
Peer reviewed version

Link to published version (if available):
10.1016/S0140-6736(16)30856-X

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Elsevier at http://www.sciencedirect.com/science/article/pii/S014067361630856X. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms
Title: The Perfect Storm: Incarceration and the High Risk Environment Perpetuating HIV, HCV and Tuberculosis Transmission in Eastern Europe and Central Asia

Authors: Frederick L. Altice 1
Lyuba Azbel 2
Jack Stone 3
Ellen Brooks-Pollock 3
Pavlo Smyrnov 4
Sergey Dvoryak 5
Faye S. Taxman 6
Nabila El-Bassel 7
Natasha K. Martin 8,3
Robert Booth 9
Heino Stover 10
Kate Dolan 11
Peter Vickerman 3

Affiliations: 1 Yale University, Schools of Medicine and Public Health
2 London School of Hygiene & Tropical Medicine
3 Bristol University
4 ICF International Alliance for Public Health
5 Ukrainian Institute on Public Health Policy
6 George Mason University
7 Columbia University
8 University of California San Diego
9 University of Colorado
10 University of Frankfurt
11 University of New South Wales

Contact: Frederick L. Altice, M.D., M.A.
135 College Street, Suite 323
New Haven, Connecticut, USA

Telephone: +1.203.737.2883
Facsimile: +1.203.737.4051
Contributions of Authors

FLA, LA, JS, PV, NM, EBP, HS, SD, NE, FT, PS, RB, NEB, and KD contributed shared responsibility in developing initial drafts and writing this manuscript.

LA, PS and FLA analysed the initial Ukraine datasets. PV, NM, JS, FLA, and EBP performed the modelling and were responsible for initial and final drafts of the modelling sections and the development of figures.

LA and FLA performed the initial literature search.

FLA, LA, JS, PV, NM, EBP, HS, SD, NE, FT, PS, RB, NEB, and KD revised each draft of this work critically for important intellectual content. All authors made substantial contributions to the design and approach, and approve the final version to be published.

Acknowledgements

The authors would like to acknowledge funding from the National Institutes on Drug Abuse (K24 DA017072 and R01 DA025943 for FLA; R01 DA033679 and R01 DA029910 for FLA, SD and LA; R01 DA037773 for NM and PV; R01 DA029010 for FST and R01 DA030768 for FLA and FST; and R01 DA026739 for RB), the University of California San Diego Center for AIDS Research (P30 AI036214 for NM), the Bill and Melinda Gates Foundation Modelling Consortium (PV), the National Drug and Alcohol Research Centre, University of New South Wales, Australia (KD), the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Evaluation of Interventions at University of Bristol (EBP and PV), and a PhD scholarship from the Engineering and Physical Sciences Research Council (JS).

The authors would also like to acknowledge Ehab Salah and Signe Rotberga from the United Nations Office on Drugs and Crime for assisting with the international survey of HIV prevention programs in prisoners in Eastern Europe and Central Asia, Chris Beyrer from Johns Hopkins University for this support and guidance and Paula Dellamura for administrative support.
Abstract

Despite global reductions in HIV incidence and mortality, the 15 countries of Eastern Europe and Central Asia (EECA) that gained independence from the Soviet Union in 1991 is the only region where both continue to rise. HIV transmission in EECA is fueled primarily by injection of opioids, with harsh criminalization of drug use that has resulted in extraordinarily high levels of incarceration. Consequently, people who inject drugs (PWID), including people with HIV, HCV and tuberculosis, are concentrated within prisons. Evidence-based primary and secondary HIV prevention using opioid agonist therapies (OAT) like methadone and buprenorphine maintenance therapies and needle/syringe programs (NSP) are available in five and three EECA countries, respectively, with none of them meeting recommended coverage levels. Similarly, antiretroviral therapy (ART) coverage, especially among PWID, is markedly under-scaled. Russia bans OAT and does not support NSP—with neither available in prisons—despite the country’s high incarceration rate and numbers of PWID and people living with HIV (PLH). Mathematical modelling for Ukraine suggests that high levels of incarceration in EECA countries enhances HIV transmission among PWID, with 28% to 55% of all new HIV infections over the next 15 years being attributable to heightened HIV transmission risk among currently and/or previously incarcerated PWID. Additional analyses also indicate that at least 6% of all incident TB cases and 75% of incident TB cases in PWID are due to incarceration. Interventions that reduce incarceration itself and effectively intervene with prisoners to screen, diagnose and treat addiction and HIV, HCV and tuberculosis are urgently needed to stem the multiple overlapping epidemics concentrated in prisons.
Key Messages

- Incarceration rates in Eastern Europe and Central Asia are among the highest in the world due to policies that concentrate people who use drugs and others at high risk for HIV, viral hepatitis and tuberculosis.

- Due to policies within this region, the prevalence of HIV, HCV and tuberculosis infection is several-fold higher than in the surrounding community.

- Analyses from Ukraine suggest that incarceration could be contributing up to half of all new HIV infections among people who inject drugs, and scaling up opioid agonist therapy within prisons and effectively transitioning them to the community would markedly reduce HIV transmission within this group.

- Similarly, strategies that reduce incarceration of people who inject drugs in Ukraine would greatly reduce the number of new tuberculosis cases, underscoring the importance of screening, treatment and continuity of care for prisoners with or at risk for tuberculosis.

- Armenia, Kyrgyzstan and Moldova have successfully introduced all 15 of the internationally-recommended HIV prevention strategies, including provision of opioid agonist therapy with methadone and needle and syringe programs – albeit inadequately scaled-to-need.
Introduction

The negative and mutually reinforcing nature of incarceration, substance use disorders (SUDs), blood-borne viruses like HIV and HCV, and tuberculosis (TB) is especially problematic in the 15 UNAIDS-designated countries of Eastern Europe and Central Asia (EECA) and results in a concentration and deleterious interaction between these co-morbid health and social conditions.\(^1\)\(^2\) EECA is now the only region where the number of new HIV infections have increased annually from 120,000 to 190,000 between 2010 and 2015, resulting in the number of people with HIV (PLH) increasing from 1.0 to 1.5 million.\(^3\) While new World Health Organization (WHO) guidelines recommend treatment for all PLH irrespective of CD4 count, coverage with antiretroviral therapy (ART) in the region is \(<10\%\)\(^4\) and occurs with suboptimal screening for diseases and suboptimal coverage of evidence-based HIV prevention strategies like opioid agonist therapies (OAT) with methadone or buprenorphine and needle/syringe programs (NSP).\(^5\)\(^6\)

In EECA, proscriptive policies that promote arrest of socially vulnerable individuals at increased risk for HIV, viral hepatitis and TB, like people who inject drugs (PWID), men-who-have-sex with men (MSM) and sex workers, result in a concentration of risk within prisons, which amplifies disease and leads to onward infection in the community post-release.\(^7\) These epidemics converge in the EECA region, where abrupt and far-reaching social, economic and political transitions since the dissolution of the Soviet Union in 1991 have resulted in poor public health consequences. Where such negatively reinforcing comorbidities exist, effective HIV prevention and treatment must address all problems simultaneously to have a noticeable impact.\(^1\) Yet, the HIV
response remains inadequate as HIV incidence and mortality continue to increase in EECA, despite a reduction worldwide.³

Although EECA countries are culturally and religiously distinct and underwent different political, economic and social trajectories since independence, they share socio-political, philosophical and organizational vestiges of the former Soviet Union, which now shape the evolving syndemics of mass incarceration, SUDs, HIV, HCV and TB. Aside from the high-income countries of Estonia, Lithuania and Latvia, the 12 other EECA countries are low/middle-income countries (LMIC). Following the Soviet Union’s collapse, in this setting of political and economic instability, heroin entered through new trade routes from Afghanistan.⁸⁹ Injected heroin increased and led to explosive HIV transmission among PWID, where the epidemic remains mostly concentrated today. Harsh drug policies and criminalization laws ensued targeting PWID, with resultant mass incarceration, prison overcrowding¹⁰ and high incarceration rates (five of the top 10 globally).¹¹ The concentration of PWID, PLH with compromised immune systems and individuals with TB in criminal justice systems (CJS) created especially high-risk environments for HIV and TB transmission.¹²⁻¹⁴ The crumbling health infrastructure, unaccustomed to implementing HIV and TB prevention and treatment in prison settings, disregarded human rights recommendations.

Data have not been comprehensively synthesized, however, to understand how the CJS contributes to the expanding HIV and related epidemics in EECA. Here, we describe how incarceration, HIV, HCV, TB and SUDs converge to produce drug-related harm by applying the risk environment framework.¹⁵ Our analyses aim to understand how individual HIV-risk behaviours are embedded in social processes using the risk
environment framework, specifically, incarceration within EECA.15,16 Further, mathematical modelling and statistical analyses are used to assess the degree to which incarceration contributes to HIV and TB transmission among PWID in Ukraine and assesses the effectiveness of evidence-based HIV prevention strategies in reducing the harms of incarceration.

METHODS

Comprehensive Review Search Strategy
We conducted a comprehensive review of peer-reviewed publications and reports related to addiction, HIV, HCV, and TB treatment and prevention in CJS in the 15 countries of EECA (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan). Key words and MeSH Headings related to incarceration (i.e., “inmate,” “prison,” “prisoner,” “detainee,” “criminal justice,” “pre-trial,” “detention,” “jail,” “SIZO,” “correctional,”) were cross-referenced with citations pertaining to each of the focus infectious diseases (“HIV,” “AIDS,” “HCV,” “tuberculosis”) or SUDs (“heroin,” “opioids, “drug use”, “methadone”, “buprenorphine”, “substance ab/use,” “addiction”). We limited our search to articles that were published in English and Russian on PubMed and Google Scholar between January 1, 2012 and July 20, 2015. We retrieved and reviewed 1,837 unique citations, and 449 where selected for inclusion. Additional information from other sources was also included. We reviewed grey literature from websites in English, Ukrainian and Russian, including government-reported health status of prisoners in each country.

Analytical Framework

The aims of this comprehensive review are to: 1) review the historical features occurring during a devastating transitional period that shape the concurrent epidemics; 2) present a theoretical framework for understanding how the CJS, including policing and incarceration practices, influences the evolving HIV and TB epidemics; 3) provide an analysis of up-to-date legal, criminal justice and epidemiological data from EECA countries; 4) use detailed data from Ukraine to estimate the degree to which
incarceration contributes to HIV transmission among PWID (using dynamic mathematical modelling) and TB transmission among PWID and the general population (using statistical analyses); and 5) recommend directions for future prevention, treatment and research.

Here, we examine how the risk environment within the CJS mutually reinforces and concentrates the effect of several medical conditions (e.g., HIV, HCV, TB) in the CJS. This is impacted by at least one social condition (e.g., incarceration) but also includes the policing practices that influence arrest and entry into the CJS and the experiences within the CJS environment itself, which result in the syndemic of social and medical co-morbidities. The amplification of drug-related harm in prisons\(^{17-19}\) is best understood using the conceptual framework of the *risk environment* framework.\(^{15}\) This framework posits that individual decisions about disease prevention and treatment are rooted in structural risk such as spaces (in this case, prisons) that, while exogenous to the individual, independently contribute to risk-taking and health-seeking behaviours. Hierarchical social structures within the CJS, interpersonal violence and the loss of safety, stigma, privacy and autonomy often limit decision-making by prisoners', including choices about healthcare engagement and drug use.\(^ {16,20}\) Access to prison-based HIV and other healthcare (like OAT) services, and the capacity to reduce drug-related harm, is influenced by these environmental factors, at the social, economic, and political levels.\(^ {21}\)

Survey Methods

In most EECA countries, access to accurate prison-related data and formal and informal operations of the penitentiary systems is limited. We therefore aimed: 1) to compile data on prisoner health and access to health services focusing on drug-related
and co-morbid conditions; 2) to compile supplemental survey information from prison medical departments with assistance from UNODC using official governmental requests in each country. Among 15 surveys requested, 11 responded and findings are included in Tables 1 and 2.

Evaluating the contribution of incarceration to HIV and tuberculosis transmission

We conducted dynamic HIV transmission modelling to assess the long-term contribution of incarceration to HIV transmission among PWID in Ukraine, and assessed the impact of reducing incarceration and scaling-up prison-based OAT. Additional statistical analyses assessing the contribution of incarceration to TB transmission in both PWID and the general population in Ukraine were used to estimate the contribution of current or recent incarceration to yearly TB transmission in these groups. Modelling and epidemiological methods and results are described in the Ukraine Case Study, with further details and model equations included in **Boxes 1 and 2** and the online appendices.

Historical Framework, Organization of Criminal Justice and its Influence on Eastern Europe and Central Asia

Governmental ministries other than the Ministry of Health administratively oversee the CJS in the EECA region, including healthcare delivery, in all EECA countries (**Figure 1** and **Table 2**). Police oversight and arrest, with short-term detention in lock-up facilities, is overseen by the Ministry of Interior. Healthcare in pre-trial detention and prisons, however, fall under a variety of ministries. International organizations, however, support separating oversight of investigations and prosecution from the execution and supervision of criminal sanctions. Importantly, although the
WHO recommends that prisoner healthcare be consistent with community care standards, and overseen by the Ministry of Health, none of the EECA countries have adopted this recommendation. Some countries, however, have created separate ministries devoted specifically to specialized prisoner supervision.

The CJS in all EECA countries, derived from the Soviet system, includes pre-trial detention centres, similar to jails and referred to as SIZO, where detainees remain for up to two years while awaiting sentencing. After sentencing, treatment is interrupted by transitional supervision for up to 2 months in *etap*, which is overseen by the Ministry of Interior, followed by placement in penal colonies (including lower security ‘settlement’ colonies and colonies for juvenile offenders) or prisons with cellblocks after sentencing. Each ministry responsible for oversight at various stages within the CJS, however, may have policies that conflict with the other (e.g., regarding allowance or provision of various services). *Table 1* compares the infectious disease prevalence and harm reduction coverage in prisons and communities in each country. *Table 2* and the expanded version in the appendix provide an overview of CJS facilities in each country based on our survey and published reports. Sentenced prisoners are generally divided into minimum, medium and maximum-security facilities, which we term “prisons.”

Prisoners with HIV are not segregated but those with TB are isolated in dedicated, specialized TB medical wards.

The legacy of Soviet-style addiction treatment, termed narcology, prevails in EECA countries and includes non-evidence-based measures like utilization of antidepressants, anxiolytics, antipsychotics, excessive physical exercise, neurosurgery and kinesio-therapy to treat addiction. In Russia, the only criterion of successful
addiction treatment is complete abstinence from any psychoactive substance, including from physician-prescribed methadone and buprenorphine, which are part of the WHO list of essential medications that remain banned throughout the country. These measures follow the Soviet-era models of repressive psychiatry, contrary to international standards, and often amount to suffering, discrimination and humiliation for drug-dependent people (see Panel 2). Prison staff often harbour negative attitudes toward OAT and consider drug dependence a social problem and with resultant criminal behaviour rather than a chronic, recurring illness. Despite elevated HIV within prisons, the legal framework across EECA often falls short of human rights mandates for ensuring access to evidence-based addiction and HIV services within the CJS. OAT with methadone or buprenorphine is internationally-recognized as the most effective treatment for chronic, opioid dependence and is also among the most effective primary and secondary HIV prevention strategies available. Moreover, mathematical modelling suggests that OAT expansion is the single most cost-effective means of controlling the HIV epidemic in EECA, but when combined with ART scale-up, it is more effective but also more costly. Regional policies (Tables 1 and 2) vary on whether OAT is provided throughout the entire incarceration (Moldova, Armenia and Kyrgyzstan; see Panel 1), upon entry to police-lockup with supervised withdrawal (Georgia, Lithuania, Latvia, Estonia and Ukraine), only in the community (Belarus, Azerbaijan, Tajikistan and Kazakhstan) or not at all (Russia, Uzbekistan and Turkmenistan). Moreover, contradictory legal mandates lead to an uneven distribution of care. In Ukraine, although national drug policies necessitate harm reduction programs (including OAT and NSP) for all PWID, the medical guidelines require current signs of physical
dependence, which are not always evident after a detainee completes withdrawal in police lockup or in SIZO, disqualifying convicted prisoners from treatment.

An Overview of Mass Incarceration, Substance Use Disorders, HIV, HCV and Tuberculosis Infections

Mass incarceration

The dramatic rise and interrelationship between incarceration, HIV, HCV and tuberculosis in EECA is multifactorial.\(^{29-32}\) The Soviet collapse gave rise to numerous factors that independently and collectively contributed to unprecedented mass incarceration in all EECA, in part, as a result of decreasing industrial output, living standards, and life expectancy.\(^4\) EECA, with 1.1 million prisoners, has some of the highest incarceration rates globally,\(^{11}\) giving rise to the term “criminological transitions” for EECA countries.\(^{33}\) Although incarceration rates have decreased modestly over the past decade, thirteen of the fifteen EECA countries still have rates that exceed the world average of 146 prisoners/100,000 population, with ten exceeding 200: Turkmenistan (583), Russia (455), Belarus (335), Lithuania (315), Georgia (281), Kazakhstan (275), Latvia (264), Azerbaijan (236), Estonia (218) and Moldova (212); Ukraine recently plummeted from 324 to 195 due to regional conflicts.\(^{11}\) This mass incarceration is the result of several intersecting factors, which have converged to result in some of the highest general population prevalences of HIV,\(^34\) HCV\(^{35}\) and tuberculosis, including multi-drug resistant tuberculosis (MDR-TB),\(^{12}\) in the world,\(^{29,31}\) concentrated further within prisons where rates are substantially higher.

Substance use disorders
After 1991, injectable opioid use increased markedly due to changes in drug routes from Afghanistan and economic collapse promoting a new drug economy. Consequently, volatile opioid injection and HIV epidemics followed. A number of harsh criminal sanctions toward PWID ensued, resulting in escalating incarceration rates, especially of PWID who either had or were at high risk for HIV. Moreover, with the backdrop of economic instability and low wages for public servants like police, PWID became targets for bribes and other forms of corruption. Inability to pay resulted in arrest, detention, and imprisonment. Consequently, PWID represent over one third of prisoners in EECA, but may be as high as 50% to 80% in some EECA countries.

Explosive HIV transmission dynamics accompanied the growing number of PWID and incarceration rates in EECA, with HIV incidence and HIV-related mortality remaining volatile and increasing. Although HIV is concentrated among PWID and their sexual partners, there is evidence of transmission among sex workers and MSM. By year-end 2013, there were over 1.4 million PLH in EECA, with over 85% residing in Russia and Ukraine. Despite recent evidence of modestly expanded HIV prevention programs in some EECA countries, coverage with ART (especially among PWID), OAT and NSP remains low. Also, extensive migration between and within some EECA countries results in lack of access to HIV prevention on the basis of citizenship or official registration for governmental healthcare.

HIV

Prisons present as structural risk environments (Figure 2) due to the high concentration of PWID, HIV and HCV. HIV prevalence in prisoners is high throughout
EECA. While no reliable data exist for Turkmenistan and Belarus, HIV prevalence exceeds 10% in four countries - Latvia (20.4%), Ukraine (19.4%), Estonia (14.1%) and Kyrgyzstan – but remains markedly higher than in the community in Uzbekistan (4.7%), Lithuania (4.1%), Kazakhstan (3.9%), Azerbaijan (3.8%), Armenia (2.4%), Tajikistan (2.4%), Moldova (1.9%) and Georgia (0.4%). In nationally representative prison surveillance studies, HIV prevalence is 22-fold, 19-fold, and 34-fold higher in prisons than in surrounding communities in Ukraine,\(^{39,45}\) Azerbaijan\(^{40}\) and Kyrgyzstan,\(^{41}\) respectively. Factors contributing to this concentration include harsh policies and laws toward PWID, police targeting PWID and within prison-drug injection. In Russia, nearly all drug-related convictions are for drug use rather than drug trafficking.\(^{46}\)

Estimates of within-prison drug injection range from 3-53%,\(^{17,18,47,48}\) and have contributed to volatile HIV transmission within prisons in the region,\(^{49}\) a sobering consequence of the overrepresentation of PWID and untreated SUDs within prison. Evidence suggests that PWID inject less frequently in prisons than outside, but HIV transmission risks are markedly elevated within prisons because injection equipment is scarce with increased high-risk sharing.\(^{18}\) This may, in part, contribute to findings that prior incarceration is independently associated with HIV among PWID in community settings,\(^{50}\) which we also found in our Ukraine Case Study (Figure S9 in online appendix). Moreover, few studies have examined within-prison drug injection in EECA, but data from HIV-infected Ukrainian prisoners showed extraordinarily high levels (54%) with many injection-sharing partners.\(^{17}\)

HIV treatment is effective HIV prevention and must include prisoners,\(^{51}\) many of whom are PWID.\(^{52}\) Achieving UNAIDS 90-90-90 targets requires improved screening,
treatment and adherence outcomes53 in EECA countries. Despite National AIDS Centres in some countries reporting high ART coverage levels in prisoners who are diagnosed,42,54 the majority of PLH remain undiagnosed within EECA prisons. Only half of PLH in Ukrainian and Kyrgyz prisons are diagnosed before leaving prison.39,41,45 In Ukraine, fewer than 12\% of PLH were aware of having HIV, with another 40\% being diagnosed during incarceration, leaving almost half still not aware of their status.46 In Azerbaijan, however, HIV diagnosis approaches 75\%.40 While both Azerbaijan and Kyrgyzstan provide high ART coverage for PLH who are diagnosed,40,41 fewer than 4\% of PLH in Ukrainian prisons receive it.39,45 No EECA country has data for ART coverage post-release, but even data from high-income countries suggest that the transition period from prison is one of heightened vulnerability when ART coverage falls precipitously and HIV risk is high,55 especially for women.56,57

\textit{Hepatitis C Virus}

One review reported HCV prevalence among prisoners ranging from 3.1\% to 38.0\%,35 with the highest in Central Asia.58 Representative prison biosurveillance studies show HCV prevalence to be substantially higher in Ukraine (60.2\%),39 Kyrgyzstan (49.7\%),41 and Azerbaijan (38.2\%),40 even though self-reported lifetime injection prevalence was substantially lower. These data suggest drug-injection is often under-reported in surveys. HCV infection in PLH, when left untreated, complicates HIV treatment1 and is associated with accelerated liver fibrosis.59 New direct-acting antiviral HCV treatments have low toxicity, short treatment durations, and can cure HCV in over 90\% of patients, irrespective of HIV status.60 Restricted by affordability, the only EECA
prisoners in EECA receive HCV treatment in prisons is in Georgia where an HCV elimination strategy is underway.61

\textit{Tuberculosis}

Prisons generally, and especially in EECA, promote TB transmission, particularly drug-resistant strains, primarily because of crowding that increases contact between large numbers of high-risk persons in poorly ventilated facilities over extended periods.12,13 Furthermore, tuberculosis control is complicated by low cure rates due to delayed diagnosis, ineffective screening, isolation and treatment in prisons, perverse environmental disincentives (see Panel 2) to start or continue treatment (better housing, treatment or food, being excused from harsh work, profiting from the sale of TB medications).62-64 Incarcerated individuals are at higher susceptibility for tuberculosis (poverty, SUDs, homelessness, malnutrition and HIV infection) and are often released to the community before treatment completion, without effective transitional care.12,65-67

Factors contributing to tuberculosis transmission include overcrowding, high prisoner turnover, limited access to healthcare services, delayed case detection and poor contact detection, lack of recommended rapid diagnostic methods like Xpert MTB/RIF, and suboptimal treatment of infectious cases and implementation of tuberculosis infection control measures.65-67 MDR-TB is disproportionately prevalent in EECA prisons68,69 because of high MDR-TB prevalence in the community70-73 and large numbers of HIV-infected PWID who are more susceptible to tuberculosis due to being immunocompromised.74 The Ukraine Case Study illustrates the large degree to which incarceration contributes to tuberculosis transmission in EECA, with it’s tuberculosis incidence rates being directly correlated with increasing mass incarceration.12
Additionally, MDR-TB incidence in EECA after independence was directly correlated with increasing mass incarceration.12 The Soviet Union collapse resulted in inadequate funding and supply of first-line TB regimens and extended confinement that facilitated transmission within prisons.75 In Belarus, MDR-TB strains are 35.3\% of new and 76.5\% of previously-treated TB cases, meaning that half of all TB cases are MDR-TB.69,76 Incarceration and HIV are independent contributors to patients having MDR-TB strains.69 Remarkably high levels of MDR-TB cases also exist in Russia,77,78 Lithuania and Latvia,78 and Ukraine.79 International guidance for TB screening and treatment80 is inconsistently deployed in prisons throughout EECA with resultant poor outcomes.65,67 One notable exception is Azerbaijan which reduced both TB and MDR-TB cases through the effective implementation of the WHO’s Stop TB Strategy in the penitentiary sector, which involved routine screening, specialty TB hospitals, new infection control measures, rapid diagnostic testing, and training of prison personnel who now train prison staff elsewhere in EECA.81

Case Study: Modelling the Impact of HIV and TB transmission in Ukraine - a Country in Conflict

Ukraine, a middle-income country of 31 million, is in the midst of conflict and has the highest prevalence of HIV in adults (1.2\%), with tuberculosis and MDR-TB contributing the most to HIV-related mortality.3 Before Ukraine’s conflict with Russia over Crimea and the Donbas region, Ukraine’s incarceration rate per 100,000 population was 324, but recently dropped to 195 per 100,000 in 2014 with large numbers of prisoners rapidly released to the community, increasing numbers of arrests
and initiation of a new probation system that now supervises 70,000 people in the community. Incarceration among PWID in national surveys, however, does not appear to have decreased from 2011-2015.82,83 HIV prevention services in Ukraine are under-scaled with only 2.7% of 310,000 PWID prescribed OAT and 20% of PLH prescribed ART. ART coverage in HIV-infected PWID, however, remains under 5%.5 Globally and within EECA, PWID experience high levels of incarceration (lifetime: 40%-85%),84,85 and current or previous incarceration is associated with heightened injecting risks and increased HIV and HCV transmission.86-88 In Ukraine, minimally 52% of PWID have been incarcerated,89-91 with previously incarcerated PWID reporting an average of 5 incarcerations, each a year in duration.39,89,91

Data from three recent national surveys among PWID and current prisoners in Ukraine were used for epidemiological analyses and HIV transmission modelling, described briefly in Boxes 1 and 2 and further in the online appendices. These data suggest that previously incarcerated PWID have a significantly higher HIV prevalence than never incarcerated PWID (28% versus 13% - see Figure S9), even after controlling for injecting duration (aOR=1.8; 95%CI=1.6-2.1). Additionally, they have heightened HIV risk behaviours, with previously incarcerated PWID reporting 3.9 (95%CI=2.8-5.0) more injections per month,89 and a 1.5-fold (95%CI=1.3-1.9) greater chance of sharing syringes89 than never incarcerated PWID, even after controlling for injecting duration. Recently incarcerated PWID (past year) had an even greater likelihood of syringe-sharing (aOR=2.2; 95%CI=1.6-3.0).45,92 Similarly, currently incarcerated PWID have over twice the HIV prevalence of never incarcerated PWID (28.5% versus 12.8%)39,45 and high rates of syringe-sharing.17,37 Together, these data
suggest that incarceration and the post-release period are important contributors to HIV transmission among PWID in Ukraine and forms the basis for our HIV modelling (Box 1).39,45 This modelling suggests that incarceration, and specifically the heightened injecting risks post-incarceration could contribute 55\% of new HIV infections among PWID in Ukraine over the next 15 years if we assume all this elevated risk is attributable to incarceration, or 28\% if we conservatively assume that only the heightened risk among recently released PWID is due to incarceration (Figure 3 and 4). Conversely, reduced incarceration of PWID is unlikely to substantially decrease new HIV infections over 15-years due to the remaining elevated risk among previously-incarcerated PWID. Scaling-up and continuing prison-based OAT post-release, however, could avert 19.8\% of HIV infections over 15 years because it directly reduces the heightened post-release risk (Figure 3 and 4).

TB incidence across EECA is high (nearly all over 100 per 100,000 population), and are positively correlated with country-level incarceration rates,12 highlighting the importance of within-prison TB transmission to the countrywide epidemics. An ecological analysis estimated that across EECA, each percentage point increase in a country’s incarceration rate corresponded to a 0.34\% increase in TB incidence (95\%CI=0.10\%-0.58\%).12 A systematic review suggests that TB incidence in LMICs is 10 to over 30 times greater within prison than in the community.93 Few studies, however, have estimated the contribution of incarceration to the TB epidemic in EECA, with the systematic review estimating that between 5\% and 17\% of TB cases in Russia could be due to exposure within prison.93 We therefore conducted in-depth statistical analyses using the same datasets utilised for the HIV modelling91 to evaluate the role of
incarceration for increasing TB disease risk among the general population and PWID in Ukraine (Box 2). These analyses suggest that incarceration is an important contributor to TB transmission (Figure 5), and could be responsible for three-quarters of new yearly TB infections among PWID and 6.2% of all yearly TB infections in Ukraine.

Risk Environment Framework for Criminal Justice Settings in the Region

Figure 2 provides an overview of the risk environment factors in both the community and CJS that contribute to onward disease transmission in EECA. The high prevalence of these infections in the community, coupled with both micro-level and macro-level factors embedded within the physical, social, economic and policy/legal framework, result in the concentration of high-risk key populations like PWID and sex workers in the CJS. Incarceration, a physical factor, further amplifies these conditions by concentrating individuals with these infections. It also disrupts injection and social networks, a social factor, by creating new and riskier networks that develop as a survival tactic during incarceration.94 Policy factors forbidding OAT and NSP in Ukrainian prisons, where HIV prevalence is high (19.4%),39 HIV detection and ART coverage is low,45 facilitate frequent sharing of injecting equipment by PWID17 and likely fuels HIV and HCV transmission.17,39,41,45 Similarly, individuals released from prison are highly stigmatized (social factor), relapse to drug use quickly (policy factor), develop new injection networks (social factor), and policing efforts target PWID and former prisoners due to registration of PWID in the community (policy factor).37 Our analyses from our Ukraine Case Study suggest that the prison risk environment contributes to both HIV and TB transmission in PWID and TB transmission more generally to the
community. Moreover, introducing OAT to 50% of PWID within prison and retaining them in treatment for 12 months post-release would most-effectively reduce HIV incidence over the next 15 years, suggesting that this risk environment can be greatly influenced by the introduction of evidence-based addiction treatment.

Drug-related policies

Key populations face numerous legal barriers that simultaneously contribute to incarceration and to accessing essential HIV programmes and services.\(^{95,96}\) Drug policies vary considerably. In seven EECA countries (Russia, Uzbekistan, Ukraine, Belarus, Moldova, Lithuania and Latvia) official names-based “registration” of PWID is required to receive treatment, including OAT. Registration, however, often results in restrictions in employment, loss of privileges (e.g., driver's license) and targeting by police.\(^{37,97,98,99}\) Moreover, a passport and an official address is required for employment in Ukraine, undermining economic stability.\(^{98}\) Collectively, these restrictions perpetuate reincarceration,\(^{100}\) especially given that alternatives to incarceration are uncommon in any EECA country. Addiction experts are required to report anyone accessing services, including for diagnosis confirmation, registration and treatment. In most registries, there is little guidance or criteria to remove names from the registry or how recovery is defined. In Moldova and Uzbekistan, PWID are monitored for three years before removal from the registry is considered. In Uzbekistan, removal from the registry occurs upon incarceration. Otherwise, name-based registries persist for life.

Six countries have a mix of administrative and criminal penalties for drug possession. In Kazakhstan, administrative procedures can be deployed twice-annually for drug possession, after which arrest and criminal sanctions ensue. In Kyrgyzstan,
these penalties differ based on the quantity of illicit drugs found. Elsewhere, administrative procedures are used for limited personal use amounts although the amount varies. In all countries, the criminal code defines the purchase of illicit drugs as an incarcerable criminal offense.

Punitive drug laws restrict access to HIV testing and treatment for PWID. Criminalisation of drug use and discriminatory practices restrict access to NSP and community agencies where these services are located. Harm reduction services are often legally restricted to adults. Police in some countries arrest PWID who access harm reduction services and confiscate drugs and syringes or extract bribes for the possession of syringes or needles.37,38,101,102 In one Russian survey of PWID, over 60% had been arrested for needle possession or had drugs planted on them by the police.103

Sexual Activity Policies

While many EECA countries have repealed laws prohibiting same-sex relationships, Uzbekistan and Turkmenistan continue to enforce them. Tajikistan, Uzbekistan, Ukraine and Armenia have laws that criminalize sex acts between consenting adults of the same gender, sodomy, “cross dressing” or “gender impersonation”. Kyrgyzstan and Tajikistan have legislation where the age of consent differs for homosexual and heterosexual sex; Kyrgyzstan has laws or policing practices criminalizing or preventing condom distribution yet supplies them within prison. Though transparent in their intent to target and stigmatize MSM, Russia enacted legislation prohibiting dissemination of “propaganda of non-traditional sexual relations [i.e., LGBT] among minors” to protect “traditional” family values, These laws result in arrest of individuals promoting HIV prevention for MSM. Similar but harsher legislation is being
considered in Belarus, Kazakhstan and Kyrgyzstan.43

All EECA countries prohibit sex work, but police enforce it variably and target sex workers who use drugs. Kyrgyzstan, Azerbaijan and Uzbekistan have laws or policies allowing mandatory HIV testing of key populations. Some countries (Kyrgyzstan, Tajikistan, Uzbekistan, Ukraine and Armenia) have laws that protect against human rights violations but they are not specific to HIV or key populations.

Community supervision

Community sanctions like probation or drug courts are not widely available, and probation is not generally linked to treatment. Several countries have limited community-based supervision, including Russia (supervision by former military/prison personnel), Ukraine (new in 2015), Moldova (started 2002), Latvia (started in 2005), Estonia (started in 1998 with expansion in 2013), Lithuania, Georgia and Kazakhstan. Pilot projects are underway in Armenia to guide probation service initiation. Some probation programs refer cases to drug treatment agencies or psychiatric hospitals. Many of the probation programs emerged from the prison service and therefore reflect the prison culture. In most instances, probation is in its infancy.

Coverage with Opioid Agonist Therapies

Many prisoners in EECA not only initiate drug injection within prison, but continue to share injecting equipment during incarceration17,41 and especially post-release.17 Five countries (Armenia, Kyrgyzstan, Moldova, Latvia and Estonia) have OAT in prisons, with coverage being extremely low. Georgia has a pilot program in SIZO and four others offer it only in police-lockup (Table 1 and Figure 6). Emblematic for the region, Ukraine’s prison personnel have especially negative attitudes toward OAT, but is
improved when sufficiently knowledgeable about its benefits, while prisoners have higher expectations about recovery that diminish post-release in the absence of OAT. In Moldova, OAT and NSP exist within communities and prisons, but OAT coverage is disproportionately lower in the community than in prisons, reducing access post-release and necessitating many OAT patients to discontinue OAT before release. In Moldova, PWID on OAT are often ostracized within the prison risk environment perhaps due to within-prison illicit drug economies that compete with OAT. Thus, effective and essential OAT scale-up must educate and motivate both prisoners and personnel.

HIV diagnosis

The first step to achieving the UNAIDS 90-90-90 HIV treatment as prevention strategy is HIV testing. Most EECA prisons deploy risk-based opt-in testing within prisons. One of the major challenges in EECA prisons is low HIV detection, where over half of HIV-infected prisoners do not know their HIV status. For those that do, however, most are tested within prison. Notable exceptions where expanded HIV testing greatly improved HIV diagnosis include Estonia and Azerbaijan. Required name-based HIV registries often undermine voluntary testing efforts and treatment engagement. Officially reported HIV data therefore underestimates true prevalence and restricts access to HIV treatment due to mandatory registration combined with stigma, discrimination and criminalization of key populations. Similarly, OAT patients must be officially “registered” before receiving it, which can lead to restrictions on employment opportunities, limitations in housing, and revocation of drivers’ licenses, which further compounds economic disparities.

Conclusions
The 1990 United Nations Basic Principles for the Treatment of Prisoners state that prisoners “shall have access to the health services available in the country without discrimination on the grounds of their legal situation.”109 This basic principle has been expanded in the case of HIV to also include preventive services, but has been infrequently applied, especially in many EECA countries where prisoners derive less benefit from prevention and treatment services than other citizens.110 Structural aspects of the CJS in EECA concentrate most at-risk populations, which, taken together, likely contribute heavily to disease amplification and transmission within prison and to the community post-release. These structural impediments also limit access to prevention and treatment services for HIV, HCV and TB. Findings here suggest that the high-risk prison environment, including the immediate period post-release (for HIV), is an important contributor to HIV and TB transmission to PWID and more broadly for TB transmission to the general population. Strategies that reduce incarceration overall, especially for PWID and greatly expand OAT within prison and effectively continue it post-release are likely to have the greatest impact on HIV and TB transmission in PWID interfacing with CJS. Strategies that reduce incarceration for the entire population, but especially for PWID, are likely to reduce tuberculosis cases. Not only are policy reforms necessary to abrogate this trajectory, but further epidemiological, qualitative, modelling, cost-effectiveness and implementation science research is crucial to help ensure that both prisoner and public health is optimized and consistent with human rights mandates (Panel 3). Such approaches could reduce the transmission of HIV, HCV and TB in these settings especially if they also ensure continuity of care following release from prison.
END OF MAIN BODY OF PAPER: Abstract (248) and paper (5,072) words after removing key messages, comprehensive review strategy, and references to boxes, panels, tables and figures.
ADDITIONAL COMPONENTS

1. BOX 1: HIV Modelling for Ukraine (WORDS: 688)
2. BOX 2: TB epidemiological analyses for Ukraine (WORDS: 566)
3. PANEL 1: CANDLES BURNING IN THE NIGHT (WORDS: 541)
4. PANEL 2: SASHA AND THE VICIOUS CYCLE (WORDS: 796)
5. PANEL 3: Recommendations for Policy Changes
6. COMPREHENSIVE REVIEW SEARCH STRATEGY
Box 1: Modelling the Impact of Incarceration and Scale-up of Opioid Agonist Therapies in Prisons on HIV Transmission among People Who Inject Drugs in Ukraine

*References 111 and onwards in Ukraine Case Study are available in the online appendix

A national, dynamic model of incarceration and HIV transmission through drug injection among PWID was developed, that stratified PWID by incarceration state (never, current, recently released within last 12 months, and past incarceration over 12 months ago), and HIV infection state (susceptible, initial acute and chronic HIV infection, and receiving ART). Within a Bayesian framework, the model was calibrated to detailed national data on the incarceration of PWID (Table S1), and HIV prevalence (Table S3) among never (11.9%–13.6%), current (22.2%–35.4%), and previously incarcerated PWID (26.6%–29.7%). Based on the same national data, this calibration assumed elevated injection-related HIV transmission risk among previously incarcerated PWID (relative risk 1.9-3.3 within 12-months post-release and 1.4-2.0 thereafter) compared to never incarcerated PWID. Sensitivity analyses relaxed this assumption. Due to insufficient data, a non-informative prior was used for the transmission risk among incarcerated PWID.

To estimate the long-term population attributable fraction (PAF) due to incarceration, the relative decrease in new HIV infections over 15 years was projected if the transmission risk among currently- and previously-incarcerated PWID were set to the same as never-incarcerated PWID. A conservative PAF assumed the transmission risk among recently-released PWID was the same as previously but not recently-incarcerated PWID. We also examined how OAT scale-up to 50% of incarcerated
PWID, with 12-month OAT continuity post-release, could reduce HIV transmission. The supplementary materials provide more methodological details.

When assuming heightened HIV transmission risk in previously incarcerated PWID, the model (Figures 3 and 4) suggests that community HIV incidence and prevalence would decrease dramatically by 2030 (by 75%; 95%Crl=64%-87%, and 56%, 95%Crl=42%-66%, respectively) if the HIV transmission risk among currently- and previously-incarcerated PWID were set equal to never-incarcerated PWID. Additionally, 55.1% (95%Crl=40.2%-68.2%) of new HIV infections would be prevented, mainly due to reducing the heightened risk among recently-released PWID. Indeed, 28.2% (95%Crl=13.6%-41.1%) of HIV infections would be averted if this heightened risk was only partially reduced to the same as non-recently incarcerated PWID. These findings were robust to making less restrictive assumptions about the relative transmission risk among previously incarcerated PWID. By contrast, if PWID had no new incarcerations after 2015, only 12.8% (95%Crl=-4.7-24.6%) of new HIV infections would be averted thereafter. If prison-based OAT were initiated in Ukraine, however, our modelled scenario suggests 19.8% (95%Crl=14.6%-24.5%) of HIV infections would be averted during 2015-2030, and community OAT coverage would increase by 8.3%. Much of this impact is due to benefits of retaining prisoners on OAT post-release, with only 5.6% (95%Crl=1.6%-8.3%) of HIV infections being averted without OAT continuation. Further projections suggest that community OAT (without prison-based OAT) coverage levels of 28% (95%Crl=20%-33%), 48% (95%Crl=43%-50%) or 16% (95%Crl=12%-21%) would be required to achieve the same impact as scaling-up prison-based OAT, depending on whether this community OAT was untargeted or targeted to never- or previously-
incarcerated PWID, respectively. Considering the prevention benefit per PWID on OAT, the prison-based OAT scenario is as efficient as targeting OAT to previously incarcerated community PWID, but is 1.6 and 3.2 times more efficient than untargeted community OAT and OAT targeted to never-incarcerated PWID, respectively.

These analyses suggest incarceration is a driver of HIV transmission among PWID in Ukraine, with 55.1% (95% CrI=40.2-68.2%) of incident HIV infections possibly attributable to incarceration if we assume all the elevated risk among previously incarcerated PWID results from incarceration, or 28.2% (95% CrI=13.6-41.1%) if we conservatively assume only the additional risk among recently released PWID is due to incarceration.

Importantly, increases in risk behaviours post-incarceration fuel the HIV epidemic in Ukraine’s PWID, highlighting the need to strategically target HIV prevention interventions to previously-incarcerated PWID. Findings here, and confirmed elsewhere, suggest prison-based OAT expansion with effective community transition post-release could be an effective strategy of achieving this.113-116 Strategies that reduce incarceration, like alternatives to incarceration (e.g., probation, drug courts), community policing that promotes treatment over arrest and changes in drug criminalisation policies should also be considered, although the HIV benefits may be less.

Our analyses have limitations (supplementary materials), most specifically related to whether the elevated transmission risk among previously-incarcerated PWID is due to incarceration or higher-risk PWID being incarcerated frequently; future studies should examine longitudinal changes in risk before, during and after incarceration.
Box 2: Modelling the Impact of Incarceration on Tuberculosis Transmission in People Who Inject Drugs and More Broadly to the General Population in Ukraine

References 111 and onwards in Ukraine Case Study are available in the online appendix

Statistical analyses (See online TB supplement for detailed methods) were performed using national survey data to assess the short-term yearly contribution of incarceration to recent and lifetime TB transmission among both PWID and the general public in Ukraine. Data sources included country-wide data from 1,612 PWID in the 2015 ExMAT survey and 402 prisoners in the 2011 PUHLSE survey (see online appendix). ExMAT provided individual-level data on incarceration (ever, total time), HIV status, drug injection duration, and TB status in last 12 months and ever. PUHLSE provided individual-level data on age, total time incarcerated, HIV status, ever-injected drugs, and ever TB status. Self-reported TB status was used for all analyses using a highly-validated survey question.117

Using both datasets, linear regression models were firstly developed to evaluate the relationship between ever and recent TB status and ever being incarcerated or total duration of incarceration. Two survival models were then fitted to data on cumulative TB risk as a function of time in prison. Using the estimated hazard, an average TB incidence rate was estimated for each year of incarceration among prisoners (PUHLSE) or previously incarcerated PWID (ExMAT). The estimated incidence rate among prisoners (PUHLSE) and data on self-reported recent risk of TB (ExMAT) were then used to estimate the relative risk of TB among incarcerated PWIDs or prisoners overall compared to non-incarcerated PWIDs or the community as a whole,118 and the
population attributable fraction (PAF) of incarceration to overall TB risk and TB risk among PWID were estimated using standard formula.

Our analyses consistently suggest that incarceration contributes significantly to TB transmission in Ukraine. After controlling for age, injecting duration and other variables; we estimate that for every additional year of incarceration there is a 13% (95%CrI 8%-17%) relative increase in TB prevalence among the overall population and a 6% (95%CrI 3%-10%) relative increase in TB prevalence among PWID (Figure 5).

Although only 0.5% of the adult population was incarcerated, we estimate that 6.2% (95%CI=2.2%-13.4%) of all incident TB cases result from incarceration. Conversely, among PWID this increases to 75% (95% CrI=51%, 94%) for HIV-infected PWID and 86% (95% CrI=56%, 98%) among HIV-negative PWID (See online appendix for details).

Our analyses from Ukraine indicate that the contribution of incarceration to TB in the general population was similar to findings from Russia, and provides new insights that suggest a markedly higher PAF of incarceration to TB transmission among PWID. Although data suggest the importance of incarceration for TB, there is a paucity of data surrounding the contribution of prison to TB incidence in LMIC, especially in EECA where TB incidence is high. Nevertheless, other studies and data presented here indicate that prisons contribute substantially to TB epidemics broadly, but especially in PWID in this region (Panel 2: Sasha’s Story). While strategies that reduce incarceration for PWID would have the greatest impact, these findings also underscore the need to develop cost-effective interventions to diagnose, treat, and prevent TB transmission among incarcerated populations. Azerbaijan has emerged as a
regional leader in implementing such programs where they have adopted TB prevention activities within prison (screening, early detection and treatment, case isolation and preventive therapy for latent tuberculosis infection). Such strategies, especially if focused on PWID, should address the increased TB transmission risk associated with current and/or previous incarceration. Such strategies, including HIV prevention and treatment, are urgently needed to control the HIV and TB epidemics in Ukraine and other EECA settings.
Panel 1: Candles Burning in the Night

Despite its well-documented efficacy in both prisons and communities, three EECA countries (Russia, Uzbekistan and Turkmenistan) legislatively ban any type of OAT, while the remainder provide it in the community. Harsh criminalization policies that result in high incarceration rates and large numbers of PWID in EECA prisons, compounded by high levels of documented within-prison drug injection in the region, extraordinarily high levels of HIV, viral hepatitis and TB and MDR-TB persist. Despite these poor prognostic indicators, a few countries have prevailed over the misaligned ideological policies espoused by Russia that favour punishment over rehabilitation and implemented internationally recognized evidence-based HIV prevention and treatment for prisoners.

For example, small and financially vulnerable countries like Kyrgyzstan, Moldova and Armenia have introduced all 15 internationally-recommended HIV prevention strategies in prisons,\(^{121}\) including both OAT and NSP. These countries have emerged as beacons in the region and have boldly introduced such programs despite external influences to ban them altogether, albeit suboptimally scaled, but have done so with external funding from international donors. These successful programs, however, may soon be jeopardized by anticipated loss from international donors. Moreover, as Russia is increasingly exerting external pressure and creating new political and trade alliances with some former countries of the Soviet Union, they too extend their ideological principles and financial support in ways that could eventually threaten and undermine the successes made by these public health and human rights-based HIV prevention interventions in prisons.
It is conservatively estimated that one-third of all prisoners in Kyrgyzstan, Moldova and Armenia are PWID (approximately 6,900), primarily of opioids. Yet, only 802, or 11.6% are prescribed OAT. OAT introduction and even scale-up is minimally restricted by cost, since methadone is extremely inexpensive. While its efficacy is well-substantiated, OAT policy is shaped more by ideology and prejudices against OAT than by scientific evidence.122,123 Despite these ideological influences in the region, five countries (Armenia, Moldova, Kyrgyzstan, Latvia and Estonia) have successfully introduced and expanded OAT throughout their CJS, including in pre-trial detention (See Table 2). Recent findings from Moldova, which may be emblematic of prison-based methadone problems in the region, suggest that myths about and prejudices toward OAT are amplified within prisons and result in bullying and ostracism of OAT patients, and may undermine OAT expansion efforts.105 In nearby Ukraine, where OAT is not available within prison, extremely negative attitudes toward OAT prevail among prison personnel, but recent findings suggest that provision of accurate information and training may in part overcome these myths.25,104 Because the within prison risk environment is shaped by PWID, non-PWID, prison personnel and real and enacted policies for the setting, the next generation of OAT expansion efforts will therefore need to address multiple factors including these myths and prejudices and the within prison drug economy that likely propagates such myths to both incarcerated PWID and to prison personnel who may view OAT as competition for the illicit drug trade. Continued support for OAT and NSP must therefore not only address service delivery itself, but include strategies that combat misinformation and prejudices. Continued funding and provision of comprehensive prevention strategies are crucial for sustainability and should be coupled with shared
best-practices with other EECA countries that seek to align human rights and public health mandates in both community and criminal justice settings.
Panel 2: Sasha* and the Ravages of Incarceration

Prisons here in Russia are places where people like me go to die. Though arrested often, I went there three times where I watched many people like me die. My first time occurred after police stopped me for a bribe. I had no money so he searched me, found a syringe he said contained heroin, and locked me up. When I got sick from withdrawal symptoms and was most vulnerable, they promised “shirka” [liquid poppy straw extract] if I admitted to stealing something that I didn’t. I refused, spent a year in SIZO awaiting trial, but was finally convicted for two more years because drug users like me don’t stand a chance. I was shocked to learn that drug injection in SIZO and prison was worse than on the streets of Gatchina, where I lived. The guards helped supply drugs and prison leaders made sure we remained addicted. Many of us paid with our lives. Some guys overdosed, others became HIV-infected like me and tuberculosis finished off the rest of us. Even though all of us were sick, seeing a doctor and getting care was nearly impossible. The bosses controlled everything. I swear the doctors were even worse than the guards. They just sent us back to our dorms to die.

I was luckier than most and survived my first incarceration. I tried to be strong and avoid drugs. I cut back, but I had money and connections so I still used. I was weak and the prison bosses made sure I could get high and keep their pockets full. Within a week of release, I was back at it again. The police knew it too! They stayed on top of me, extracting their bribes, but once I ran out of money, I was arrested and back in SIZO and prison for another three years. This time, they sent me to a colony for seasoned criminals.
I developed fevers and lost a lot of weight. I was sure I would die. My family had money and I was able to bribe my way and eventually saw a doctor. Without money, I would have died like everyone else. After 6 months of coughing and 15 pounds lost, my money bought me a fluorogram that was suggestive of TB and I was shipped to a specialty TB colony. It seemed like everyone with TB also had HIV. I survived the scariest place I had ever been. We were 36 men in a “closet” with only 12 beds. We stood, coughed on each other, while others slept in shifts. Most guys, including me, would stop or dispose of our TB medications so that we could get sick and move from our “closet” to the infirmary where we’d get our own bed. Many who went to the infirmary never left except in a pine box because their medications didn’t work anymore.

I must be really strong. As soon as I got out, my parents took me to the local TB dispensary. Even though I told the doctors about what happened, they didn’t believe me and I went through the entire process again of confirming TB. I received no medications for several months, developed fevers, drenching night sweats and weight loss again before they would prescribe medications. I told them the medications had stopped working before, but they started me on the same ones I took before. It was no surprise that medications didn’t work.

I got sicker and my parents drove me to St. Petersburg to a special hospital and paid a lot of money for the doctors to find me a bed, prescribe new TB medications, and for the first time assessed my HIV with a CD4 count. Thankfully, my HIV was not a problem, but they said the TB might kill me. A doctor from the AIDS Centre said that he would bring me HIV medications if my parents would “donate” some money for the convenience. I remained connected to an IV for two months and received many TB
medications my parents bought. The TB and HIV medications began to work. My cough and fevers went away, I gained weight, but I went home taking an entire cup of pills every day for almost two years.

I know I almost died. Daily, I crave shirka! My mom knows me and never lets me out of her sight. Even when I try to make excuses to get some time alone, she never leaves my side. She knows me. I know me too! One minute alone and I know I will find shirka. If I do, I know I will get another free ticket to prison or to heaven. Either way, I am in prison. I prefer the prison in my house over the one where I know nobody cares.

* Sasha is not his real name.
Panel 3: Recommendations for Prevention and Treatment Policies

- **Develop strategies to reduce incarceration rates in key populations.** Laws and policies that criminalize personal drug use and sex work should be changed. New strategies should be developed that directly aim to reduce incarceration, especially to address TB transmission in PWID. Modelling here confirm the negative contributions of incarceration, especially on PWID, on perpetuating the HIV and TB epidemics. For example, current policing policies target high-risk individuals (i.e. PWID, registered drug users, sex workers etc.) and few provide community policing that focus on engaging drug users in evidence-based addiction treatment or harm reduction services in the community. Development of community policing efforts, pre-booking diversion programs, alternatives to incarceration such as drug courts or community supervision in probation that favours rehabilitation and treatment over incarceration are needed. Quality community supervision in probation that engages PLH or those at risk for HIV in community settings where supportive social networks remain and prevention and treatment is uninterrupted is crucial.

- **Improve HIV Testing and Treatment Strategies:** In order to meet UNAIDS policies for 90% detection, ART coverage and viral suppression (90-90-90), EECA prisons must improve HIV testing strategies because HIV identification falls far lower than UNAIDS targets. While some countries meet ART coverage mandates, room for improvement remains. Identifying HIV and increasing ART coverage within prison must, however, be linked to ART continuity post-release, including linkage to OAT.

- **Reduce gap between prison and community healthcare services.** Prisoners with comorbid conditions have a right to the same standard of prevention and treatment services as those in community settings. SUDs should be addressed as chronic, recurring health conditions that should be screened for and treated by the same standards provided in the community. OAT programs are markedly less expensive than imprisonment and modelling here suggest that the most effective strategy to reduce HIV transition is to increase OAT coverage to PWID within prison and effectively transition them to OAT post-release. Where international donors fund HIV treatment and prevention (e.g., GFMTA, PEPFAR), these agencies should stipulate that such prison-based programs are both introduced and scaled-to-need as part of a national strategy as a requirement for continued funding.

- **Introduce and expand OAT, NSP and ART in CJS.** Modelling of HIV transmission here suggests that scaling up OAT coverage to 50% combined with retention post-release during the heightened risk period, would reduce new infections in PWID the most. National guidelines for HIV prevention and treatment should specifically stipulate equivalence of treatment in community and CJS. International agencies support 15 evidence-based practices in CJS. And where such stipulations exist, implementation and monitoring should specifically address CJS settings. Despite the existence of national guidelines, there is a failure to implement a comprehensive drug policy in prisons that includes: psychological support, NSP, OAT, and ART. Crucially, the scale-up of these interventions in CJS should coincide with improving
Continuity of care and prevention post-release – this could have substantial HIV prevention benefit.

- **Access to integrated care.** Compared to those in the community, prisoners carry a higher burden of disease with multiple medical and social comorbidities that require a comprehensive strategy to address HIV, HCV, TB and sexually transmitted infections, as well as psychiatric and substance use disorders. While policies that favour alternatives to incarceration are preferred, for those who do interface with the prison environment, such settings provide an opportunity to screen, treat and provide continuity of care post-release to those otherwise missed by community prevention and treatment services.

- **Align Prisoner Health with International HIV Prevention and Treatment Goals:** The 90-90-90 UNAIDS HIV prevention and treatment goal to diagnose, treat and achieve viral suppression in 73% of all PLH should be extended to prisoners where the HIV continuum of care in EECA is poorly characterized. To achieve this goal, innovations in HIV testing (e.g. routine testing that has been successful in other settings where it was linked to treatment), provision of ART to all PLH and achieving viral suppression through optimal ART adherence will require not only changes in prison-based services, but also in transitional programs to the community. Modelling here suggests that the transitional care, especially by providing OAT during incarceration and sustaining it post-release will be crucial to reduce HIV prevalence in the long-run.

- **Continuity of care.** Prison prevention and treatment should be embedded within a national framework for providing continuous care within SIZO, prison and following community release. Our modelling suggests that providing continuity of interventions such as OAT post-release is key for achieving large HIV prevention benefit among PWID. The CJS should be just another setting to provide care to a concentrated population with comorbid conditions. Partnerships with non-governmental organizations should be encouraged to ensure that prevention and treatment services are maintained.

- **Education.** To successfully implement evidence-based screening and treatment for SUDs, HIV, HCV and TB, continuing education is essential to directly address and reduce negative attitudes toward people with SUDs and HIV in order to reduce both stigma and discrimination. Such professional development should not only target medical personnel, but also custodial staff to better align efforts to engage to promote health and wellness in prisoners.

- **Implementation of organizational strategies.** CJS administrators and staff need to understand that providing healthcare, especially to PWID, is the best strategy to reduce recidivism and improve public health. The success of many international efforts to expand harm reduction strategies has been accompanied with efforts to
help staff understand the value of providing healthcare. This is a long-term strategy to better integration of health and safety policies.
Table 1: Overview of Prison Population in Eastern Europe and Central Asia

<table>
<thead>
<tr>
<th></th>
<th>AZE</th>
<th>KAZ</th>
<th>KYR</th>
<th>TAJ</th>
<th>TUR</th>
<th>UZB</th>
<th>RUS</th>
<th>UKR</th>
<th>BEL</th>
<th>MOL</th>
<th>LIT</th>
<th>LAT</th>
<th>EST</th>
<th>ARM</th>
<th>GEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prison population</td>
<td></td>
</tr>
<tr>
<td></td>
<td>~16,500</td>
<td>44,893</td>
<td>10,060</td>
<td>~9,000</td>
<td>30,568</td>
<td>~42,000</td>
<td>656,618</td>
<td>57,396</td>
<td>31,700</td>
<td>5,329</td>
<td>6,634</td>
<td>3,276</td>
<td>2,775</td>
<td>3,894</td>
<td>9,724</td>
</tr>
<tr>
<td>Community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71,283</td>
<td>116,840</td>
<td>25,000</td>
<td>25,000</td>
<td>NA</td>
<td>80,000</td>
<td>1.8 million</td>
<td>332,500</td>
<td>75,000</td>
<td>30,200</td>
<td>5,403</td>
<td>10,034</td>
<td>9,000</td>
<td>3,310</td>
<td>45,000</td>
</tr>
<tr>
<td>Prison</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.9%</td>
<td>—</td>
<td>30.4%</td>
<td>—</td>
<td>NA</td>
<td>—</td>
<td>—**</td>
<td>48.7%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.5%</td>
<td>—</td>
</tr>
<tr>
<td>Antiretroviral Therapy Coverage</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>14%</td>
<td>4,639</td>
<td>13%</td>
<td>10%</td>
<td>NA</td>
<td>24%</td>
<td>178,711</td>
<td>26%</td>
<td>21%</td>
<td>17%</td>
<td>542</td>
<td>1,055</td>
<td>2,998</td>
<td>16%</td>
<td>39%</td>
</tr>
<tr>
<td>Prison</td>
<td>63.2%</td>
<td>34.3%</td>
<td>69.9% of those registered</td>
<td>59.1%</td>
<td>NA</td>
<td>—</td>
<td>5.0%</td>
<td>6.4%</td>
<td>—</td>
<td>63.1%</td>
<td>23.2%</td>
<td>19.3%</td>
<td>—</td>
<td>77.3%</td>
<td>87.5%</td>
</tr>
<tr>
<td>HIV prevalence</td>
<td></td>
</tr>
<tr>
<td>Community</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.3%</td>
<td>0.4%</td>
<td><0.2%</td>
<td>0.2%</td>
<td>1.1%</td>
<td>1.2%</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.1%</td>
<td>0.7%</td>
<td>1.0%</td>
<td>0.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td></td>
<td>Prison</td>
<td>Community ++</td>
<td>Prison</td>
<td>Opioid Dependent Persons</td>
<td>Community</td>
<td>Prison</td>
<td>Opioid Agonist Therapy Sites (N)</td>
<td>Community</td>
<td>Prison</td>
<td>Opioid Agonist Therapy Coverage (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.7%</td>
<td>3.9%</td>
<td>8.4%</td>
<td>2.4%</td>
<td>0</td>
<td>4.7%</td>
<td>6.5%</td>
<td>19.4%</td>
<td>—</td>
<td>2.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9%</td>
<td>4.8%</td>
<td>6.5%</td>
<td>2.4%</td>
<td>0</td>
<td>4.7%</td>
<td>6.5%</td>
<td>19.4%</td>
<td>—</td>
<td>2.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>6.5%</td>
<td>2.4%</td>
<td>0</td>
<td>0</td>
<td>0.54%</td>
<td>0.54%</td>
<td>—</td>
<td>0.80%</td>
<td>0.80%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4%</td>
<td>6.5%</td>
<td>8.4%</td>
<td>2.4%</td>
<td>0</td>
<td>0.80%</td>
<td>0.80%</td>
<td>2.3%</td>
<td>0.91%</td>
<td>0.91%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2.3%</td>
<td>6.5%</td>
<td>8.4%</td>
<td>0</td>
<td>0.91%</td>
<td>0.91%</td>
<td>—</td>
<td>0.24%</td>
<td>0.24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7%</td>
<td>0.91%</td>
<td>0</td>
<td>6.5%</td>
<td>0</td>
<td>0.24%</td>
<td>0.24%</td>
<td>—</td>
<td>0.24%</td>
<td>0.24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5%</td>
<td>0.59%</td>
<td>0</td>
<td>2.3%</td>
<td>0</td>
<td>0.59%</td>
<td>0.59%</td>
<td>—</td>
<td>0.59%</td>
<td>0.59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4%</td>
<td>0.59%</td>
<td>0</td>
<td>0.91%</td>
<td>0</td>
<td>0.59%</td>
<td>0.59%</td>
<td>—</td>
<td>0.59%</td>
<td>0.59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.24%</td>
<td>0</td>
<td>0.59%</td>
<td>0</td>
<td>0.24%</td>
<td>0.24%</td>
<td>—</td>
<td>0.24%</td>
<td>0.24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7%</td>
<td>0.66%</td>
<td>0</td>
<td>0.59%</td>
<td>0</td>
<td>0.66%</td>
<td>0.66%</td>
<td>—</td>
<td>0.66%</td>
<td>0.66%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5%</td>
<td>0.16%</td>
<td>0</td>
<td>0.66%</td>
<td>0</td>
<td>0.16%</td>
<td>0.16%</td>
<td>—</td>
<td>0.16%</td>
<td>0.16%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4%</td>
<td>1.36%</td>
<td>0</td>
<td>0.16%</td>
<td>0</td>
<td>1.36%</td>
<td>1.36%</td>
<td>—</td>
<td>1.36%</td>
<td>1.36%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB Incidence or Prevalence⁹</td>
<td>77</td>
<td>99</td>
<td>142</td>
<td>91</td>
<td>64</td>
<td>82</td>
<td>84</td>
<td>94</td>
<td>58</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152</td>
<td>2,110*</td>
<td>145</td>
<td>162</td>
<td>184</td>
<td>58*</td>
<td>69</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid Dependent Persons</td>
<td>1.5%</td>
<td>1.0%</td>
<td>0.80%</td>
<td>0.54%</td>
<td>—</td>
<td>0.80%</td>
<td>2.3%</td>
<td>0.91%</td>
<td>0.59%</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32.5%</td>
<td>3.0%**</td>
<td>145***</td>
<td>5.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>44.3%</td>
<td>6.6%**</td>
<td>7.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0%**</td>
<td>3.0%**</td>
<td>145***</td>
<td>5.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>44.3%</td>
<td>6.6%**</td>
<td>7.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid Agonist Therapy Sites (N)</td>
<td>2</td>
<td>10</td>
<td>23</td>
<td>6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>169</td>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>9</td>
<td>NA</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>2+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid Agonist Therapy Coverage (N)</td>
<td>137</td>
<td>205</td>
<td>1,227</td>
<td>677</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8,264</td>
<td>1,066</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>424</td>
<td>919</td>
<td>430</td>
<td>2,600</td>
<td>424</td>
<td>919</td>
<td>430</td>
<td>2,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prison</td>
<td>NA</td>
<td>NA</td>
<td>400</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>68</td>
<td>NA</td>
<td>26</td>
<td>56</td>
<td>151</td>
<td>—</td>
</tr>
</tbody>
</table>

Countries: AZE: Azerbaijan; KAZ: Kazakhstan; KYR: Kyrgyzstan; TAJ: Tajikistan; TUR: Turkmenistan; UZB: Uzbekistan; RUS: Russia; UKR: Ukraine; BEL: Belarus; MOL: Moldova; LIT: Lithuania; LAT: Latvia; EST: Estonia; ARM: Armenia; GEO: Georgia.

*All values are from the survey administered for this study in collaboration with UNODC and refer to 2015, unless otherwise specified in the online appendix.

**A cell is left blank if the information was not filled out or unavailable; NA signifies that the service is not provided.

***Refers only those officially registered as opioid dependent with the National Narcological Registry.

*Present only as a pilot program in SIZO (pre-trial detention) for detoxification and not for maintenance therapy

**per 100,000 people

Legend: OAT: opioid agonist therapies; ART: antiretroviral therapy; PWID: people who inject drugs
Table 2: Overview of the policies and practices related to HIV infection and harm reduction services in prisons of Eastern Europe and Central Asia\(^1,2\)

<table>
<thead>
<tr>
<th></th>
<th>AZE</th>
<th>KAZ</th>
<th>KYR</th>
<th>TAJ</th>
<th>TUR</th>
<th>UZB</th>
<th>RUS</th>
<th>UKR</th>
<th>BEL</th>
<th>MOL</th>
<th>LIT</th>
<th>LAT</th>
<th>EST</th>
<th>ARM</th>
<th>GEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministry overseeing prisoner health</td>
<td>Justice</td>
<td>Interio r</td>
<td>Priso n</td>
<td>Justic e</td>
<td>Interio r</td>
<td>Interio r</td>
<td>Priso n</td>
<td>Interio r</td>
<td>Justic e</td>
<td>Justic e</td>
<td>Justic e</td>
<td>Justic e</td>
<td>Justic e</td>
<td>Priso n</td>
<td></td>
</tr>
<tr>
<td>Prisons, N</td>
<td>35</td>
<td>76</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>42</td>
<td>146</td>
<td>12</td>
<td>7</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16</td>
<td>69</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>39</td>
<td>131</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prisoners, N</td>
<td>~16,50 0-</td>
<td>44,89 3</td>
<td>7,961</td>
<td>~9,00 0</td>
<td>30,56 8</td>
<td>~42,00 0</td>
<td>57,39 6</td>
<td>5,329</td>
<td>6,643</td>
<td>3,276</td>
<td>2,775</td>
<td>3,894</td>
<td>9,724</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women, %</td>
<td>2.8</td>
<td>7.7</td>
<td>4.0</td>
<td>3.3</td>
<td>24.8</td>
<td>3.0</td>
<td>5.6</td>
<td>6.6</td>
<td>3.7</td>
<td>7.4</td>
<td>4.5</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incarceration rate*</td>
<td>236</td>
<td>231</td>
<td>181</td>
<td>130</td>
<td>583</td>
<td>152</td>
<td>446</td>
<td>193</td>
<td>306</td>
<td>215</td>
<td>268</td>
<td>239</td>
<td>218</td>
<td>132</td>
<td>274</td>
</tr>
<tr>
<td>Occupancy rate, %</td>
<td>81.4</td>
<td>71.8</td>
<td>55.5</td>
<td>61.5</td>
<td>85.0</td>
<td>80.0</td>
<td>94.2</td>
<td>120.2 4</td>
<td>96.8</td>
<td>102.9</td>
<td>83.1</td>
<td>59.5</td>
<td>96.3</td>
<td>89.3</td>
<td>47.8</td>
</tr>
<tr>
<td>NSP</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start date</td>
<td></td>
</tr>
<tr>
<td>Facilities</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>OAT</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td></td>
<td>2012</td>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>26</td>
<td></td>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detoxification</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>N</td>
<td>N</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with methadone or</td>
<td></td>
</tr>
<tr>
<td>buprenorphine</td>
<td></td>
</tr>
<tr>
<td>**Non-pharmacologi-</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cal detoxification</td>
<td></td>
</tr>
<tr>
<td>**HIV testing &</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>counselling**</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condom provision</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB fluorography</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB treatment</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV diagnostics</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of HCV</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes (acute only)</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV diagnostics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of HBV</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV vaccination</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programs on prevention of physical and sexual violence</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staff protection program against HIV as an occupational hazard</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-exposure prophylaxis</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start date</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Diagnosis & treatment of STIs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ART=antiretroviral therapy; OAT=opioid agonist therapy; STIs=sexually transmitted infections

Countries: AZE: Azerbaijan; KAZ: Kazakhstan; KYR: Kyrgyzstan; TAJ: Tajikistan; TUR: Turkmenistan; UZB: Uzbekistan; RUS: Russia; UKR: Ukraine; BEL: Belarus; MOL: Moldova; Lit: Lithuania; LAT: Latvia; EST: Estonia; ARM: Armenia; GEO: Georgia.

*All values are from the survey administered for this study in collaboration with UNODC and refer to 2015, unless otherwise specified.
2 A cell is left blank if the information was not completed in the survey.
3 “People,” “treated,” and “tested” refer to the total number of people receiving service in 2014.
4 Available only as a pilot project.
5 Women and juveniles housed in the same facility.
6 Refers to incident cases
+ (Number of prisoners per 100,000 population)
Figure 1: An overview of the criminal justice system in Eastern Europe and Central Asia

- Ministry of Interior
- SIZO – Pre-Trial Detention
 - Arrest – Police "Lock-Up" Typically < 3 days but up to 12 days*
 - SIZO – Pre-Trial Detention Typically < 6 months, but up to 2 years
 - Settlement Colonies Typically day supervision only
 - Corrective Colonies Low Security but 24 hour observation
 - Prisons High Security and 24 hour observation
 - Juvenile Facilities Prisons but only adolescents
 - Hospital Prisons Prison with advanced medical facilities

* Anyone arrested may be sentenced and bypass SIZO if convicted immediately
Figure 2: Relationship of the risk environment in community and criminal justice settings in Eastern Europe and Central Asia

Community Risk Environment

<table>
<thead>
<tr>
<th>Macro Factors</th>
<th>Micro Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td></td>
</tr>
<tr>
<td>- Housing, employment challenges</td>
<td>- Economic vulnerability</td>
</tr>
<tr>
<td>- Funding for OAT, NSP, ART</td>
<td>- Individuals costs & corruption</td>
</tr>
<tr>
<td>Social</td>
<td></td>
</tr>
<tr>
<td>- Family structure/support</td>
<td>- Injection networks</td>
</tr>
<tr>
<td>- Stigma of drug users, SW, OAT</td>
<td>- Sexual networks</td>
</tr>
<tr>
<td>- Homelessness</td>
<td>- Loneliness & isolation</td>
</tr>
<tr>
<td>Policy</td>
<td></td>
</tr>
<tr>
<td>- Official “registration” for addiction & HIV</td>
<td>- Policing activities</td>
</tr>
<tr>
<td>- Laws governing drug use</td>
<td>- Availability and coverage of OAT, NSP, ART</td>
</tr>
<tr>
<td>- Alternatives to incarceration (e.g., probation)</td>
<td>- Eligibility for OAT and ART</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>- Population mobility/migration</td>
<td>- Venues for drug injection</td>
</tr>
<tr>
<td>- Access to transport routes/drug markets</td>
<td>- Prevalence of PWID, HIV, TB (MDR-TB) in the Community and in key populations</td>
</tr>
<tr>
<td>- Local displacement of PWIDs</td>
<td></td>
</tr>
</tbody>
</table>

Amplifying Effect on OAT Implementation on PWIDs & HIV Risk in Prisons

Prison Risk Environment

<table>
<thead>
<tr>
<th>Macro Factors</th>
<th>Micro Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td></td>
</tr>
<tr>
<td>- High levels of WP-DI</td>
<td>- Within prison drug trade</td>
</tr>
<tr>
<td>- Funding for OAT & Harm Reduction/HIV prevention & treatment services</td>
<td>- Economic vulnerability within prison</td>
</tr>
<tr>
<td>- Economically and socially disempowered populations concentrated within prison</td>
<td>- Discrimination for within prison employment opportunities</td>
</tr>
<tr>
<td>Social</td>
<td></td>
</tr>
<tr>
<td>- Exclusion from social participation and meaningful social roles</td>
<td>- Prison staff and peer stigma, attitudes, and myths about OAT, PLH, and PWIDs</td>
</tr>
<tr>
<td>- Disruption of social & risk networks</td>
<td>- Social norms & networks of PWIDs & PLH</td>
</tr>
<tr>
<td>- Gender inequalities and gendered risk</td>
<td>- Lack of social support</td>
</tr>
<tr>
<td>- Ethnic inequalities</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td></td>
</tr>
<tr>
<td>- Policies governing OAT, NSP, condoms, ART</td>
<td>- Dosing of OAT</td>
</tr>
<tr>
<td>- TB screening and treatment policies</td>
<td>- Availability & quality of free OAT, NSP, condoms, ART</td>
</tr>
<tr>
<td>- Health and human rights policies toward prisoners</td>
<td>- Screening policies for PWID, TB & HIV</td>
</tr>
<tr>
<td>- Transitional care services</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>- OAT engagement (prison vs. community)</td>
<td>- Availability of transitional/continuous care</td>
</tr>
<tr>
<td>- Location within drug trade routes</td>
<td>- Location of OAT, ART, NSP sites</td>
</tr>
<tr>
<td>- Prison population mixing</td>
<td>- Injection locations</td>
</tr>
<tr>
<td>- OAT/NSP dispensing practices</td>
<td>- Spatial inequalities</td>
</tr>
<tr>
<td>- Crowding/Ventilation (TB)</td>
<td>- Prevalence of WP-DI & HIV (TB)</td>
</tr>
</tbody>
</table>

Possible Mechanisms

Drug Use & HIV Vulnerability

- Stigma increases social and economic vulnerability
- Increases substance use from despair and lack of social support
- Increases within prison drug injection / initiation
- Increases injection risks and transmission of blood-borne viruses
- Discourages OAT entry and retention
- Decreased opportunities to negotiate protective practices
- Increases vulnerability to violence
- Increases likelihood of recidivism
- Increases within prison HIV transmission
- Relapse to drug use after release, overdose
- Stop taking ART (TB) medications after release
Figure 3: Projected median trends in HIV prevalence (a,b) and incidence (c,d) among community (both never and previously incarcerated PWID) and incarcerated PWID in Ukraine for various incarceration and intervention scenarios*

* Scenarios shown are for the status quo (solid black line), and if there was either: no effect of incarceration on transmission risk after 2015 (short dashed line); no further incarceration of PWID after 2015 (long dashed line); or 50% of incarcerated PWID were initiated on OAT each year starting from 2015 and maintained on OAT for a year after release (long dash-dot line). Data points with 95%CI are shown for comparison and shading represents the 95% credibility intervals for the status quo projection (light shading) and if incarceration had no effect on transmission risk after 2015 (dark shading).
Figure 4: Percentage of new HIV infections that would be averted over 15 years (from 2015 and 2030) if either (a) incarceration no longer elevated transmission risk (full and conservative projections); (b) there was no further new incarceration of PWID; or (c) prison OAT was scaled up with or without retention after release. Bars show the median projections, while error bars show the 95% credibility intervals.
Figures 5: Association between number of years incarcerated and prevalence of ever having TB among prisoners (5A) and people who inject drugs in the community (5B) in Ukraine. The points are the mean proportion of prisoners (Figure 5A) or community PWID (Figure 5B) reporting ever having TB for different reported years in prison, and the error bars are the 95% bootstrapped confidence intervals about the mean. The solid black line is the best logistic fit to the data, and the grey shaded area is bounded by the best logistic fits to the lower and upper confidence bounds of the data.

5A. Prisoners in Ukraine

* Data derived from a 2011 PUHLSE national prison survey39,45.
5B. Community People Who Inject Drugs in Ukraine

* Data derived from a multi-site ExMAT survey of people who inject drugs in Ukraine in 2015.
Figure 6: Incarceration Rates in Eastern European and Central Asian Countries and Availability of Opioid Agonist Therapies and Needle/Syringe Programs

- No OAT in any part of the criminal justice system
- OAT in Police Lock-up Only
- OAT in Prison
- Mean Global Incarceration Rate: 144/100,000 population
- NSP
- Incarceration decreased to 195/100,000 due to recent conflict

Incarceration rates per 100,000 population for countries TUR RUS UKR BEL GEO LIT LAT AZE KAZ EST MOL KYR UZE ARM TAJ.
References

