Most Computational Hydrology is not Reproducible, so is it Really Science?

Christopher Hutton¹, Thorsten Wagener¹, Jim Freer², Dawei Han¹, Chris Duffy³, Berit Arheimer⁴

¹Department of Civil Engineering, University of Bristol, Bristol, UK.
²School of Geographical Sciences, University of Bristol, Bristol, UK.
³Department of Civil Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
⁴Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Corresponding author: Christopher Hutton (chutton294@gmail.com)

Key points

- Articles that rely on computational work do not provide sufficient information to allow published scientific findings to be reproduced.
- We argue for open re-useable code, data, and formal workflows, allowing published findings to be verified.
- Reproducible computational hydrology will provide a more robust foundation for scientific advancement and policy support.

Abstract

Reproducibility is a foundational principle in scientific research. Yet in computational hydrology, the code and data that actually produces published results is not regularly made available, inhibiting the ability of the community to reproduce and verify previous findings. In order to overcome this problem we recommend that re-useable code and formal workflows, which unambiguously reproduce published scientific results, are made available for the community alongside data, so that we can verify previous findings, and build directly from previous work. In cases where reproducing large-scale hydrologic studies is computationally very expensive and time-consuming, new processes are required to ensure scientific rigour. Such changes will strongly improve the transparency of hydrological research, and thus provide a more credible foundation for scientific advancement and policy support.

Index Terms

Computational Hydrology; Modeling; Metadata; Software re-use; Workflow

Keywords

Hydrology; Reproducibility; Software; Code; Verification; Workflows

Main Text

Upon observing order of magnitude differences in Darcy-Weisbach Friction Factors estimated from hillslope surface properties in two previous studies [Weltz et al. 1992;
Abrahams et al. [1994], Parsons et al [1994] conducted additional experiments to identify factors controlling hillslope overland flow in semi-arid environments, and identified that the experimental set-up was the main factor controlling the difference between the previous experimental results. Whilst exact reproducibility is impossible in open hydrological systems, attempting to reproduce the main scientific finding within an acceptable margin of error is a core principle of scientific research [Popper 1959]. As illustrated, independent observation helps to verify the legitimacy of individual findings. In turn, this helps us to build upon sound observations so that we can evolve hypotheses (and models) of how catchments function [McGlynn et al. 2002], and move them from specific circumstances to more general theory [Wagener et al., 2007].

As in Parsons et al [1994], attempts at reproducibility have failed in a number of disciplines, leading to increased focus on the topic in the broader scientific literature [Begley & Ellis 2012; Prinz et al. 2011; Ioannidis et al. 2001; Nosek 2012]. Such failures have occurred not just because of differences in experimental setup, but because of scientific misconduct [Yong 2012; Collins & Tabak 2014; Fang et al. 2012], poor application of statistics to achieve apparent significant results [Ioannidis 2005; Hutton 2014], and importantly, insufficient reporting of methodologies and data quality in journals to enable reproducibility to be assessed by the community. An oft-cited underlying reason for such failures is the present reward system in scientific publication, which prioritises the publication of innovative, and seemingly statistically significant results over the publication of both null results [Franco et al 2014; Jennions & Möller, 2002; cf Freer et al 2003], and reproduced experiments. Such a system provides few incentives to adopt open science practices that support and enable verification [Nosek et al 2015].

The prominence of computational research across scientific disciplines – from big data analysis in genomic research to computational modelling in climate science – has brought increased focus on the reproducibility issue. This is because the full code and workflow used to produce published scientific findings is typically not made available, thus inhibiting attempts to verify the provenance of published results [Buckheit & Donoho 1995; Mesirov 2010]. Given the extent to which this lack of transparency is considered a problem for reproducibility more broadly in the scientific literature [Donoho et al. 2009], to what extent is reproducibility, or a lack thereof, also a problem in computational hydrology? Computational analysis has grown rapidly in hydrology over the past 30 years, transforming the process of scientific discovery. Whilst code is most obviously used for hydrological modelling [e.g. Clark et al. 2008; Wrede et al. 2014; Duan et al. 2006], some form of code is used to produce the vast majority of hydrological research papers, from data processing and quality analysis [Teegavarapu 2009; Mcmillan et al. 2012; Coxon et al. 2015], regionalisation and large-scale statistical analysis across catchments [Blöschl et al. 2013; Berghuijs et al. 2016], all the way to figure preparation. However, as in other disciplines the full code that produces presented results is typically not made available alongside the publication to document their provenance, which inhibits attempts to reproduce published findings.

In order to advance scientific progress in hydrology, reproducibility is required in computational hydrology for several key reasons. First, the reliability of scientific computer code is often unclear. From our own experience it is often very difficult to spot errors unless they manifest themselves in very obvious errors in model outputs. Thus, code needs to be transparent to allow the legitimacy of published results to be verified. Second, the complexity
of many hydrologic models and data analysis codes used today makes it simply infeasible to report all settings that can be adjusted (e.g. initial conditions, parameters, etc) in publications - a point recognised recently in a joint editorial published in five hydrology journals [Blöschl et al. 2014]. Transparency across hydrology is especially important given research builds on previous research. For example, being able to evaluate how “tidied up” datasets have been created by explicitly showing all of the assumptions made will lead to benefits in interpreting where and why subsequent models that are built upon such datasets fail. Finally, the complexity and diversity of catchment systems means that we need to be able to reproduce exact methodologies applied in specific settings more broadly across a range of catchment environments, so that we can robustly evaluate competing hypotheses of hydrologic behaviour across scales and locations [Clark et al 2016]. Our current inability to achieve this hinders both the ability of the broader community to learn from, and build on, previous work, and importantly, verify previous findings. So what material should be provided, and therefore what is required to reproduce computational hydrology?

The necessary information that leads to, and therefore documents the provenance of the final research paper has been termed the research compendium [Gentleman & Lang 2004]. In the context of computational hydrology this includes the original data used; all analysis/modelling code; and the workflow that ties together the code and data to produce the published results. Although these components are not routinely published alongside journal articles, current practices in hydrology do facilitate reproducibility to varying extents. For example, initiatives are relatively well developed in hydrology for opening up and sharing data from individual catchments and cross-catchment datasets [McKee & Druliner 1998; Renard et al. 2008; Kirby et al. 1991; Newman et al. 2015; Duan et al. 2006], including (quite recently) the development of infrastructures and standards for sharing open water data [Emmett et al 2014; Leonard & Duffy 2013; Tarboton et al. 2009; Taylor, 2012; Tarboton et al 2014]. In addition, different code packages has been made available by developers. Prominent examples include the hydrologic models such as Topmodel [Beven & Kirkby, 1979], VIC [Wood et al., 1992], FUSE [Clark et al., 2008], HYPE [Lindström et al., 2010], open-source groundwater models including MODFLOW [Harbough, 2005] and PFLOTRAN, and codes linked to modelling, including optimization/uncertainty algorithms such as SCE [Duan et al., 1993], SCEM [Vrugt et al., 2003] or GLUE [Beven & Binley, 1992]. By being made open, such code has helped spread new ideas and concepts to advance hydrology, and made reproducing each-others’ work easier However, whilst sharing data and code are important first steps, sharing alone does not provide the critical detail on implementation contained within a workflow that is required to reproduce published results.

We argue that in order to advance and make more robust the process of knowledge creation and hypothesis testing within the computational hydrological community, we need to adopt common standards and infrastructures to: [1] make code readable and re-useable; [2] create well documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; [3] make code and workflows available and easy to find through use of code repositories and creation of code metadata; [4] use unique persistent identifiers (e.g. DOIs) to reference re-useable code and workflows, thereby clearly showing the provenance of published scientific findings (Figure 1).
Figure 1. Schematic figure of steps required leading to reproducible and re-useable hydrological publications.

The first step towards more open, reproducible science is to adopt common standards that facilitate code readability and re-use. As most researchers in hydrology are scientists first, programmers second, setting high standards for code re-use may be counter-productive to broad adoption of reproducible practices. Yet long, poorly documented scripts are not re-useable, and certainly difficult to reproduce if their ability to do the intended job cannot be verified. As a minimum standard we therefore recommend that code should come with an example workflow, as commonly adopted [e.g. Pianosi et al., 2015], and where possible, also packaged with input and output data to provide a means to ensure correct implementation of a method prior to application. Implementing code correctly however is not enough to make it re-useable; sufficient information is required to understand what the code does, and to be reproducible, whether it does this correctly. Therefore, code should be modularised into functions and classes that may be re-useable by the wider community, with comments that
don’t repeat the code, but explain at a higher level of abstraction what individual blocks within modular code are trying to do [McConnel, 2004]. Such readable code allows the broader community to verify code intent.

The second key requirement to reproduce published scientific results is a well-documented workflow, or protocol that combines re-useable code together with data to enable published scientific findings to be reproduced. Such workflows may take the form of code scripts themselves [e.g. Ceola et al 2015; Pianosi et al., 2015], or when multiple programming environments/research partners are involved, schematic workflows that illustrate how individual scripts and intermediary results lead to the generation of the final, published paper. Regardless of the specific structure, or software/workflow management system used, we argue that the key requirement of such a workflow is that it clearly specifies all potential degrees of freedom, and therefore unambiguously ties together the component re-useable code and data to document the provenance of the published scientific results. For example, Ceola et al [2015] identified the importance of a well-documented protocol to ensure correct execution, and avoid ambiguity in the interpretation of results when 5 research groups attempted to reproduce the same hydrological model calibration experiment.

Third, code and code metadata need to be made open and available to allow others to re-use and reproduce scientific results. Numerous code and resource repositories exist to facilitate sharing of research outputs, such as Github, Zenodo, Figshare, the EU SWITCH-ON Virtual Water-Science Laboratory (www.water-switch-on.eu), and the US CUAHSI initiative Hydroshare, specifically designed for sharing hydrological data and models to serve the hydrological community [Horsburgh et al. 2015; Tarboton et al. 2014]. The development of metadata standards for water data is a key factor that has allowed data to be found, correctly interpreted and re-used by the broader community [Maidment, 2008; Taylor, 2012]. In the same vein, we argue that in order to facilitate first the discovery, and second the re-use of disparate hydrological code across the web, the development and adoption of similar metadata standards are required. Gil et al [2015] for example have developed OntoSoft for the geoscience community; a metadata repository and ontology to describe software metadata. The development of code metadata, and consistent use of such a repository, whilst more challenging than development of metadata standards for data, will greatly facilitate the process of code identification and re-use, and through broad community engagement, lead the way towards the development of more formal ontologies for specific components of hydrological software, which will greatly improve model interoperability [see Elag and Goodhall, 2013].

Finally, we recommend that re-useable code and reproducible code [workflows] need to be cited in research papers using unique persistent identifiers [e.g. DOIs] to clearly link published results to the code used to generate them, thereby documenting their provenance [Horsburgh et al. 2015]. Such DOIs should be specific to the exact code version used in generating the results. Appropriate citation in methodologies and results sections of papers will allow others to both re-use code and reproduce experimental results. Whilst code may be included as supplementary material in research articles, persistent links to repositories provides an open access approach that exploits existing infrastructures specifically designed for sharing research outputs. Furthermore, such an approach demands little from publishers other than adopting standards for code citation.
Making one’s code re-useable in the first instance, then reproducible, undoubtedly requires extra effort. This is notwithstanding the effort to reproduce someone else’s work, with little reward in the current system of publication to reproduce, and therefore validate, either positively or negatively, a prior result. Thus, it is a perfectly valid question to ask: why go to the effort? Within the current system of academic reward through citation [Koutsoyiannis et al., 2016], making code available and re-useable reduces the barriers to the adoption of developed methods, which as considered above, is more likely to lead to further citation and greater impact in the community. Furthermore, making code re-useable is beneficial for our own work efficiency [Donoho et al. 2009]. Across hydrology, much duplicated code is likely to be written for common tasks that are not deemed worthy of publication. However, if open, re-useable practices are adopted by the broader community to make all code open and citable, this would reduce the amount of individual code to be written, and lead to improved efficiency at a community level. In addition, this would allow researchers to gain credit for all of their research outputs, not simply the final publication. The key reason we recommend making code re-useable, however, is that this would allow a process of natural selection to occur at the community level, where freely chosen code that is assessed to be most fit-for-purpose through re-use and unit-testing can form the individual building blocks of larger ‘off-spring’ scripts/workflows. Verification of these individual code building blocks, potentially by many users in the community, means assessing the reproducibility and provenance of derived results becomes much easier.

As has guided our recommendations we make above, there is wide recognition that gradual steps are required to change a deeply engrained research culture that does not currently require reproducibility [Bailey et al. 2015; Peng 2011; Koutsoyiannis et al., 2016]. A key step to change this culture is to ensure that computational science training (e.g. http://software-carpentry.org) is properly embedded within hydrological science curriculums, so that future generations of hydrologists have the skills to build readable, version controlled and unit-tested software [McConnel, 2004], allowing them to engage more fully in an open scientific community by reproducing and re-using each other’s research outputs. Thus, instead of seeing the need to make their work reproducible as an inconvenient after-thought, it will be an integral part of their research process. Engaging with advances in the related disciplines of computational science and hydroinformatics through such training will help ensure future hydrologists, and in turn the science they produce, benefits from modern computational methods. To facilitate this training, Data and Modeling Driven Cybereducation (DMDC) methods [Merwade and Ruddell, 2012], and educational web-based tools [e.g. Wagener and McIntyre, 2007; Habib et al. 2012], need to come to the forefront and ultimately form part of a holistic approach to hydrology education that considers future challenges and opportunities for hydrologists [Sanchez et al., 2016].

Journals and funding bodies clearly have a role to play in facilitating the change to more open science. Some publishers and hydrological journals are revising their policies to encourage authors to make data and computer codes available to readers [Blöschl et al. 2014], notably Vadose Zone Journal with the launch of a reproducible research program, which will verify that code is technically sound and can be used to reproduce the key results of the paper [Skaggs et al., 2015]. AGU Publications also encourages references to data and software to facilitate proper attribution and pathways to find source material, facilitating transparency and recognition [Hanson and Van Der Hilst, 2014]. Other journals go further. Science for example
states that all codes used in creation and analysis of data must be available to readers [Sciencemag.org, 2016]. Nosek et al [2015] have developed guidelines to facilitate gradual adoption of open practices by journals. Funding guidelines for science funding bodies in the USA [NSF] and UK [NERC] have moved towards more open science practices, and both require that data and other research materials are made open [Nerc.ac.uk, 2016; NSF, 2016]. NERC’s open data policy, for example, is designed to “support the integrity, transparency, and openness of the research it supports”. However, despite the intent, these guidelines currently fall short of software sharing, which is only encouraged by the NSF. Finally, changes such as the replacement of the “Publications” section in the NSF biosketch format for grant applications with a “Products” section to recongise other research outputs like software provides important additional incentives for open science practice.

Whilst reproducibility is more achievable in smaller scale studies, there are key technical challenges to address in making computational workflows in hydrology reproducible as the scale of application increases in terms of modelling domain, data and computational requirements, large legacy codes authored by large, diverse scientific groups, and large user communities. Modelling large domains with complex models, or many catchments with complex algorithms is increasingly common [e.g. Kollat et al., 2012; Pechlivanidis and Arheimer, 2015], yet such studies are computationally demanding, and one cannot currently expect these to be reproduced given the resources it would require, in particular by reviewers. We therefore need to improve our ability to reproduce larger scale studies, and when not possible, identify formal processes that nonetheless ensure that such studies are scientifically verifiable.

Ongoing research in hydroinformatics is attempting to tackle these reproducibility issues, including development of workflows for large scale data processing [Essawy et al. 2016; Billah et al. 2016], and the work undertaken over the past decade to develop the open source model RAPID [David et al, 2016]. In addition, formal processes like benchmark comparison tests [e.g. Maxwell et al. 2014] may help to provide confidence in key complex codes that are difficult to transfer between research groups. Other scientific communities have moved towards sharing complex codes between many research groups, including projects in meteorology (NEMO) and oceanography (HIRLAM), which is beneficial for code development. The idea to establish such a community model has been discussed in hydrological sciences [Weiler and Beven, 2015]. Improved training in computational science, and open science practices considered above, will help in building large and inter-operable model codes across research groups, which can help in providing independent verification of model components.

In a competitive research climate, funding bodies in the UK and Europe are increasingly emphasising the importance of impact generated from science spending. Coupled with events such as the droughts in California, and persistent flooding in the UK over recent years, this change in emphasis highlights the increasing role that hydrological scientists have to play in informing public policy and public understanding of hydrological risks. The need for openness and transparency in scientific research was highlighted by the so-called climategate scandal, because of the potential loss of trust in climate scientists that resulted [Leiserowitz et al 2012]. Thus, to play a credible role in informing public policy, trust in the hydrological science community is essential, and is built on transparency. Transparent, reproducible computational hydrology will then provide a solid foundation to address the more difficult problem of
inference and reproducibility in open systems to forward scientific understanding; progress in which requires both innovation and verification.

Conclusions

Reproducibility is a foundational principle in scientific research. Yet in hydrology, the code and data that actually produces published results is not regularly made available, which strongly inhibits reproducibility. This situation hinders both the ability of the broader community to learn from, and build on, previous work, and importantly, verify previous findings. To help move towards reproducible computational hydrology we recommend the following:

1. Code needs to be made readable and re-useable for the community;
2. Workflows that tie together data and re-useable code need to be created to document, unambiguously, the full provenance of published scientific results;
3. Re-useable code and workflows need to be made available and easy to find through consistent use of repositories and creation of code metadata;
4. Re-useable and reproducible code needs to be cited in publications using unique persistent identifiers (e.g. DOIs) to clearly show the provenance of published scientific findings.
5. New procedures needs to be developed that ensure scientific rigour in circumstances where reproducing large-scale studies is computationally very expensive and time consuming.

Making code re-useable is more likely to lead to citation and re-use of an individual’s work, which provides an incentive within the current publication system that can be built upon to move towards reproducibility, and gain efficiencies across the hydrology community to advance scientific understanding across catchments. Ultimately, however, a collective will is required across the community to adequately address the larger technical, scientific and cultural challenges that need to be solved, including real buy-in from journals and funding bodies, and training of young scientists to adopt reproducible practices. To allow hydrology to play a credible role in informing public policy, trust in the hydrological science community is essential, and is built on the transparency that will result. Our view is that reproducible computational hydrology will provide this transparency.

Acknowledgement

This study was performed within the EU FP7-funded project SWITCH-ON [grant agreement No 603587], which explores the potential of Open Data and promote Open Science to become a vehicle for new forms of collaborative research in hydrology. The authors would like to thank Glenn Hammond and Jon Goodall for their insightful comments and suggestions that have contributed to improve this paper. No data was used in producing this manuscript.

References


Hanson, B., and R. Van Der Hilst (2014), AGU’s data policy: History and context, Eos (Washington, DC), 95(37), 337, doi:10.1002/2014EO370008.


