkin Elmer Lambda 14 UV spectrometer. Quartz cuvettes with a light path length of 10 mm from Hellma Analytics were used. Melting points were measured on an electrothermal IA6304 capillary melting point apparatus and are uncorrected. The irradiation experiments were carried out using LED light sources with an optical power of 1050 mW (Nichia NC4U033A; 365 nm) and 350 mW (Luxeon LXML-PX02; 565 nm).

Reagents

If not noted otherwise, all reagents were used as received.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Supplier</th>
<th>Purity/concentration</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Bromophenol</td>
<td>ABCR</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>2-Iodophenol</td>
<td>Sigma-Aldrich</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>3-Methyl-2-butanone</td>
<td>ABCR</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>4-Bromophenyl hydrazine hydrochloride</td>
<td>Sigma-Aldrich</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>4-Iodophenyl hydrazine</td>
<td>Maybridge</td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>4-Methoxyphenyl hydrazine hydrochloride</td>
<td>TCI</td>
<td>>98%</td>
<td></td>
</tr>
<tr>
<td>Hydrobromic acid</td>
<td>Sigma-Aldrich</td>
<td>48%</td>
<td>Reagent grade</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>Grüssing</td>
<td>37%</td>
<td></td>
</tr>
<tr>
<td>Iodomethane</td>
<td>Sigma-Aldrich</td>
<td>99%</td>
<td>Contains copper as stabilizer</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>Acros</td>
<td>99.9%</td>
<td>Anhydrous</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>Grüssing</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>Nitric acid</td>
<td>Merck</td>
<td>100% (fuming)</td>
<td></td>
</tr>
<tr>
<td>α-Vanillin</td>
<td>AlfaAesar</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>Paraformaldehyde</td>
<td>ABCR</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Piperidine</td>
<td>Acros</td>
<td>>99.5%</td>
<td></td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>Grüssing</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>Pyridine</td>
<td>Acros</td>
<td>99.5%</td>
<td>Extra dry, over molecular sieve</td>
</tr>
<tr>
<td>Silica gel 60</td>
<td>Merck</td>
<td>99.5%</td>
<td>15-40 µm</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Grüssing</td>
<td>99.5%</td>
<td></td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Grüssing</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>Sodium sulfate</td>
<td>Grüssing</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>Sigma-Aldrich</td>
<td>>99%</td>
<td></td>
</tr>
<tr>
<td>Triethylamine</td>
<td>Acros</td>
<td>99.5%</td>
<td>Predried over KOH, distilled from CaH₂</td>
</tr>
<tr>
<td>Trifluoromethanesulfonic anhydride</td>
<td>ABCR</td>
<td>>99%</td>
<td></td>
</tr>
</tbody>
</table>
Solvents
All solvents which were purchased in technical grade were purified by evaporation prior to use. Solvents of purities higher than 99% were not purified further. Some solvents were degassed by three freeze-pump-thaw cycles, backfilled with nitrogen and stored over molecular sieve 3 Å. The following solvents were dried in a solvent purification system PS-MD-5 by Innovative Technology: dichloromethane, diethyl ether, tetrahydrofuran.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Supplier</th>
<th>Purity</th>
<th>Drying procedure</th>
<th>Degassed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Grüssing</td>
<td>99.5%</td>
<td>Distilled from copper(II) sulfate</td>
<td>No</td>
</tr>
<tr>
<td>Acetone</td>
<td>Walter-CMP</td>
<td>Technical grade</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>Sigma-Aldrich</td>
<td>>99.9%, HPLC grade</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Acetonitrile-(d_2)</td>
<td>Deutero</td>
<td>99.8% D</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Chloroform-(d)</td>
<td>Euriso-top</td>
<td>99.8% D</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>VWR</td>
<td>HPLC grade</td>
<td>PS-MD-5</td>
<td>Yes</td>
</tr>
<tr>
<td>Dichloromethane-(d_2)</td>
<td>Deutero</td>
<td>99.6% D</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>VWR</td>
<td>HPLC grade</td>
<td>PS-MD-5</td>
<td>Yes</td>
</tr>
<tr>
<td>Dimethyl sulfoxide-(d_6)</td>
<td>Euriso-top</td>
<td>99.8% D</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Ethanol</td>
<td>VWR</td>
<td>Technical grade, dena-turated with petroleum oil</td>
<td>Distilled from calcium oxide</td>
<td>No</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>Walter-CMP</td>
<td>Technical grade</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>(n)-Heptane</td>
<td>AlfaAesar</td>
<td>>99%</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>(n)-Hexane</td>
<td>Sigma-Aldrich</td>
<td>>99.9%, HPLC grade</td>
<td>none</td>
<td>No</td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>VWR</td>
<td>HPLC grade</td>
<td>PS-MD-5</td>
<td>Yes</td>
</tr>
<tr>
<td>Toluene</td>
<td>VWR</td>
<td>Technical grade</td>
<td>none</td>
<td>No</td>
</tr>
</tbody>
</table>
References

Experimental Procedures

5-Bromo-2,3,3-trimethyl-3H-indole[2] (8a)

\[
\begin{align*}
\text{Br} & \quad \text{Me}^9 \\
6 & \quad 7a & \quad N \\
5 & \quad 4 & \quad 3a \\
10 & \quad & \quad 2 \\
1 & \quad & \quad 8 \\
3 & \quad & \quad 9
\end{align*}
\]

A solution of p-bromophenylhydrazine hydrochloride (1.50 g, 6.72 mmol), 3-methyl-2-butanone (1.16 g, 13.4 mmol) in dry glacial AcOH (120 mL) was heated to 130 °C under a nitrogen atmosphere for 6 h. The reaction mixture was allowed to cool to ambient temperature and subsequently the solvent was removed under reduced pressure. After dissolving the residue in Et₂O (150 mL) and addition of water (100 mL), the aqueous layer was extracted with n-hexane (2 × 100 mL) and Et₂O (1 × 150 mL). The organic phases were combined and washed with KOH (10%, 3 × 100 mL) and water (3 × 100 mL). Removal of the solvent and drying in vacuo gave the product as dark brown oil (1.34 g, 5.65 mmol, 84%, Lit.[2] 97%).

\[\text{1H NMR} \ (500 \text{ MHz, CDCl}_3): \delta = 7.42 - 7.36 \text{ (m, 3H, } H-4, H-6, H-7) \], 2.25 (s, 3H, } H-8), 1.28 (s, 6H, } H-9, H-10) \text{ ppm.}\]

\[\text{13C NMR} \ (126 \text{ MHz, CDCl}_3): \delta = 188.6 \text{ (C-2), 152.8 (C-5), 147.9 (C-7a), 130.8 (C-4), 125.0 (C-6), 121.4 (C-7), 119.0 (C-3a), 54.3 (C-3), 23.1 (C-9, C-10), 15.5 (C-8) ppm.}\]

\[\text{IR (ATR): } \tilde{\nu} = 2964 \text{ (m), 2927 (w), 1574 (s), 1462 (m), 1446 (s), 1416 (m), 1376 (m), 1315 (w), 1245 (m), 1199 (m), 1083 (w), 1051 (w), 937 (w), 866 (m), 821 (vs), 707 (w), 677 (m), 634 (w), 537 (m) cm}^{-1}.\]

\[\text{HRMS (EI-TOF): } m/z (\%) : [M]^+ \text{ calcd for } [C_{11}H_{12}^{79}\text{BrN}]^+ 237.0153; \text{ found 237.0145 (98); calcd for } [C_{11}H_{12}^{81}\text{BrN}]^+ 239.0133; \text{ found 239.01411 (100); 231.99 (80) [M-CH}_3]^+; 170.97 (83) [M-C(CH}_3)_2C(CH}_3]^+}.\]

5-Bromo-1,2,3,3-tetramethyl-3H-indolium iodide (3a)

\[
\begin{align*}
\text{Br} & \quad \text{Me}^9 \\
6 & \quad 7a & \quad N^+ \\
5 & \quad 4 & \quad 3a \\
10 & \quad & \quad 2 \\
1 & \quad & \quad 8 \\
3 & \quad & \quad 9
\end{align*}
\]

5-Bromo-2,3,3-trimethyl-3H-indole (1.34 g 5.65 mmol) was dissolved in iodomethane (15.0 mL, 240 mmol) and heated to 45 °C for 9 h. After allowing the reaction mixture to cool to ambient temperature, the dispersion was diluted with Et₂O (1 × 15 mL), filtered and rinsed with Et₂O (1 × 15 mL) to yield 5-bromo-1,2,3,3-tetramethyl-3H-indolium iodide as light purple solid (1.87 g, 4.92 mmol, 87%).

\[\text{The } \text{1H NMR data are in agreement with reference[2]. Further data were not provided in this reference.}\]

SI-6
Melting point: $T = 245 \, ^\circ C$.

1H NMR (500 MHz, DMSO-d_6): $\delta = 8.16$ (s, 1H, H-4), 7.88-7.84 (m, 2H, H-6, H-7), 3.95 (s, 3H, H-8), 2.75 (s, 3H, H-9), 1.53 (s, 6H, H-10, H-11) ppm.

13C NMR (126 MHz, DMSO-d_6): $\delta = 196.6$ (C-2), 143.9 (C-3a), 141.4 (C-7a), 131.7 (C-7), 126.7 (C-4), 122.6 (C-5), 117.1 (C-6), 54.2 (C-3), 34.8 (C-8), 21.5 (C-10, C-11), 15.5 (C-9) ppm.

IR (ATR): $\tilde{\nu} = 3042$ (w), 2966 (m), 2926 (w), 2869 (w), 1628 (m), 1606 (m), 1583 (m), 1532 (m), 1460 (s), 1381 (m), 13042 (w), 2966 (m), 2926 (w), 2869 (w), 1628 (m), 1606 (m), 1583 (m), 1532 (m), 1381 (m).

HRMS (ESI-TOF): m/z (%): [M+H]$^+$ calcd for $[C_{12}H_{15}BrN]^+$ 252.0382; found 252.0382 (100); calcd for $[C_{12}H_{15}^{81}BrN]^+$ 254.0367; found 254.0362 (99).

5-iodo-2,3,3-trimethyl-3H-indole (8b)

4-iodophenylhydrazine (1.30 g, 5.55 mmol), 3-methyl-2-butanone (956 mg, 11.1 mmol) and dry glacial AcOH (30 mL) were heated to 130 °C under a nitrogen atmosphere for 3 h. After allowing the reaction mixture to cool to ambient temperature, the solvent was removed in vacuo and the residue was dissolved in Et$_2$O (150 mL) and water (100 mL) was added. After phase separation, the aqueous phase was extracted with n-hexane (2 x 100 mL) and Et$_2$O (1 x 100 mL). The combined organic phases were then washed with aqueous KOH solution (10%, 3 x 100 mL) and water (3 x 100 mL). After drying over MgSO$_4$, the solvent was removed and the remaining product was dried in vacuo to give a dark brown oil (1.35 g, 4.73 mmol, 85%).

1H NMR (500 MHz, CDCl$_3$): $\delta = 7.62$ (dd, $^3J = 8.1$ Hz, $^4J = 1.7$ Hz, 1H, H-6), 7.59 (d, $^4J = 1.7$ Hz, 1H, H-4), 7.29 (d, $^3J = 8.1$ Hz, 1H, H-7), 2.27 (s, 3H, H-8), 1.29 (s, 6H, H-9, H-10) ppm.

13C NMR (126 MHz, CDCl$_3$): $\delta = 188.6$ (C-2), 153.2 (C-5), 148.2 (C-7a), 136.9 (C-6), 130.8 (C-4), 121.9 (C-7), 90.2 (C-3a) 54.2 (C-3), 23.1 (C-9, C-10), 15.5 (C-8) ppm.

IR (ATR): $\tilde{\nu} = 3042$ (m), 2968 (s), 2931 (w), 2867 (s), 1572 (s), 1460 (s), 1445 (s), 1258 (s), 1200 (s), 878 (m), 861 (m), 820 (s), 805 (w) cm$^{-1}$.

HRMS (ESI-TOF): m/z (%): [M+H]$^+$ calcd for $[C_{11}H_{12}N+H]^+$ 286.0087; found 286.0091 (100).

a This compound has been prepared previously by different routes in yields of 79%[3], 81%[4], 96%[5] and 94%[6], respectively. 1H NMR data agree with reported values of references[4,6], but not with references[3,5]. 13C NMR data are in agreement with the reported values of references[3,5] references[4,6] did not provide 13C NMR data. HRMS and IR data were not reported by these references.
5-Iodo-1,2,3,3-tetramethyl-3H-indolium iodide (3b)

![Chemical Structure](image)

5-Iodo-2,3,3-trimethyl-3H-indole (1.35 g, 4.73 mmol) was dissolved in iodomethane (15.0 mL, 240 mmol) and heated to 45 °C for 15 h. After allowing the reaction mixture to cool to ambient temperature and filtration and washing with Et₂O (2 mL), the product was obtained as light brown solid (1.75 g, 4.09 mmol, 86%).

Melting point: \(T = 255 \) °C.

1H NMR (500 MHz, DMSO-\(d_6 \)): \(\delta = 8.28 \) (d, \(J = 1.5 \) Hz, 1H, \(H-4 \)), 7.99 (dd, \(J = 8.4 \) Hz, 1H, \(H-6 \)), 7.72 (d, \(J = 8.4 \) Hz, 1H, \(H-7 \)), 3.94 (s, 3H, \(H-8 \)), 2.74 (s, 3H, \(H-9 \)), 1.52 (s, 6H, \(H-10, H-11 \)) ppm.

13C NMR (126 MHz, DMSO-\(d_6 \)): \(\delta = 196.1 \) (C-2), 143.8 (C-3a), 141.9 (C-7a), 137.4 (C-6), 132.2 (C-4), 117.1 (C-7), 96.0 (C-5), 54.0 (C-3), 34.8 (C-8), 21.5 (C-10, C-11), 14.2 (C-9) ppm.

IR (ATR): \(\ddot{\nu} = 3057 \) (w), 2969 (w), 2926 (w), 1628 (m), 1605 (m), 1583 (m), 1463 (s), 1442 (m), 1411 (s), 1398 (s), 1317 (m), 1256 (m), 1134 (s), 984 (m), 937 (m), 862 (m), 817 (vs), 789 (s), 760 (m), 745 (m), 613 (m), 556 (s), 449 (m) cm\(^{-1}\).

HRMS (ESI-TOF): \(m/z \) (%): [M-I]\(^+\) calcd for [C\(_{12}\)H\(_{15}\)N]\(^+\) 300.0244; found 300.0244 (100).

5-Methoxy-2,3,3-trimethyl-3H-indole[8] (8c)

![Chemical Structure](image)

(4-Methoxy)-phenyl hydrazine hydrochloride (26) (10.0 g, 57.3 mmol) and 3-methyl-2-butanone (7) (4.93 g, 57.3 mmol) were dissolved in abs. EtOH (260 mL) and heated to reflux under a N\(_2\) atmosphere for 5 h. Then the solution was allowed to cool to 24 °C and was filtered through silica gel (eluent: EtOAc). The product 27 was obtained as reddish-brown viscous oil (8.44 g, 44.6 mmol, 78 %, Lit.[8] 76 %)

\[a\] This compound has been prepared previously by different routes in yields of 70%[7] and 74%[5]. \(^1\)H NMR data do agree with reported values of references[5,7]. \(^{13}\)C NMR data are in agreement with the reported values of reference[5]. Reference[7] did not provide \(^{13}\)C NMR data. HRMS and IR data were not reported by these references.

\[b\] \(^1\)H NMR, \(^{13}\)C NMR, HRMS and mp data are in agreement with reference[8]. IR data were not reported.
1H NMR (500 MHz, CDCl₃): δ = 7.42 (d, ³J = 8.3 Hz, 1H, H-7), 6.84 – 6.80 (m, 2H, H-4, H-6), 3.82 (s, 3H, H-11), 2.24 (s, 3H, H-8), 1.28 (s, 6H, H-9, H-10) ppm.

13C NMR (126 MHz, CDCl₃): δ = 185.9 (C-2), 158.1 (C-5), 147.5 (C-7a), 147.4 (C-3a), 120.2 (C-7), 112.2 (C-4), 108.3 (C-6), 55.8 (C-11), 53.9 (C-3), 23.4 (C-9, C-10), 15.4 (C-8) ppm.

IR (ATR): v = 3248 (w, b), 2961 (m), 2928 (m), 2864 (s), 2833 (s), 1713 (w), 1613 (m), 1580 (m), 1462 (m), 1380 (m), 1287 (s), 1212 (s), 1199 (s), 1178 (s), 1144 (m), 1068 (s), 1028 (s), 866 (m), 817 (s), 749 (m), 697 (w), 617 (m), 587 (m) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]⁺ calcd. for [C₁₂H₁₅NO]⁺ 189.1154; found 189.1154 (100); 174.10 (100) [M-CH₃]⁺.

5-Hydroxy-2,3,3-trimethyl-3H-indole[9] (8d)

5-Methoxy-2,3,3-trimethyl-3H-indole (3.00 g, 15.9 mmol) was dissolved in hydrobromic acid (48%, 53.0 mL, 477 mmol). After heating at 140 °C for 2 h, the solution was allowed to cool, and diluted with water (200 mL). Solid NaOH was added until the mixture reached pH = 8. The aqueous solution was extracted with DCM (4 x 100 mL). The combined organic layers were washed with brine (300 mL), dried over Na₂SO₄, filtered, and the solvent was removed in vacuo to yield 8 as a brown solid (2.46 g, 13.4 mmol, 79%, Lit.[9] 97%).

Melting point: T = 175 °C.

1H NMR (600 MHz, CDCl₃): δ = 7.32 (d, ³J = 8.3 Hz, 1 H, H-7), 6.85 (d, ⁴J = 2.3 Hz, 1H, H-4), 6.78 (dd, ³J = 8.3 Hz, ⁴J = 2.3 Hz, 1H, H-6), 2.26 (s, 3H, H-8), 1.28 (s, 6H, H-9, H-10) ppm.

13C NMR (151 MHz, CDCl₃): δ = 186.0 (C-2), 155.7 (C-5), 147.4 (C-7a), 145.2 (C-3a), 120.0 (C-7), 114.3 (C-6), 109.9 (C-4), 53.8 (C-3), 23.3 (C-9, C-10), 15.1 (C-8) ppm.

IR (ATR): v = 3248 (w, b), 2961 (m), 2928 (m), 2864 (s), 2833 (s), 1713 (w), 1613 (m), 1580 (m), 1462 (m), 1380 (m), 1287 (s), 1212 (s), 1199 (s), 1178 (s), 1144 (m), 1068 (s), 1028 (s), 866 (m), 817 (s), 749 (m), 697 (w), 617 (m), 587 (m) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]⁺ calcd. for C₁₁H₁₃NO⁺ 175.0997; found 175.0995 (95); 160.0 (100) [M-CH₃]⁺.

a This compound has also been prepared via a different route in a yield of 91%[8]. **1H NMR, 13C NMR, HRMS and mp data are in agreement with reference[8]. IR data were not reported. In reference[9], no analytical data were reported.
5-Hydroxy-1,2,3,3-tetramethyl-3H-indolium iodide[8] (3c)

5-Hydroxy-2,3,3-trimethyl-3H-indole (2.37 g, 13.5 mmol) was dissolved in iodomethane (25.0 mL, 400 mmol) in a nitrogen atmosphere and heated at 50 °C for 17 h. After allowing the reaction mixture to cool to ambient temperature, the dispersion was diluted with Et₂O (10 mL) and filtered. After drying in vacuo, 5-hydroxy-1,2,3,3-tetramethyl-3H-indolinium iodide was obtained as a brown solid (4.02 g, 12.7 mmol, 94%, Lit.[8] 64%) without further purification.

Melting point: T = 242 °C.

1H NMR (500 MHz, DMSO-d₆): δ = 10.24 (s, 1H, OH), 7.68 (d, 3J = 8.7 Hz, 1H, H-7), 7.12 (d, 4J = 2.3 Hz, 1H, H-4), 6.94 (dd, 3J = 8.7 Hz, 4J = 2.3 Hz, 1H, H-6), 3.90 (s, 3H, H-8), 2.67 (s, 3H, H-9), 1.47 (s, 6H, H-10, H-11) ppm.

13C NMR (126 MHz, DMSO-d₆): δ = 191.9 (C-2), 159.0 (C-5), 143.7 (C-3a), 134.1 (C-7a), 116.1 (C-7), 115.0 (C-6), 110.3 (C-4), 53.4 (C-3), 34.5 (C-8), 21.9 (C-10, C-11), 13.6 (C-8) ppm.

IR (ATR): ν = 3178 (m, b), 3023 (w), 2973 (w), 2873 (w), 2973 (w), 2961 (m), 1597 (m), 1495 (m), 1471 (m), 1356 (m), 1296 (s), 1194 (s), 1055 (w), 947 (w), 993 (w), 899 (m), 800 (s), 648 (s), 551 (m) cm⁻¹.

HRMS (ESI-TOF): m/z (%): [M-I]⁺ calcd. for [C₁₂H₁₆NO]⁺ 190.1226; found 190.1233 (100).

3-Bromo-2-hydroxybenzaldehyde (5a)

Anhydrous MgCl₂ (1.90 g, 20.0 mmol) and 2-bromophenol (1.73 g, 10.0 mmol) were dissolved in dry THF (50 mL), before dry TEA (2.8 mL, 2.02 g, 20.0 mmol) and paraformaldehyde (1.20 g, 40.0 mmol) were added. The reaction mixture was heated to 90 °C for 6 h. During this period, the color of the solution changed from white to yellow. After cooling to 22 °C, Et₂O (50 mL) was added and the organic phase was washed with hydrochloric acid (2 N, 2 x 50 mL) and water (2 x 50 mL). After phase

a 1H NMR, 13C NMR, HRMS and mp data are in agreement with reference[8]. IR data were not reported.
separation and drying over MgSO₄, the solvent was removed in vacuo and the crude product was dissolved in DCM/n-heptane (1/1, v/v 30 mL) and crystallized after removal of DCM at -25 °C. Drying in vacuo gave the 3-bromo-2-hydroxybenzaldehyde as colorless crystalline needles (1.48 g, 7.35 mmol, 73%).

Melting point: $T = 53$ °C.

¹H NMR (500 MHz, CDCl₃): $\delta = 11.61$ (d, $^5J = 0.5$ Hz, 1H, OH), 9.87 (s, 1H, H-7), 7.79 (ddd, $^3J = 7.9$ Hz, $^4J = 1.6$ Hz, $^5J = 0.5$ Hz, 1H, H-4), 7.55 (dd, $^3J = 7.7$ Hz, $^4J = 1.6$ Hz, 1H, H-6), 6.95 (at, $^3J = 7.8$ Hz, 1H, H-5) ppm.

¹³C NMR (126 MHz, CDCl₃): $\delta = 196.2$ (C-7), 158.3 (C-2), 140.2 (C-4), 133.1 (C-6), 121.5 (C-3), 120.9 (C-5), 111.4 (C-1) ppm.

IR (ATR): $\tilde{\nu} = 3071$ (w), 3022 (w), 2856 (m), 2755 (w), 1644 (vs), 1610 (s), 1568 (m), 1473 (m), 1436 (vs), 1383 (vs), 1339 (m), 1309 (m), 1291 (vs), 1268 (s), 1216 (vs), 1171 (vs), 1127 (vs), 1072 (s), 900 (s), 818 (s), 778 (s), 772 (vs), 666 (vs), 591 (vs) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C₇H₅₇⁹BrO₂]$^+$ 199.9473; found 199.9467 (68); calcd for [C₇H₅₈¹BrO₂]$^+$ 201.9453; found 201.94472 (67); 118.99 (100) [M-Br]$^+$.

3-Bromo-2-hydroxy-5-nitrobenzaldehyde (2a)

![Chemical Structure](image)

3-Bromo-2-hydroxybenzaldehyde (9.00 g, 44.8 mmol) was dissolved in glacial AcOH (225 mL) and cooled to 15 °C. A mixture of glacial AcOH and fuming nitric acid (1/1 v/v; 3.75 mL) was added over the course of 30 min while the internal temperature was kept at 15 °C. Then the reaction mixture was stirred at 15 °C for another 1 h. Subsequently, the cooling bath was removed and the reaction stirred for 18 h at 35 °C. After diluting the solution with water (200 mL), the formed yellow precipitate was filtered and washed with AcOH (20 mL). Subsequent crystallization from DCM/n-hexane (100 mL/100 mL) gave the product as yellow solid (6.47 g, 26.3 mmol, 59%).

Melting point: $T = 144$ °C.

¹H NMR (500 MHz, CDCl₃): $\delta = 12.23$ (s, 1H, OH), 9.98 (s, 1H, H-7), 8.69 (d, $^4J = 2.6$ Hz, 1H, H-4), 8.54 (d, $^4J = 2.6$ Hz, 1H, H-6) ppm.

¹³C NMR (126 MHz, CDCl₃): $\delta = 195.1$ (C-7), 163.1 (C-2), 140.8 (C-5), 134.6 (C-4), 128.4 (C-3), 119.6 (C-1), 112.5 (C-1) ppm.

IR (ATR): $\tilde{\nu} = 3300$ (w), 3022 (w), 2856 (m), 2755 (w), 1644 (vs), 1613 (s), 1537 (s), 1426 (s), 1339 (s), 1283 (s), 1210 (s), 1162 (s), 1096 (s), 947 (s), 918 (s), 902 (s), 759 (s), 742 (vs), 714 (vs), 694 (vs), 488 (m), 478 (m) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C₇H₅₇⁹BrNO₄]$^+$ 244.9324; found 244.9316 (100); calcd for [C₇H₅₈¹BrNO₄]$^+$ 246.9303; found 246.9296 (98); 216.94 (13) [M-CO]$^+$.
To a stirred solution of 2-iodophenol (15.0 g, 68.2 mmol) in dry THF (340 mL), anhydrous MgCl₂ (12.9 g, 136 mmol), dry TEA (18.9 mL, 13.8 g, 136 mmol) and paraformaldehyde (8.20 g, 273 mmol) were added under an atmosphere of dry nitrogen. The reaction mixture was heated to reflux for 12 h. The color of the reaction mixture changed from colorless via yellow to a reddish ochre. After cooling to 20 °C, Et₂O (200 mL) was added. After phase separation, the organic phase was washed with hydrochloric acid (2 N, 3 x 150 mL), water (1 x 150 mL) and brine (1 x 150 mL). The hydrochloric washings were combined and extracted with Et₂O (1 x 200 mL). The organic phases were combined and after drying over MgSO₄, the solvent was removed in vacuo. The residue was taken up with EtOAc (40 mL), crystallized at -20 °C and filtered. The filtrate was concentrated in vacuo and recrystallized another time from EtOAc (10 mL). The product was obtained as yellow crystals (8.20 g, 33.1 mmol, 49%, Lit.[10] 84%).

Melting point: T = 72 °C.

¹H NMR (500 MHz, CDCl₃): δ = 11.82 (s, 1H, OH), 9.77 (s, 1H, H-7), 8.00 - 7.98 (m, 1H, H-4), 7.58 (dd, ³J = 7.7 Hz, ⁴J = 1.6 Hz, 1H, H-6), 6.84 (at, ³J = 7.7 Hz, 1H, H-5) ppm.

¹³C NMR (126 MHz, CDCl₃): δ = 196.1 (C-7), 160.6 (C-2), 146.3 (C-4), 134.1 (C-6), 121.8 (C-3), 120.7 (C-5), 85.6 (C-1) ppm.

IR (ATR): ν = 3061 (w, b), 3022 (w), 2853 (m), 1639 (vs), 1603 (s), 1469 (m), 1431 (s), 1382 (s), 1296 (s), 1282 (s), 1264 (s), 1213 (s), 1170 (s), 1117 (vs), 892 (s), 730 (vs), 662 (vs), 585 (vs) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]⁺ calcd for [C₇H₅IO₂]⁺ 247.9334; found 247.9337 (100); 126.90 (15) [I]⁺; 92.03 (25) [M-I-CHO]⁺.

Hydroxy-3-iodo-5-nitrobenzaldehyde (2b)

¹H NMR, ¹³C NMR, IR and mp data are in agreement with reference[10]. HRMS data were not reported.
2-Hydroxy-3-iodobenzaldehyde (8.20 g, 33.1 mmol) was dissolved in glacial AcOH (160 mL) and cooled to 15 °C. A mixture of glacial AcOH and fuming nitric acid (1/1 \(v/v \); 5.52 mL) was added over the course of 30 min while the internal temperature was kept at 15 °C and then the reaction mixture was stirred at 15 °C for another 1 h. The solution turned dark red. Subsequently, the cooling bath was removed and the reaction stirred at 40 °C for 14 h. After diluting with water (160 mL), the solution was filtered. The filtrate was diluted with more water (160 mL) and filtered again. The combined precipitate were washed with Et\(_2\)O (30 mL), giving a yellow powder which was dried \textit{in vacuo} to obtain the product (3.80 g, 13.0 mmol, 39%).

Melting point: \(T = 150 ^\circ \text{C} \).

\(^1\text{H} \text{ NMR} \) (500 MHz, DMSO-\(d_6 \)): \(\delta = 10.09 \) (s, 1H, \(H-7 \)), 8.77 (d, \(^4J = 2.7 \) Hz, 1H, \(H-6 \)), 8.67 (d, \(^4J = 2.7 \) Hz, 1H, \(H-4 \)) ppm.

\(^{13}\text{C} \text{ NMR} \) (126 MHz, DMSO-\(d_6 \)): \(\delta = 194.5 \) (C-7), 164.7 (C-5), 140.9 (C-4), 139.5 (C-2), 128.5 (C-6), 120.9 (C-1), 89.1 (C-3) ppm.

\(\text{IR (ATR): } \tilde{\nu} = 3086 \) (m), 3071 (m), 2874 (w), 1653 (s), 1646 (s), 1527 (s), 1422 (s), 1341 (s), 1333 (vs), 1299 (s), 1282 (vs), 1270 (s), 1210 (s), 1155 (s), 1104 (s), 744 (vs), 713 (vs), 682 (vs), 486 (s) cm\(^{-1} \).

\(\text{HRMS (CI-TOF, methane): } m/z\text{ (%): } [M+H]^+ \text{ calcd for } [C_7H_4INO_4+H]^+ \text{ 293.9263; found 293.9267 (100); 308.0 (35) [M+CH}_4]^+ \).

\(2^\text{-Hydroxy-3-methoxy-5-nitrobenzaldehyde}[9] \text{ (5c) } \)

\(\alpha \)-Vanillin (30.0 g, 197 mmol) was dissolved in glacial AcOH (138 mL) and water (7 mL) and cooled to 15 °C. A mixture of glacial AcOH and fuming nitric acid (2/1 \(v/v \); 30 mL) was added over the course of 45 min at a temperature of 15 °C. The reaction mixture was stirred at 15 °C for another 90 min. Subsequently, the solution was diluted with water (300 mL).

The yellow precipitate which formed was filtered and washed with water (20 mL). After washing the precipitate with Et\(_2\)O (30 mL), it was dried \textit{in vacuo} to obtain the product as a yellow powder (21.6 g, 110 mmol, 56%, Lit.[9] 50%).

Melting point: \(T = 131 ^\circ \text{C} \).

\(^1\text{H} \text{ NMR} \) (500 MHz, DMSO-\(d_6 \)): \(\delta = 10.32 \) (s, 1H, \(H-7 \)), 8.09 (d, \(^4J = 2.7 \) Hz, 1H, \(H-6 \)), 7.92 (d, \(^4J = 2.7 \) Hz, 1H, \(H-4 \)), 3.99 (s, 3H, \(H-8 \)) ppm.

\(^1\text{H} \text{ NMR}, \text{ }^{13}\text{C} \text{ NMR}, \text{ HRMS spectroscopic and mp data are in agreement with reference[9]. IR data were not reported.} \)
13C NMR (126 MHz, DMSO-d_6): $\delta = 189.3$ (C-7), 156.4 (C-5), 149.1 (C-3), 139.4 (C-2), 121.6 (C-7), 115.7 (C-6), 110.3 (C-4), 56.8 (C-8) ppm.

IR (ATR): $\tilde{v} = 3168$ (w, b), 3093 (m), 1667 (s), 1520 (s), 1480 (s), 1447 (s), 1393 (s), 1340 (vs), 1267 (vs), 1199 (s), 1092 (vs), 953 (vs), 885 (s), 765 (s), 722 (vs), 581 (s) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C$_8$H$_7$NO$_5$]$^+$ 197.0324; found 197.0328 (100); 151.02 (42) [M-NO$_2$]$^+$.

2,3-Dihydroxy-5-nitrobenzaldehyde[9] (2c)

2-Hydroxy-3-methoxy-5-nitrobenzaldehyde (13.8 g, 70.0 mmol) was dissolved in hydrobromic acid (48%, 233 mL) and heated at 140 °C for 5 h. Subsequently, the solution was diluted with water (500 mL), cooled to 0 °C and filtered. The precipitate was washed with water (100 mL) and was dried in vacuo to yield 2,3-dihydroxy-5-nitrobenzaldehyde as brown powder without further purification (12.1 g, 66.3 mmol, 95%, Lit:[9] 86%).

Melting point: $T = 191$ °C.

1H NMR (500 MHz, DMSO-d_6): $\delta = 11.10$ (s, OH), 10.30 (s, 1H, H-7), 7.98 (d, 4J = 2.8 Hz, 1H, H-6), 7.78 (d, 4J = 2.8 Hz, 1H, H-4) ppm.

13C NMR (126 MHz, DMSO-d_6): $\delta = 189.8$ (C-7), 155.9 (C-2), 147.2 (C-3), 139.3 (C-5), 121.8 (C-1), 114.6 (C-6), 113.2 (C-4) ppm.

IR (ATR): $\tilde{v} = 3259$ (m, b), 3088 (m), 1663 (s), 1518 (s), 1456 (s), 1341 (vs), 1262 (vs), 1181 (vs), 950 (s), 903 (s), 754 (vs), 742 (vs), 595 (vs), 563 (vs), 542 (vs) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C$_7$H$_5$NO$_5$]$^+$ 183.0168; found 183.0172 (100); 168.98 (25) [M-O]$^+$.

5'8-Dibromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9a)

a 1H NMR, 13C NMR, HRMS and mp data are in agreement with reference[9]. IR data were not reported.

SI-14
5-Bromo-1,2,3,3-tetramethyl-3H-indolium iodide (1.00 g, 2.63 mmol), 3-bromo-2-hydroxybenzaldehyde (647 mg, 2.63 mmol) and dry piperidine (0.520 mL, 5.26 mmol) were dissolved in EtOH (45 mL) and heated to reflux under a nitrogen atmosphere for 5 h. After cooling down to -25 °C, the product had crystallized. The crude product was dissolved in a mixture of DCM (25 mL) and n-heptane (25 mL) and crystallized by removal of DCM under reduced pressure. The product was obtained as dark blue solid (979 mg, 2.04 mmol, 78%).

Melting point: $T = 252 \, ^{\circ}C$.

1H NMR (500 MHz, CD$_2$Cl$_2$, 300 K): $\delta = 8.28$ (d, $^4J = 2.6$ Hz, 1 H, H-5), 7.98 (d, $^4J = 2.6$ Hz, 1 H, H-7), 7.30 (dd, $^3J = 8.2$ Hz, $^4J = 1.9$ Hz, 1 H, H-6'), 6.95 (d, $^3J = 10.3$ Hz, 1 H, H-4), 6.47 (d, $^3J = 8.2$ Hz, 1 H, H-7'), 5.89 (d, $^3J = 10.3$ Hz, 1 H, H-3), 2.71 (s, 3 H, H-12'), 1.28 (s, 3 H, H-13'), 1.19 (s, 3H, H-14') ppm.

13C NMR (126 MHz, CD$_2$Cl$_2$, 300 K): $\delta = 156.4$ (C-8a), 147.3 (C-7'a), 141.6 (C-6), 139.1 (C-3'a), 130.9 (C-6'), 129.2 (C-7), 129.0 (C-4), 125.4 (C-4'), 122.4 (C-3), 122.1 (C-5), 120.2 (C-4a), 112.0 (C-5'), 109.8 (C-8), 109.2 (C-7'), 108.5 (C-2), 53.0 (C-3'), 29.2 (C-12'), 26.0 (C-14'), 20.1 (C-13') ppm.

IR (ATR): $\tilde{\nu} = 3101$ (w), 3072 (w), 2984 (w), 2936 (w), 1597 (s), 1507 (vs), 1440 (s), 1397 (s), 1086 (s), 886 (s), 871 (s), 852 (s), 822 (s), 801 (s), 772 (s), 745 (s), 729 (s), 696 (vs) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+ +$ calcd for $[\text{C}_{19}\text{H}_{16}\text{N}_{2}\text{Br}_{2}\text{O}_{3}]^+$ 477.9528; found 477.9515 (38); calcd for $[\text{C}_{19}\text{H}_{16}\text{N}_{2}\text{Br}_{2}\text{O}_{3}]^+$ 479.9507; found 479.9497 (75); calcd for $[\text{C}_{19}\text{H}_{16}\text{N}_{2}\text{Br}_{2}\text{O}_{3}]^+$ 481.9687; found 481.9500 (38); 237.00 (100) [M$-$(PhBrONO$_2$C$_2$H)]$^+$.

5'-Bromo-8-ido-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9b)

5-Bromo-1,2,3,3-tetramethyl-3H-indolium iodide (3.80 g, 10.0 mmol), 3-ido-2-hydroxybenzaldehyde (2.93 g, 10.0 mmol) and dry piperidine (1.17 g, 20.0 mmol) were dissolved in EtOH (170 mL) and heated to reflux under a nitrogen atmosphere for 4.5 h. After cooling to -20 °C, the product had crystallized and was filtered to be obtained as dark blue solid (2.66 g, 5.04 mmol, 50%).

Melting point: $T = 187 \, ^{\circ}C$

a The color suggests that the compound was obtained in the merocyanine form, but in CDCl$_3$, which was used for NMR spectroscopy, the spiropyran was detected.
1H NMR (600 MHz, CDCl$_3$, 300 K): $\delta = 8.48$ (d, $^4J = 2.6$ Hz, 1 H, H-5), 7.99 (d, $^4J = 2.6$ Hz, 1 H, H-7), 7.29 (dd, $^3J = 8.2$ Hz, $^4J = 2.0$ Hz, 1 H, H-6'), 7.18 (d, $^4J = 2.0$ Hz, 1 H, H-4'), 6.87 (d, $^3J = 10.3$ Hz, 1 H, H-4), 6.44 (d, $^3J = 8.2$ Hz, 1 H, H-7'), 5.84 (d, $^3J = 10.3$ Hz, 1 H, H-3), 2.67 (s, 3 H, H-12'), 1.28 (s, 3 H, H-13'), 1.20 (s, 3 H, H-14') ppm.

13C NMR (151 MHz, CDCl$_3$, 300 K): $\delta = 158.0$ (C-6), 146.8 (C-5'), 141.7 (C-8a), 138.5 (C-7'a), 134.8 (C-5), 130.6 (C-6'), 128.7 (C-4), 125.0 (C-4'), 122.5 (C-7), 121.8 (C-3), 118.5 (C-8), 112.0 (C-3'a), 108.9 (C-7'), 108.4 (C-2), 82.7 (C-4a), 52.4 (C-3'), 29.1 (C-12'), 25.8 (C-14'), 20.2 (C-13') ppm.

IR (ATR): $\tilde{\nu} = 3071$ (w), 2996 (w), 2960 (m), 2927 (w), 2853 (w), 1653 (w), 1599 (m), 1511 (s), 1479 (s), 1431 (s), 1333 (vs), 1275 (s), 1261 (m), 1208 (m), 1186 (m), 1110 (m), 1092 (s), 1071 (m), 1016 (s), 936 (s), 897 (s), 846 (s), 779 (m), 752 (s), 741 (s), 722 (s), 710 (s), 655 (s), 694 (m), 579 (m), 503 (m) cm$^{-1}$

HRMS (ESI-TOF): m/z (%): [M+H]$^+$ calcd for $[C_{19}H_{16}N_2BrIO_3+H]^+$ 526.9462; found 526.9473 (98); calcd for $[C_{19}H_{16}N_2^{81}BrIO_3+H]^+$ 528.9447; found 528.9452 (100).

5'-Bromo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9c)

5-Bromo-1,2,3,3-tetramethyl-3H-indolium iodide (3.80 g, 10.0 mmol), 2,3-dihydroxy-5-nitrobenzaldehyde (1.83 g, 10.0 mmol) and dry piperidine (1.17 g, 20.0 mmol) were dissolved in dry EtOH (170 mL) under a nitrogen atmosphere and heated to reflux for 4.5 h. After cooling to -20 °C, the product had crystallized and was filtered to be obtained as dark blue solid (3.68 g, 8.82 mmol, 88%).

Melting point: $T = 275$ °C.

1H NMR (500 MHz, DMSO-d_6, 300 K): $\delta = 10.18$ (s, 1 H, OH), 7.73 (d, $^4J = 2.7$ Hz, 1 H, H-5), 7.56 (d, $^4J = 2.7$ Hz, 1 H, H-7), 7.30-7.27 (m, 2 H, H-4', H-7'), 7.15 (d, $^3J = 10.3$ Hz, 1 H, H-4), 6.59 (dd, $^3J = 7.4$ Hz, $^4J = 2.5$ Hz, 1 H, H-6'), 5.93 (d, $^3J = 10.3$ Hz, 1 H, H-3), 2.67 (s, 3 H, H-12'), 1.21 (s, 3 H, H-13'), 1.11 (s, 3 H, H-14') ppm.

13C NMR (126 MHz, DMSO-d_6, 300 K): $\delta = 147.7$ (C-6), 146.8 (C-7'a), 144.7 (C-8), 139.9 (C-4a), 138.8 (C-3'a), 130.0 (C-6'), 128.6 (C-4), 124.7 (C-7'), 120.8 (C-3), 118.8 (C-8a), 113.6 (C-5), 110.9 (C-7), 110.2 (C-5'), 108.8 (C-4'), 105.4 (C-2), 51.9 (C-3'), 28.4 (C-12'), 25.4 (C-13'), 19.2 (C-14') ppm.

a The color suggests that the compound was obtained in the merocyanine form, but in DMSO, which was used for NMR spectroscopy, the spiropyran was detected.
IR (ATR): ʋ = 3214 (m, b), 3082 (w), 2976 (w), 1615 (w), 1590 (m), 1568 (m), 1510 (s), 1432 (s), 1400 (s), 1287 (s), 1190 (vs), 1171 (vs), 877 (vs), 789 (vs), 746 (vs), 539 (vs), 459 (vs) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]+ calcd for [C₁₉H₁₇N₂BrO₄]⁺ 416.0372; found 416.0365 (51); calcd for [C₁₉H₁₇N₂BrO₄]⁺ 418.0351; found 418.0345 (50); 237.00/239.00 (100/98) [M-(PhO₂HNO₂C₂H₂)]⁺.

5'-Bromo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9j)

Trifluoromethanesulfonic anhydride (2.85 g, 10.0 mmol) was added to a solution of 5'-bromo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (3.50 g, 8.39 mmol) and anhydrous pyridine (2.6 mL) in anhydrous DCM (33 mL) over the course of 10 min at 0 °C under a nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 1.5 h, the cooling bath was removed and the reaction mixture stirred at 24 °C for 1 h before heating it to 40 °C for 2 h. The reaction mixture was purified by filtration through silica gel (elucent: EtOAc) and after removal of the solvent in vacuo, the residue was dissolved in toluene (20 mL) and dried in vacuo again to remove remaining pyridine as azeotropic mixture to give the product as dark blue solid (3.42 g, 6.22 mmol, 74%).

Melting point: T = 195 °C.

¹H NMR (500 MHz, CDCl₃, 300 K): δ = 8.06 (d, 4J = 2.6 Hz, 1H, H-5), 7.99 (d, 4J = 2.6 Hz, 1H, H-7), 7.29 (dd, 3J = 8.2 Hz, 4J = 2.0 Hz, 1H, H-6'), 7.17 (d, J = 2.0 Hz, 1H, H-4'), 7.01 (d, J = 10.5 Hz, 1H, H-4), 6.43 (d, 3J = 8.2 Hz, 1H, H-7'), 5.98 (d, 3J = 10.5 Hz, 1H, H-3), 2.72 (s, 3H, H-12'), 1.31 (s, 3H, H-13'), 1.22 (s, 3H, H-14') ppm.

¹³C NMR (126 MHz, CDCl₃, 300 K): δ = 151.7 (C-6), 146.3 (C-7'a), 140.0 (C-8), 137.9 (C-3'a), 135.3 (C-4'a), 130.7 (C-6'), 128.2 (C-4), 124.9 (C-4'), 122.5 (C-3),

a The color suggested that the compound was obtained in the merocyanine form, but in CDCl₃, which was used for NMR spectroscopy, a mixture of spiropyran:merocyanine was detected in a ratio of 1:0.14 (in the plotted spectrum, 5 peaks of the merocyanine species which do not overlay with spiropyran peaks were integrated).

b The carbon atom of the trifluoromethanesulfonic ester (C-9) was not detectable via ¹³C NMR spectroscopy, due to the large coupling constant of approx. 400 Hz, the quadruplet peaks are expected to be distributed over a range of 13 ppm and be lower in their intensity.
122.0 (C-5), 120.8 (C-8a), 119.0 (C-7), 112.2 (C-5’), 109.0 (C-2), 108.9 (C-7’), 52.6 (C-3’), 28.7 (C-12’), 26.0 (C-14’), 19.7 (C-13’) ppm.

\(^{19}\text{F NMR}\) \((471\text{ MHz}, \text{CDCl}_3, 300\text{ K})\): \(^{\delta} = -73.8\text{ ppm}\).\(^a\)

IR (ATR): \(^{\nu} = 3098\text{ (w), 2969\text{ (w), 2938\text{ (w), 2871\text{ (w), 1604\text{ (w}, 1517\text{ (m), 1475\text{ (m), 1416\text{ (m), 1336\text{ (s), 1281\text{ (s), 1215\text{ (vs), 1132\text{ (s), 1039\text{ (s), 809\text{ (vs), 729\text{ (vs}, 574\text{ (s), 495\text{ (s) cm}^{-1}}.\(^b\)

HRMS (EI-TOF): \(m/z\) (%): \([M]^+\) calcd for \([C_{20}H_{16}N_2^{79}\text{Br}\text{F}_3\text{O}_6\text{S}]^+\) 547.9865 found 547.9857 (40); calcd for \([C_{20}H_{16}N_2^{81}\text{Br}\text{F}_3\text{O}_6\text{S}]^+\) 549.9844; found 549.9839 (42); 417.02 (100) \([\text{M}-(\text{SO}_2\text{CF}_3)]^+\).

5’-Iodo-8-bromo-1’,3’,3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline] (9d)

5-iodo-1,2,3,3-tetramethyl-3H-indolium iodide (1.12 g, 2.63 mmol), 3-bromo-2-hydroxybenzaldehyde (647 mg, 2.63 mmol) and dry piperidine (0.520 mL, 5.26 mmol) were dissolved in EtOH (45 mL) and heated to reflux under a nitrogen atmosphere for 5 h. After cooling down to -20 °C, the product had crystallized and was filtered to be obtained as dark brown solid (1.09 g, 2.07 mmol, 79%).

Melting point: \(T = 228\text{ °C}.\)

\(^1\text{H NMR}\) \((500\text{ MHz}, \text{CD}_3\text{Cl}, 300\text{ K})\): \(^{\delta} = 8.28\text{ (d, }^{4}J = 2.5\text{ Hz, H-5}), 7.95\text{ (d, }^{4}J = 2.5\text{ Hz, 1H, H-5}), 7.47\text{ (dd, }^{3}J = 8.1\text{ Hz, }^{4}J = 1.4\text{ Hz, 1H, H-6’}), 7.32\text{ (d, }^{4}J = 1.4\text{ Hz, 1H, H-4’}), 6.91\text{ (d, }^{3}J = 10.3\text{ Hz, 1H, H-4}), 6.35\text{ (d, }^{3}J = 8.1\text{ Hz, 1H, H-7}), 5.86\text{ (d, }^{3}J = 10.3\text{ Hz, 1H, H-3}), 2.71\text{ (s, H-12’), 1.27\text{ (s, 3H, H-13’), 1.19\text{ (s, 3H, H-14’) ppm.}\(^a\)

\(^{13}\text{C NMR}\) \((126\text{ MHz}, \text{CD}_3\text{Cl}, 300\text{ K})\): \(^{\delta} = 155.9\text{ (C-8a), 147.4\text{ (C-7a’), 141.1\text{ (C-6), 138.8\text{ (C-3a’), 136.7\text{ (C-6’), 130.6\text{ (C-4’), 129.0\text{ (C-7), 128.4\text{ (C-4), 122.0\text{ (C-3), 121.6\text{ (C-5), 119.4\text{ (C-4a), 109.6\text{ (C-8), 109.6\text{ (C-7), 107.7\text{ (C-2), 81.3\text{ (C-5’), 52.4\text{ (C-3’), 29.0\text{ (C-12’), 25.9\text{ (C-14’), 20.1\text{ (C-13’) ppm.}\(^a\)

IR (ATR): \(^{\nu} = 3081\text{ (w), 3066\text{ (w), 2965\text{ (w), 2925\text{ (w), 1661\text{ (w), 1591\text{ (s), 1513\text{ (s), 1442\text{ (m), 1399\text{ (m), 1265\text{ (vs), 1201\text{ (vs), 1171\text{ (s), 1115\text{ (s), 1078\text{ (s), 962\text{ (s), 810\text{ (s), 790\text{ (s), 774\text{ (s), 747\text{ (s), 727\text{ (s), 697\text{ (s), 662\text{ (s) cm}^{-1}}.\(^b\)

HRMS (EI-TOF): \(m/z\) (%): \([M]^+\) calcd for \([C_{19}H_{16}N_2^{79}\text{Br}^{127}\text{IO}_3]^+\) 525.9389; found 525.9411 (61); calcd for \([C_{19}H_{16}N_2^{81}\text{Br}^{127}\text{IO}_3]^+\) 527.9369; found 527.9394 (60); 285.00 (100) \([\text{M}-(\text{PhIONO}_2\text{C}_2\text{H})]^+\).

\(^a\) The \(^{19}\text{F NMR}\) spectrum of this compound was obtained without adding an internal standard.
5',8-Diiodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9e)

5-iodo-1,2,3,3-tetramethyl-3H-indolium iodide (3.42 g, 8.00 mmol), 3-iodo-2-hydroxybenzaldehyde (2.33 g, 8.00 mmol) and dry piperidine (1.60 mL, 16.0 mmol) were dissolved in dry EtOH (150 mL) and heated to reflux under a nitrogen atmosphere for 3 h. After cooling down to -30 °C, the product had crystallized. The crude product was dissolved in a mixture of acetone (25 mL) and n-heptane (25 mL) and crystallized by removal of acetone under reduced pressure. The product was obtained as dark violet solid (3.08 g, 5.36 mmol, 67%).

Melting point: \(T = 231 \, ^\circ\text{C} \).

\(^1\text{H} \) NMR (500 MHz, CD\(_3\)Cl, 300 K): \(\delta = 8.48 \) (d, \(^4J = 2.6 \, \text{Hz}, 1\text{H}, \text{H}-5\)), 7.99 (d, \(^4J = 2.6 \, \text{Hz}, 1\text{H}, \text{H}-7\)), 1.27 (s, 3H, H-13'), 1.20 (s, 3H, H-14') ppm.

\(^{13}\text{C} \) NMR (126 MHz, CD\(_3\)Cl, 300 K): \(\delta = 157.9 \) (C-8a), 147.2 (C-7'a), 141.4 (C-6'), 138.7 (C-3'a), 136.5 (C-6'), 134.7 (C-7), 130.4 (C-4'), 128.5 (C-4), 122.4 (C-5), 121.6 (C-3), 118.3 (C-2), 109.5 (C-7'), 108.0 (C-4a), 82.6 (C-8), 81.2 (C-5'), 52.1 (C3'), 28.9 (C-12'), 25.6 (C-14'), 20.1 (C-13') ppm.

IR (ATR): \(\tilde{\nu} = 3083 \) (w), 3054 (w), 2983 (w), 2958 (w), 1583 (s), 1515 (s), 1497 (s), 1477 (m), 1444 (m), 1390 (m), 1282 (vs), 1265 (vs), 1203 (vs), 1173 (vs), 1081 (vs), 948 (vs), 810 (s), 726 (s), 681 (s), 489 (s) cm\(^{-1}\).

HRMS (EI-TOF): \(m/z \) (%): [M]\(^+\) calcld for [C\(_{19}\)H\(_{16}\)N\(_2\)I\(_2\)O\(_3\)]\(^+\) 573.9250; found 573.9241 (80); 283.99 (100) iu\(^+\).

5'-Iodo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9f)

Iodoindoliniumiodide (1.12 g, 2.63 mmol), 2, 3-dihydroxybenzaldehyde (482 mg, 2.63 mmol, 1 eq) and dry piperidine (0.520 mL, 5.26 mmol) were dissolved in dry EtOH (25 mL) and heated to reflux under a nitrogen atmosphere for 4.5 h, followed

\(^a\) The \(^{13}\text{C} \) NMR spectroscopic signal of the atom 4a was only observed and assigned by a \(^1\text{H}/^{13}\text{C} \) HMBC experiment. The signal's intensity in the \(^1\text{H}\) decoupled \(^{13}\text{C} \) NMR is too low for an assignment.
by stirring at 20 °C for 16 h. After crystallization at -30 °C, the product was obtained as dark purple solid (1.09 g, 2.33 mmol, 89%).

Melting point: T = 240 °C.

1H NMR (500 MHz, DMSO-d_6, 300 K): $\delta = 7.72$ (d, $^4J = 2.7$ Hz, 1H, H-5), 7.56 (d, $^4J = 2.7$ Hz, 1H, H-7), 7.44 (dd, $^3J = 8.1$ Hz, $^4J = 1.7$ Hz, 1H, H-6'), 7.41 (d, $^4J = 1.7$ Hz, 1H, H-4'), 7.14 (d, $^3J = 10.4$ Hz, 1H, H-4), 6.49 (d, $^3J = 8.1$ Hz, 1H, H-7'), 5.92 (d, $^3J = 10.4$ Hz, 1H, H-3), 2.66 (s, 3H, H-12'), 1.19 (s, 3H, H-13'), 1.10 (s, 3H, H-14') ppm.

13C NMR (126 MHz DMSO-d_6, 300 K): $\delta = 147.8$ (C-6), 147.4 (C-7'a), 144.7 (C-8a), 139.9 (C-8a), 139.1 (C-3'a), 135.9 (C-6'), 130.0 (C-4'), 128.6 (C-4), 120.8 (C-3'), 118.8 (C-8a), 113.6 (C-5), 110.9 (C-7), 109.6 (C-7'), 105.3 (C-2), 80.6 (C-5'), 51.8 (C-3'), 28.3 (C-12'), 25.2 (C-14'), 19.2 (C-13') ppm.

IR (ATR): $\tilde{v} = 3219$ (w, b), 3082 (w), 2973 (w), 2932 (w), 1615 (m), 1588 (m), 1568 (m), 1509 (s), 1431 (s), 1399 (s), 1283 (s), 1211 (s), 1189 (vs), 1168 (vs), 1113 (vs), 1048 (vs), 957 (vs), 876 (vs), 789 (vs), 745 (s), 663 (s), 536 (s), 458 (s) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C$_{19}$H$_{17}$N$_2$C$_2$I$_{127}$IO$_4$]$^+$ 464.0233; found 464.0217 (80); 285.00 (100) [M-(PhO$_2$HNO$_2$C$_2$H)]$^+$.

5'-Iodo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9k)

Trifluoromethanesulfonic anhydride (367 mg, 0.22 µL, 1.30 mmol) was added to a solution of 8-hydroxy-5'-ido-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (464 mg, 1.00 mmol) and anhydrous pyridine (396 mg, 400 µL, 5.00 mmol) in anhydrous DCM (10 mL) over the course of 10 min at 0 °C under a nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 1.5 h, the cooling bath was removed and the reaction mixture stirred at 20 °C for 1 h before heating it to reflux for 2 h. The reaction mixture was purified by filtration through silica gel (eluent: EtOAc) and after removal of the solvent in vacuo, the residue was dissolved in toluene (20 mL) and dried in vacuo again to remove remaining pyridine as azeotropic mixture. The crude product was dissolved in a mixture of DCM (20 mL) and n-
heptane (20 mL) and crystallized by removal of DCM under reduced pressure. The product was obtained as orange solid (335 mg, 561 µmol, 56%).

Melting point: $T = 205 ^\circ C$.

1H NMR (500 MHz, CD$_2$Cl$_2$, 300 K): $\delta = 8.05$ (d, $^4J = 2.6$ Hz, 1H, H-7), 7.99 (d, $^4J = 2.6$ Hz, 1H, H-5), 7.48 (dd, $^3J = 8.2$ Hz, $^4J = 1.7$ Hz, 1H, H-6'), 7.33 (d, $^4J = 1.7$ Hz, 1H, H-4'), 7.01 (d, $^3J = 10.5$ Hz, 1H, H-4), 6.35 (d, $^3J = 8.2$ Hz, 1H, H-7'), 5.97 (d, $^3J = 10.5$ Hz, 1H, H-3), 2.72 (s, 3H, H-12'), 1.30 (s, 3H, H-13'), 1.21 (s, 3H, H-14') ppm.

^{13}C NMR (126 MHz, CD$_2$Cl$_2$, 300 K): $\delta = 151.7$ (C-8a), 146.9 (C-7'a), 140.0 (C-6), 138.3 (C-3'a), 136.7 (C-6'), 135.3 (C-8), 130.4 (C-4'), 128.1 (C-4), 122.5 (C-3), 122.0 (C-5), 120.8 (C-4a), 119.0 (C-7), 109.6 (C-7'), 108.8 (C-2), 81.5 (C-5'), 52.5 (C-3'), 28.7 (C-12'), 26.0 (C-14'), 19.7 (C-13') ppm.

IR (ATR): $\tilde{\nu} = 3097$ (w), 2976 (w), 2936 (w), 2872 (w), 1601 (m), 1515 (s), 1422 (s), 1336 (s), 1280 (s), 1233 (s), 1213 (vs), 1181 (s), 1133 (s), 1081 (s), 1039 (s), 952 (s), 899 (s), 881 (s), 815 (s), 806 (vs), 743 (s), 728 (vs), 593 (s), 497 (s) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for [C$_{20}$H$_{16}$N$_2$]127IF$_3$O$_6$S$^+$ 595.9726; found 595.9721 (60); 463.00 (100) [M-(SO$_2$CF$_3$)]$^+$.

5'-Hydroxy-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9g)

5'-Hydroxy-1,2,3,3-tetramethyl-3H-indolium iodide (834 mg, 2.63 mmol), 3-bromo-2-hydroxybenzaldehyde (647 mg, 2.63 mmol) and dry piperidine (0.52 mL, 5.26 mmol) were dissolved in dry EtOH (45 mL) and heated to reflux under a nitrogen atmosphere for 3 h. After cooling down to -30 °C, the product had crystallized and was filtered to be obtained as dark brown solid (990 mg, 2.37 mmol, 90%). 1H NOESY NMR experiments confirmed the species present in solution (DMSO-d_6, HCl) as merocyanine form in the trans conformation; likely in its protonated form.

Melting point: $T = 268 ^\circ C$.

1H NMR (500 MHz, DMSO-d_6, 300 K): $\delta = 8.82$ (d, $^4J = 2.7$ Hz, 1H, H-5), 8.41-8.35 (m, 2H, H-4, H-7), 7.67 (d, $^3J = 8.8$ Hz, 1H, H-7'), 7.62 (d, $^3J = 16.4$ Hz, 1H, H-3), 7.13 (d, $^4J = 2.3$ Hz, 1H, H-4'), 7.02 (dd, $^3J = 8.8$ Hz, $^4J = 2.3$ Hz, 1H, H-6'), 4.06 (s, 3H, H-12'), 1.62 (s, 6H, H-13', H-14') ppm.

a The carbon atom of the trifluoromethanesulfonic ester (C-9) was not detectable via ^{13}C NMR spectroscopy. Due to the large coupling constant of approx. 400 Hz, the quadruplet peaks are expected to be distributed over a range of 13 ppm and be decreased in their intensity.
13C NMR (126 MHz DMSO-d6, 300 K): δ = 179.0 (C-2'), 161.0 (C-5'), 160.4 (C-9), 147.0 (C-3a'), 143.8 (C-4), 141.5 (C-6), 134.5 (C-7a'), 131.4 (C-7), 125.5 (C-4a), 124.6 (C-5), 117.7 (C-7'), 117.0 (C-3), 116.7 (C-6'), 114.8 (C-8), 110.7 (C-4'), 52.8 (C-3'), 36.0 (C-12'), 26.1 (C-13', C-14') ppm.

IR (ATR): ν = 3166 (w,b), 3094 (w), 2989 (w), 2971 (w), 1748 (s), 1673 (s), 1647 (s), 1468 (s), 1368 (s), 1283 (vs), 1254 (vs), 1202 (vs), 1084 (vs), 956 (s), 833 (s), 692 (s), 626 (s), 552 (m) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]+ calcd for [C19H17N2BrO4]+ 416.0351; found 416.0342 (30); 175.09 (100) [M-(PhOBrNO2C2H)]⁺.

5'-Hydroxy-8-iodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9h)

5-Hydroxy-1,2,3,3-tetramethyl-3H-indolium iodide (834 mg, 2.63 mmol), 3-iodo-2-hydroxybenzaldehyde (771 mg, 2.63 mmol) and dry piperidine (0.520 mL, 5.26 mmol) were dissolved in dry EtOH (45 mL) and heated to reflux under a nitrogen atmosphere for 3 h. After cooling down to -20 °C, the product had crystallized and was filtered to be obtained as dark solid (1.08 g, 2.32 mmol, 88%).

Melting point: T = 259 °C.

1H NMR (500 MHz, DMSO-d6, 300 K): δ = 8.68 (d, J = 3.0 Hz, 1H, H-5), 8.45 (d, J = 3.0 Hz, 1H, H-7), 8.36 (d, J = 15.5 Hz, 1H, H-4), 8.24 (d, J = 15.5 Hz, 1H, H-3), 7.57 (d, J = 8.7 Hz, 1H, H-7'), 7.11 (d, J = 2.2 Hz, 1H, H-4'), 6.92 (dd, J = 8.7 Hz, J = 2.2 Hz, 1H, H-6'), 3.88 (s, 3H, H-12'), 1.70 (s, 6H, H-13', H-14') ppm.

13C NMR (126 MHz DMSO-d6, 300 K): δ = 179.3 (C-2'), 174.8 (C-8a), 158.3 (C-5'), 151.7 (C-4), 145.1 (C-3a'), 135.6 (C-5), 134.1 (C-7a'), 132.7 (C-7), 131.8 (C-6), 118.5 (C-4a), 115.2 (C-6'), 115.0 (C-7'), 109.8 (C-4'), 109.0 (C-3), 99.8 (C-8), 50.9 (C-3'), 33.3 (C-12'), 26.2 (C-13', 14') ppm.

IR (ATR): ν = 3112 (m, b), 2974 (w), 1595 (m), 1578 (w), 1507 (s), 1475 (m), 1455 (m), 1397 (m), 1368 (s), 1283 (vs), 1254 (vs), 1202 (vs), 1084 (vs), 956 (s), 833 (s), 771 (m), 743 (s), 685 (vs), 648 (s), 552 (m) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]+ calcd for [C19H17N2HNO2]+ 464.0233; found 464.0217 (62); 175.10 (100) [M-(PhOBrNO2C2H)]⁺.
5',8-Dihydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline][11] and its corresponding merocyanine form (9i)

5-Hydroxy-1,2,3,3-tetramethyl-3H-indolium iodide (1.79 g, 5.64 mmol) and 2,3-dihydroxy-5-nitrobenzaldehyde (735 mg, 4.04 mmol) were dissolved in EtOH (55 mL) and piperidine (790 µL, 8.0 mmol) under a nitrogen atmosphere. The reaction mixture was heated to 80 °C for 3 h and cooled down to -20 °C subsequently. After filtration and washing with EtOH (30 mL, -20 °C), the wet filter cake was dried in vacuo to yield 5',8-dihydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] as dark green solid (1.41 g, 3.97 mmol, 98%, Lit.[11] 99%). 1H NOESY NMR experiments confirmed the species present in solution (DMSO-d6, HCl) as merocyanine form in the trans conformation; likely in its protonated form.

mp: > 300 °C

1H NMR (500 MHz, DMSO-d6, 300 K): δ = 8.51 (d, 4J = 2.7 Hz, 1 H, H-7), 8.31 (d, 3J = 16.5 Hz, 1 H, H-4), 7.96 (d, 4J = 2.7 Hz, 1 H, H-5), 7.74 (d, 3J = 16.6 Hz, 1 H, H-3), 7.72 (d, 3J = 8.7 Hz, 1 H, H-7'), 7.22 (d, 4J = 2.7 Hz, 1 H, H-4'), 7.07 (dd, 3J = 8.7 Hz, 4J = 2.7 Hz, 1 H, H-6'), 4.09 (s, 3H, H-12'), 1.70 (s, 6H, H-13', H-14') ppm.

13C NMR (126 MHz, DMSO-d6, 300 K): δ = 178.5 (C-4a), 160.1 (C-5'), 153.3 (C-6), 146.6 (C-3a'), 146.0 (C-8), 143.9 (C-4), 139.9 (C-8a), 133.9 (C-7a'), 121.2 (C-2'), 116.7 (C-7, C-7'), 115.9 (C-6'), 114.8 (C-3), 112.1 (C-5), 110.0 (C-4'), 51.9 (C-3'), 34.8 (C-12'), 25.9 (C-13', C-14') ppm.

IR (ATR): ν = 3203 (w, b), 2981 (w), 1596 (m), 1513 (m), 1454 (m), 1411 (m), 1359 (m), 1273 (s), 1244 (m), 1215 (s), 1180 (s), 1061 (s), 961 (s), 899 (m), 863 (s), 800 (s), 788 (m), 764 (m), 739 (s), 544 (s) cm⁻¹.

HRMS (EI-TOF): m/z (%): [M]+ calcd for [C19H18N2O5]+H+ 354.1216; found 354.1214 (40); 175.09 (100) [M-(PhO₂HNO₂C₂H₂)]⁺.

5'-Trifluoromethylsulfonyl-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9l)
Trifluoromethanesulfonic anhydride (500 mg, 1.77 mmol) was added to a solution of 5'-bromo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (417 mg, 1.00 mmol) and anhydrous pyridine (0.4 mL, 396 mg, 5 mmol) in anhydrous DCM (10 mL) over the course of 6 min at 0 °C. The reaction mixture was stirred at 0 °C for 1.5 h, before the cooling bath was removed and the reaction mixture stirred at 24 °C for 1 h followed by heating it to 40 °C for 2 h. After the reaction cooled down, the mixture was diluted with DCM (10 mL) and the remaining anhydride was deactivated by addition of water (20 mL). The phases were separated, the aqueous phase was extracted with DCM (2 x 10 mL) and the solvent was removed in vacuo. The remaining solid was dissolved in EtOAc (20 mL), which was then washed with hydrochloric acid (1 mol/L, 2 x 20 mL) and water (20 mL). After drying over MgSO₄ and removal of solvent, the crude product was dissolved in chloroform (20 mL) and the solution was filtered. Removal of the solvent gave the product as dark purple solid (239 mg, 435 µmol, 43%).

Melting point: $T = 87$ °C.

1H NMR (500 MHz, CDCl₃, 300 K): $\delta = 8.29$ (d, $J = 2.6$ Hz, 1H, H-7), 7.97 (d, $J = 2.6$ Hz, 1H, H-5), 7.09 (dd, $J = 8.5$ Hz, $J = 2.5$ Hz, 1H, H-6'), 6.97 (d, $J = 2.5$ Hz, 1H, H-4'), 6.94 (d, $J = 10.3$ Hz, 1H, H-4), 6.53 (d, $J = 8.5$ Hz, 1H, H-7'), 5.88 (d, $J = 10.3$ Hz, 1H, H-3), 2.74 (s, 3H, H-12'), 1.30 (s, 3H, H-13'), 1.22 (s, 3H, H-14') ppm.

13C NMR (126 MHz, CDCl₃, 300 K): $\delta = 155.8$ (C-8a), 147.2 (C-7'a), 143.2 (C-5'), 141.3 (C-4a), 138.2 (C-3'a), 129.1 (C-7), 128.7 (C-4), 121.7 (C-3), 121.6 (C-5), 120.9 (C-6'), 115.5 (H-4'), 109.6 (C-8), 108.0 (C-2), 107.5 (C-7'), 52.5 (C-3'), 29.1 (C-12'), 25.6 (C-14'), 19.9 (C-13') ppm.\(^a\)

19F NMR (471 MHz, CDCl₃, 300 K): $\delta = -78.6$ ppm.\(^b\)

IR (ATR): $\tilde{v} = 3091$ (w), 2966 (w), 2926 (w), 2852 (w), 1599 (w), 1520 (m), 1486 (m), 1419 (s), 1336 (s), 1269 (m), 1243 (s), 1205 (vs), 1139 (vs), 1091 (s), 1019 (m), 966 (m), 923 (m), 900 (s), 858 (m), 832 (s), 810 (s), 743 (s), 712 (s), 615 (s) cm$^{-1}$.

HRMS (EI-TOF): m/z (%): [M]$^+$ calcd for \([C_{20}H_{16}^{79}BrF_{3}N_{2}O_{6}S]^+\) 547.9865; found 547.9856 (20); calcd for \([C_{20}H_{16}^{81}BrF_{3}N_{2}O_{6}S]^+\) 549.9844; found 549.9846 (21); 415.03/417.03 (100) [M-(CF$_3$SO$_2$)]$^+$.\(^a\)

\(^a\) The carbon atom of the trifluoromethanesulfonic ester (C-9) was not detectable via 13C NMR spectroscopy, due to the large coupling constant of approx. 400 Hz, the quadruplet peaks are expected to be distributed over a range of 13 ppm and be lower in their intensity.

\(^b\) The 19F NMR spectrum of this compound was obtained without adding an internal standard.
Trifluoromethanesulfonic anhydride (635 mg, 1.3 mmol) was added to a solution of 5'-hydroxy-8-iodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (464 mg, 1.00 mmol) in anhydrous DCM (10 mL) over the course of 2 min at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, the cooling bath was removed and the reaction mixture stirred at 20 °C for 1 h before heating it to reflux for 2 h. The reaction mixture was purified by filtration through silica gel (Macherey-Nagel, eluent: EtOAc) and after removal of the solvent in vacuo, the residue was dissolved in toluene (20 mL) and dried in vacuo again to remove remaining pyridine as azeotropic mixture. The crude product was purified by column chromatography (silica gel, MeOH/EtOAc 5/95 v/v) to obtain a dark purple solid (259 mg, 434 µmol, 43%).

TLC (MeOH/EtOAc, 5/95): Rf = 0.15

Melting point: T = 85 °C.

1H NMR (600 MHz, CD$_2$Cl$_2$, 300 K):

Signals assigned to the spiropyran (closed) form: δ = 8.29 (d, 4J = 2.6 Hz, 1H, H-5), 7.99 (d, 4J = 2.6 Hz, 1H, H-7), 7.11 (dd, 3J = 8.5 Hz, 4J = 2.5 Hz, 1H, H-6'), 7.00 (d, 4J = 2.5 Hz, 1H, H-4'), 6.97 (d, 3J = 8.5 Hz, 1H, H-7'), 5.90 (d, 3J = 10.3 Hz, 1H, H-3), 2.76 (s, 3H, H-12'), 1.30 (s, 3H, H-13'), 1.21 (s, 3H, H-14') ppm.

Signals assigned to the merocyanine (open) form: δ = 9.12 (d, 4J = 2.6 Hz, 1H, H-5), 8.75 (4J = 2.6 Hz, 1H, H-7), 8.28 (d, 3J = 16.3 Hz, 1H, H-4), 7.86 (d, 3J = 8.8 Hz, 1H, H-7'), 7.83 (d, 3J = 16.3 Hz, 1H, H-3), 7.62 (dd, 3J = 8.8 Hz, 4J = 2.3 Hz, 1H, H-6'), 7.58 (d, 4J = 2.3 Hz, 1H, H-4'), 4.37 (s, 3H, H-12'), 1.88 (s, 3H, H-13'), 1.21 (s, 3H, H-14') ppm.

13C NMR (151 MHz, CD$_2$Cl$_2$, 300 K):a

Signals assigned to the spiropyran (closed) form: δ = 147.9 (C-8a), 147.5 (C-3'a), 143.4 (C-5'), 141.7 (C-6), 138.8 (C-7'a), 129.3 (C-5), 129.2 (C-4), 123.2 (C-8), 122.1 (C-7, C-3), 121.2 (C-6'), 120.1 (C-4a), 115.9 (C-4'), 108.6 (C-2) 107.7 (C-7'), 52.9 (C-3'), 30.3 (C-12'), 25.8 (C-14'), 20.0 (C-13') ppm.

Signals assigned to the merocyanine (open) form: δ = 184.7 (C-2'), 151.5 (C-5'), 148.1 (C-6), 146.9 (C-8a), 146.5 (C-3'a), 143.6 (C-4), 141.2 (C-7'a), 133.3 (C-7), ...

a The carbon atom of the trifluoromethanesulfonic ester (C-9) was not detectable via 13C NMR spectroscopy, due to the large coupling constant of approx. 400 Hz, the quadruplet peaks are expected to be distributed over a range of 13 ppm and be lower in their intensity.
124.7 (C-5), 124.1 (C-6'), 120.6 (C-3), 119.4 (C-8), 118.4 (C-7'), 117.4 (C-4'), 109.8 (C-4a), 54.7 (C-3'), 37.0 (C-12'), 25.9 (C-13', C-14') ppm.

IR (ATR): \(\tilde{\nu} = 3085 \text{ (w)}, 2973 \text{ (w)}, 1604 \text{ (m)}, 1538 \text{ (w)}, 1420 \text{ (s)}, 1342 \text{ (m)}, 1257 \text{ (vs)}, 1231 \text{ (vs)}, 1170 \text{ (vs)}, 1137 \text{ (vs)}, 1035 \text{ (vs)}, 870 \text{ (s)}, 832 \text{ (s)}, 765 \text{ (s)}, 632 \text{ (vs)}, 616 \text{ (vs)}, 600 \text{ (vs)}, 512 \text{ (vs)} \) cm\(^{-1}\).

HRMS (El-TOF): \(m/z \%: [M]^+ \text{ calcd for } [C_{20}H_{16}F_3^{127}IN_2O_6S]^+ 595.97258; \text{ found } 595.97047 \) (16); 463.07 (100) [M-(CF_3SO₂)]^+.

Bis-5',8-(trifluoromethylsulfonyl)-1',3',3'-trimethyl-6-nitrospi[chromene-2,2'-indoline] (9n)

![Chemical structure of Bis-5',8-(trifluoromethylsulfonyl)-1',3',3'-trimethyl-6-nitrospi[chromene-2,2'-indoline]](image_url)

Trifluoromethanesulfonic anhydride (1.69 g, 1.01 mL, 6.00 mmol) was added to a solution of 5',8-dihydroxy-1',3',3'-trimethyl-6-nitrospi[chromene-2,2'-indoline] (886 mg, 2.50 mmol) and anhydrous pyridine (791 mg, 0.81 mL, 10.0 mmol) in anhydrous DCM (10 mL) over the course of 10 min at 0 °C under a nitrogen atmosphere. The reaction mixture was stirred at 0 °C for 1.5 h, the cooling bath was removed and the reaction mixture stirred at 20 °C for 1 h before heating it to 50 °C for 2 h. The reaction mixture was filtered through silica gel (silica gel, eluent: EtOAc) and after removal of the solvent in vac., the residue was dissolved in toluene (20 mL) and dried in vac. again to remove remaining pyridine as azeotropic mixture. The crude product was purified by column chromatography (silica gel, eluent: TEA/DCM 5% v/v). After removal of the solvent in vacuo, the product was obtained as purple solid (1.37 g, 2.22 mmol, 89%).

TLC (silica gel, UV, TEA/DCM 5% v/v): \(R_f = 1.0 – 0.5 \)

Melting point: \(T = 96 \) °C

\(^1\)H NMR (500 MHz, CDCl₃, 300 K): \(\delta = 8.07 \text{ (d, } 4^J = 2.5 \text{ Hz, 1 H, H-5}), 8.00 \text{ (d, } 4^J = 2.5 \text{ Hz, 1 H, H-7}), 7.10 \text{ (dd, } 4^J = 2.5 \text{ Hz, } 3^J = 8.5 \text{ Hz, 1 H, H-6'}), 7.05 \text{ (d, } 3^J = 10.5 \text{ Hz, 1 H, H-4}), 6.99 \text{ (d, } 4^J = 2.5 \text{ Hz, 1 H, H-4'}), 6.53 \text{ (d, } 3^J = 8.5 \text{ Hz, 1 H, H-7'}), 6.01 \text{ (d, } 3^J = 10.5 \text{ Hz, 1 H, H-3}), 2.75 \text{ (s, 3H, H-12')}, 1.34 \text{ (s, 3H, H-13')}, 1.25 \text{ (s, 3H, H-14') ppm.}

\(^{13}\)C NMR (126 MHz, CDCl₃, 300 K): \(\delta = 151.5 \text{ (C-6)}, 146.8 \text{ (C-7'), 143.5 \text{ (C-5')}, 140.2 \text{ (C-8)}, 137.8 \text{ (C-3'), 135.1 \text{ (C-4a)}, 128.5 \text{ (C-4)}, 122.1 \text{ (C-7)}, 121.9 \text{ (C-3), 120.9

SI-26
(C-6'), 120.7 (C-8a), 119.6 (C-9), 119.1 (C-5), 117.5 (C-15’), 115.4 (C-4’), 108.9 (C-2), 107.7 (C-7’), 52.4 (C-3’), 28.8 (C-12’), 25.9 (C-13’), 19.5 (C-14’) ppm.\(^a\)

\(^{19}\text{F NMR}\) (471 MHz, CDCl\(_3\), 300 K): \(\delta = -72.7, -74.0\) ppm.

\(\text{IR (ATR): } \tilde{\nu} = 3104\) (w), 2966 (w), 1647 (w), 1615 (m), 1588 (w), 1531 (m), 1476 (m), 1416 (s), 1345(s), 1301 (m), 1223 (vs), 1209 (vs), 1136 (vs), 1103 (s), 1082 (s), 1047 (m), 1017 (m), 1001 (m), 955 (m), 942 (m), 905 (vs), 876 (s), 837 (s), 815 (vs), 772 (m), 730 (s), 657 (m), 620 (s), 595 (s), 587 (s), 503 (s) cm\(^{-1}\).

\(\text{HRMS (ESI-TOF): } m/z\) (%): [M+H]\(^+\) calcd for [C\(_{21}\)H\(_{16}\)N\(_2\)F\(_6\)O\(_9\)S\(_2\)+H]\(^+\) 619.0274; found 619.0278 (75); 641.01 (100) [M+Na]\(^+\).

\(^a\) The carbon atom of the trifluoromethanesulfonic ester (C-9) was not detectable via \(^{13}\text{C NMR}\) spectroscopy, due to the large coupling constant of approx. 400 Hz, the quadruplet peaks are expected to be distributed over a range of 13 ppm and be lower in their intensity.
UV/vis Measurements and Determination of Attenuation Coefficients by 1H NMR Spectroscopy

Sample Preparation
Of each new spiropyran, a stock solution was prepared in acetonitrile (HPLC-grade, 100 mL, circa 0.1 mmol/L). A defined volume (1 – 5 mL) was taken out of this solution and diluted to give a final volume of 10 mL to obtain the desired various sample concentrations (circa 10 – 50 µmol/L).

For the determination of the ratio between the spiropyran and merocyanine species in a dark environment by 1H NMR spectroscopy, 500 µL of the most concentrated solution (circa 50 µmol/L) and 50 µL of deuterated acetonitrile were combined.

Table I: Preparation of stock solutions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mol. Weight (g/mol)</th>
<th>Targeted conc. stock solution (mol/L)</th>
<th>Targeted weight (mg)</th>
<th>Actual sample weight (mg)</th>
<th>Volume stock solution (mL)</th>
<th>Conc. stock solution (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9a</td>
<td>480.16</td>
<td>1.00E-04</td>
<td>4.80</td>
<td>4.86</td>
<td>100</td>
<td>1.01E-04</td>
</tr>
<tr>
<td>9b</td>
<td>527.16</td>
<td>1.00E-04</td>
<td>5.27</td>
<td>5.65</td>
<td>100</td>
<td>1.07E-04</td>
</tr>
<tr>
<td>9c</td>
<td>417.26</td>
<td>1.00E-04</td>
<td>4.17</td>
<td>2.98</td>
<td>100</td>
<td>7.14E-05</td>
</tr>
<tr>
<td>9j</td>
<td>549.32</td>
<td>1.00E-04</td>
<td>5.49</td>
<td>5.91</td>
<td>100</td>
<td>1.08E-04</td>
</tr>
<tr>
<td>9d</td>
<td>527.16</td>
<td>1.00E-04</td>
<td>5.27</td>
<td>5.45</td>
<td>100</td>
<td>1.03E-04</td>
</tr>
<tr>
<td>9e</td>
<td>574.16</td>
<td>1.00E-04</td>
<td>5.74</td>
<td>4.35</td>
<td>100</td>
<td>7.58E-05</td>
</tr>
<tr>
<td>9f</td>
<td>464.26</td>
<td>1.00E-04</td>
<td>4.64</td>
<td>2.76</td>
<td>100</td>
<td>5.94E-05</td>
</tr>
<tr>
<td>9k</td>
<td>596.32</td>
<td>1.00E-04</td>
<td>5.96</td>
<td>6.91</td>
<td>100</td>
<td>1.16E-04</td>
</tr>
<tr>
<td>9g</td>
<td>417.26</td>
<td>1.00E-04</td>
<td>4.17</td>
<td>5.86</td>
<td>100</td>
<td>1.40E-04</td>
</tr>
<tr>
<td>9h</td>
<td>464.26</td>
<td>1.00E-04</td>
<td>4.64</td>
<td>3.76</td>
<td>100</td>
<td>8.10E-05</td>
</tr>
<tr>
<td>9l</td>
<td>549.32</td>
<td>1.00E-04</td>
<td>5.49</td>
<td>5.34</td>
<td>100</td>
<td>9.72E-05</td>
</tr>
<tr>
<td>9m</td>
<td>596.32</td>
<td>1.00E-04</td>
<td>5.96</td>
<td>6.86</td>
<td>100</td>
<td>1.15E-04</td>
</tr>
<tr>
<td>9n</td>
<td>618.47</td>
<td>1.00E-04</td>
<td>6.18</td>
<td>6.25</td>
<td>100</td>
<td>1.01E-04</td>
</tr>
</tbody>
</table>

Summarized Results
For all new spiropyrans, 5 different dilutions were investigated by UV/vis spectroscopy under the following conditions: (a) after illumination with green light (565 nm), until a photostationary state was reached, in which mostly spiropyran form was present; (b) after irradiation with UV light (365 nm), until a photostationary state was reached, in which the merocyanine forms are enriched; (c) after keeping the sample solutions dark for at least 24 hours, the measurement was carried out under red light (i.e. no absorption possible); (d) time dependent measurements after
PSS365; typically, 120 scans were taken with a time interval of less than 2 mina (e) time dependent measurements after PSS565, typically, 120 scans were taken with a time interval of 6 minb.

The graphs (a-c) contain a plot of the measured intensities at the absorption maxima and a linear fit; the results are summarized in table ii. Plots of time dependent measurements (d, e) contain a plot of the measured absorption at the maximum which corresponds to the merocyanine state and an exponential fit. These results are summarized in table iii.

For the determination of the ratio between merocyanine and spiropyran, 1H NMR spectra of the most concentrated samples from (c) were recorded and plotted in (f). The signals used to determine the ratio are marked with green (merocyanine) and orange (spiropyran) boxes. Table iv shows the obtained results.

a The intervals were: 2 min for 9a, 1 min for 9b, d, e, m, 15 s for 9c, f, l.
b For 9b and 9e, 2 min and 1 min were used, respectively.
Table ii: Absorption maxima and calculated attenuation coefficients from a linear fit (using a fixed intercept at 0;0) including errors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Wavelength of abs. max. (nm)</th>
<th>Attenuation (L(mol cm)^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SP form</td>
<td>MC form</td>
</tr>
<tr>
<td>9a</td>
<td>315</td>
<td>556</td>
</tr>
<tr>
<td>9b</td>
<td>306</td>
<td>559</td>
</tr>
<tr>
<td>9c</td>
<td>355</td>
<td>568</td>
</tr>
<tr>
<td>9j</td>
<td>308</td>
<td>536</td>
</tr>
<tr>
<td>9d</td>
<td>308</td>
<td>559</td>
</tr>
<tr>
<td>9e</td>
<td>314</td>
<td>561</td>
</tr>
<tr>
<td>9f</td>
<td>355</td>
<td>570</td>
</tr>
<tr>
<td>9k</td>
<td>311</td>
<td>538</td>
</tr>
<tr>
<td>9g</td>
<td>320</td>
<td>547</td>
</tr>
<tr>
<td>9h</td>
<td>320</td>
<td>549</td>
</tr>
<tr>
<td>9l</td>
<td>331</td>
<td>561</td>
</tr>
<tr>
<td>9m</td>
<td>335</td>
<td>557</td>
</tr>
<tr>
<td>9n</td>
<td>304</td>
<td>537</td>
</tr>
</tbody>
</table>
Table iii: The half-life times $t_{1/2}$ refer to samples, which, after illumination, were allowed to isomerize in the dark. The absorption maximum of merocyanine was plotted in dependence on time, before an exponential fit ($y = y_0 + A_1 e^{-x/t_1}$) was applied.

<table>
<thead>
<tr>
<th>Name</th>
<th>Decay after PSS (365 nm)</th>
<th>Decay after PSS (565 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_1 (min)</td>
<td>Std. error</td>
</tr>
<tr>
<td></td>
<td>Exp. fit</td>
<td>Exp. fit</td>
</tr>
<tr>
<td>9a</td>
<td>22.15155</td>
<td>0.00964</td>
</tr>
<tr>
<td>9b</td>
<td>16.54166</td>
<td>0.0599</td>
</tr>
<tr>
<td>9c</td>
<td>1.3287</td>
<td>0.00237</td>
</tr>
<tr>
<td>9j</td>
<td>n.n.</td>
<td>365.409</td>
</tr>
<tr>
<td>9d</td>
<td>20.75646</td>
<td>0.01001</td>
</tr>
<tr>
<td>9e</td>
<td>19.24909</td>
<td>0.19885</td>
</tr>
<tr>
<td>9f</td>
<td>1.73289</td>
<td>0.00153</td>
</tr>
<tr>
<td>9k</td>
<td>n.n.</td>
<td>300.356</td>
</tr>
<tr>
<td>9g</td>
<td>n.n.</td>
<td>411.942</td>
</tr>
<tr>
<td>9h</td>
<td>n.n.</td>
<td>392.056</td>
</tr>
<tr>
<td>9l</td>
<td>3.87585</td>
<td>0.01548</td>
</tr>
<tr>
<td>9m</td>
<td>00:00:00</td>
<td>n.n.</td>
</tr>
<tr>
<td>9n</td>
<td>81.52332</td>
<td>0.27588</td>
</tr>
</tbody>
</table>

a A decay measurement was not performed, because the concentration of merocyanine was lower at the PSS$_{365}$ compared to dark conditions. This is because the merocyanine form also absorbs at this wavelength, leading to the formation of the spiropyran form, an effect that is not present in the dark equilibrium.

b A decay measurement was not performed, because the concentration of merocyanine at the PSS$_{565}$ was the same compared to dark conditions.
Table iviv: Determination of the absolute attenuation coefficient ε_{MC} of merocyanine form by combined UV/vis and 1H NMR spectral analysis and calculation of the ratio between merocyanine and spiropyran forms in the photostationary state after irradiation with 365 nm for 30 sec.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Equilibrium in dark conditions</th>
<th>Photostationary state (365 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Attenuation (L(mol cm)$^{-1}$)</td>
<td>Ratio [MC]:[SP]</td>
</tr>
<tr>
<td></td>
<td>Slope (linear fit)</td>
<td>Std. error</td>
</tr>
<tr>
<td>9a</td>
<td>1858</td>
<td>37</td>
</tr>
<tr>
<td>9b</td>
<td>1082</td>
<td>15</td>
</tr>
<tr>
<td>9c</td>
<td>2424</td>
<td>26</td>
</tr>
<tr>
<td>9j</td>
<td>21876</td>
<td>335</td>
</tr>
<tr>
<td>9d</td>
<td>1576</td>
<td>10</td>
</tr>
<tr>
<td>9g</td>
<td>828</td>
<td>24</td>
</tr>
<tr>
<td>9f</td>
<td>2209</td>
<td>20</td>
</tr>
<tr>
<td>9k</td>
<td>23936</td>
<td>224</td>
</tr>
<tr>
<td>9h</td>
<td>31621</td>
<td>330</td>
</tr>
<tr>
<td>9l</td>
<td>15851</td>
<td>658</td>
</tr>
<tr>
<td>9m</td>
<td>336</td>
<td>1.5</td>
</tr>
<tr>
<td>9n</td>
<td>289</td>
<td>556</td>
</tr>
<tr>
<td>9n</td>
<td>6879</td>
<td>33</td>
</tr>
</tbody>
</table>
UV/vis Spectra and Corresponding 1H NMR Spectra

5’8-Dibromo-1’,3’,3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline] (9a)
5'-Bromo-8-iodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9b)
$5'$-Bromo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9c)
5'-Bromo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9j)
5'-lodo-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9d)
5',8-Diiodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9e)
5'-Iodo-8-hydroxy-1',3',3'-trimethyl-6-nitrospirow[chromene-2,2'-indoline] (9f)
5'-Iodo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9k)
5'-Hydroxy-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9g)
5'-Hydroxy-8-iodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9h)
5’-Trifluoromethylsulfonyl-8-bromo-1’,3’,3’-trimethyl-6-nitrospirop[chromene-2,2’-indoline] (9l)
5’-Trifluoromethylsulfonyl-8-iodo-1’,3’,3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline] (9m)
Bis-5’,8-((trifluoromethylsulfonyl)-1’,3’,3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline] (9n)
\[^1H \text{NMR and } ^{13}C\{^1H\} \text{ NMR Spectra} \]

5-Bromo-2,3,3-trimethyl-3H-indole (8a)
5-Bromo-1,2,3,3-tetramethyl-3H-indolium iodide (3a)
5-iodo-2,3,3-trimethyl-3H-indole (8b)
5-iodo-1,2,3,3-tetramethyl-3H-indolium iodide (3b)
5-Methoxy-2,3,3-trimethyl-3H-indole (8c)
5-Hydroxy-2,3,3-trimethyl-3H-indole (8d)
5-Hydroxy-1,2,3,3-tetramethyl-3H-indolium iodide (3c)
3-Bromo-2-hydroxybenzaldehyde (5a)
3-Bromo-2-hydroxy-5-nitrobenzaldehyde (2a)
2-Hydroxy-3-iodobenzaldehyde (5b)
2-Hydroxy-3-iodo-5-nitrobenzaldehyde (2b)
2-Hydroxy-3-methoxy-5-nitrobenzaldehyde (5c)
2,3-Dihydroxy-5-nitrobenzaldehyde (2c)
5'8-Dibromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9a)
5’-Bromo-8-iodo-1’,3’,3’-trimethyl-6-nitrospiro[chromene-2,2’-indoline] (9b)
5'-Bromo-8-hydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9c)
5'-Bromo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9j)
5'-ido-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9d)
5',8-Diiodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9e)
5'-Iodo-8-hydroxy-1',3',3'-trimethyl-6-nitrospirop[chromene-2,2'-indoline] (9f)
5'-Iodo-8-trifluoromethylsulfonyl-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9k)
5'-Hydroxy-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9g)
5'-Hydroxy-8-iodo-1',3',3'-trimethyl-6-nitrospirop[chromene-2,2'-indoline] (9h)
5',8-Dihydroxy-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline][11] (9l)
5'-Trifluoromethylsulfonyl-8-bromo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9l)
5'-Trifluoromethylsulfonyl-8-iodo-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9m)
Bis-5',8-(trifluoromethylsulfonyl)-1',3',3'-trimethyl-6-nitrospiro[chromene-2,2'-indoline] (9n)